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Anomaly Detection using Deep Learning based
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Abstract—Automated surface inspection is an important task
in many manufacturing industries and often requires machine
learning driven solutions. Supervised approaches, however, can
be challenging, since it is often difficult to obtain large amounts of
labeled training data. In this work, we instead perform one-class
unsupervised learning on fault-free samples by training a deep
convolutional neural network to complete images whose center
regions are cut out. Since the network is trained exclusively on
fault-free data, it completes the image patches with a fault-free
version of the missing image region. The pixel-wise reconstruction
error within the cut out region is an anomaly image which can
be used for anomaly detection. Results on surface images of
decorated plastic parts demonstrate that this approach is suitable
for detection of visible anomalies and moreover surpasses all
other tested methods.

Index Terms—Surface Inspection, Anomaly detection, Defect
detection, Convolutional Neural Networks, Unsupervised, One-
class, Image completion, Inpainting.

I. INTRODUCTION

URFACE inspection is an issue in many manufacturing

industries. This is particular the case where the visual
quality impression of a product has a strong influence on
the decision whether a product is purchased or not. In these
cases, it is common practice to inspect every fabricated part
for visible defects, either manually or automatically. Manual
inspection suffers from being a monotonous task, which typ-
ically leads to overlooked errors and subjective assessments.
For these and other reasons, the industry’s ambitions are high
to automate any type of surface inspection. One particular
challenge in automated surface inspection is the distinction
of permitted structures from defects on patterned or tex-
tured surfaces. Another challenge are components which show
slight but permitted sample-to-sample appearance variations.
This fingerprint-like behavior means that reference samples
("golden samples”) cannot be used directly to filter out the
permitted appearances.

Surface inspection can be linked to the field of anomaly
and novelty detection, which is the detection of patterns that
deviate from the expected behavior or the detection of unseen
patterns [1l]. In those cases, a model is built from normal
(fault-free) samples only. Anomalous (faulty) patterns are then
detected by monitoring the anomaly score. Nowadays, convo-
lutional neural networks (CNNs) are the predominant choice
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Fig. 1. Examplary surface used as test case in this study. The three images
below show the image patch fed to the proposed pipeline, the reconstructed
fault-free clone and the resulting pixel-wise anomaly score.

for many image related tasks in machine learning. Although
they are typically trained in a supervised manner in tasks such
as classification, object detection and segmentation, they can
also be used for unsupervised tasks such as dimensionality
reduction, unsupervised clustering [2] and image generation
tasks such as the generation of completely novel images [3]]
or image completion [4, |5} 6].

In this paper, a deep convolutional neural network is used
for patch-wise completion of surface images with the aim to
detect aesthetic surface defects. Since the network is trained
exclusively on normal data, it can be used to compute fault-
free clones of the completed region. By subtracting the corre-
sponding query region, a pixel-wise anomaly score is obtained,
which is then used to detect defects (see Fig. [2).

Image completion tasks typically have the aim to complete
missing regions of an image in the most natural looking way.
Besides being semantically meaningful, the inpaint must also
look as authentic as possible. For this reason, feed-forward
inpainting DCNNs are often trained jointly with an adversarial
network, which was first done by Yu et al. in 2016 [4]. The
adversarial network has the objective to discriminate between
fake and real images. In contrast, the generative model must
increase the error rate of the adversarial network by generating



ACCEPTED FOR PUBLICATION BY IEEE, 17TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018 2

128x128 convolution

32 64

strided conv.

dilated conv. [ upscaling + conv.

64 32 16

Fig. 2. Schematic representation of the proposed algorithm. The 32 X 32 central region of the input image patch (128 x 128) is removed (set to
zero) before being fed into the deep convolutional neural network. After image reconstruction by the network the central region is subtracted from
the corresponding query region. The absolute value of this difference image is used as anomaly score. The image completion network consists of 17
layers: Conv(5,1,1,32) — Conv(3,1,1,64) — Conv(3,1,1,64) — Conv(3,1,2,128) — Conv(3,1,1,128) — Conv(3,1,1,128) — Conv(3,2,1,128) —
Conv(3,4,1,128) — Conv(3,8,1,128) — Conv(3,16,1,128) — Conv(3,1,1,128) — Conv(3,1, 1, 128) — Bilinear Upscaling(2x) — Conv(3,1,1,64) —
Conv(3,1,1,64) — Conv(3,1,1,32) — Conv(3,1,1,16) — Conv(3,1,1,1) — Clip(—1, 1), where Conv(k, d, s, c) denotes a convolutional layer with kernel

size k x k, dilation rate d, stride s and ¢ output channels.

realistic images. Although this additional adversarial loss
indeed causes inpaints to look more realistic, it has no positive
effect on pixel-wise matching the missing part of the image.
Training with the joint loss function even increases the pixel-
wise reconstruction error, which is undesirable behavior for
anomaly detection. For this reason, in this paper the feed-
forward generative DCNN is trained with reconstruction loss
only. The reconstructed fault-free surface images of the case
study are matched so closely that they are hardly distinguish-
able from the query images. It is shown that the detection
of well recognizable defects on patterned surfaces is possible
with this approach.

II. RELATED WORK

Anomaly detection—closely related to outlier detection and
novelty detection— is of interest in many research areas and
application areas. Hence, there exist several reviews on this
issue [11 /7,8, Ol [10]. There are also some reviews about surface
inspection [[111 12} 13]], which can be considered a special case
of anomaly detection. Among the learning-based methods one
can distinguish between two groups: One-class and multi-class
learning. The multi-class settings include both normal (fault-
free) and faulty samples during training. The advantage is
the straight-forward application of supervised DCNN based
image classification or segmentation architectures such as
VGG [14] or FCN [15]. The disadvantage, however, is that
a large quantity of faulty instances has to be collected. This
is especially difficult in scenarios where defects occur very
rarely. Moreover, manual labeling of defects is extremely
laborious, especially at pixel level.

One-class approaches, on the other hand, only require
normal instances for training. In general, however, training
works well even if a small percentage of the data is not fault-
free. If only one-class data is available, typically supervised

image classification and segmentation algorithms cannot be
applied. A hybrid approach is the injection of artificial defects.
It enables the application of classification and segmentation
algorithms on fault-free raw data [[16]. However, the detection
of defects can only be guaranteed for those that are represented
by the distribution of synthetic defects. On the other hand, even
tiny and weakly contrasted defects can be detected, provided
that similar synthetic defects have been injected.

Learning based anomaly detection methods, that are purely
trainable with one-class data, are for example one-class SVMs,
which were first introduced by [Schélkopf et al) [17]]. [Li et al|
[18] used them in combination with clustering for outlier
detection of face images. Another one-class anomaly detection
method was proposed by [19], who used a CNN
to map normal instances into a certain feature space, in which
the mapped instances were clustered within a hypersphere.
While both of these approaches worked well for detecting
images strongly deviating from the normal ones, weakly
deviating images were often misclassified. Apparently they are
therefore less suitable for the detection of small anomalies on
surface images. Furthermore, no pixel-wise anomaly detection
is provided.

Another possibility to train on one-class data are
reconstruction-based or image generating and complet-
ing approaches. These approaches—often based on neural
networks—have the advantage that pixel-wise anomaly de-
tection is possible. For example, autoencoders are used to
reconstruct an input after passing it through a bottleneck layer
[20] [21]. However, they tend to compress image content
without learning a semantically meaningful representation.
Denoising variants address this problem by corrupting the
input image where the DAN has the objective to reconstruct
the uncorrupted query [22]. Since, however, this corruption
usually is done on pixel level, the DAN is not required to
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Fig. 3. Training of the DCNN on data set A.

learn a lot of semantical information [4]. A very recent image
generating approach is based on a GAN that is trained to
generate normal instances. When inspecting an image for
anomalies, the GAN is used within an iterative optimization
process to generate an image that looks as similar as possible
[23] to the inspected image. Images with anomalies will not
be generated since they are not part of the training data.
The approach, however, is very slow due to the optimization
process. Therefore, the method is difficult to apply in scenarios
such as surface inspection, where thousands of image patches
have to be processed within seconds.

Similarly to denoising autoencoders (DANs), image comple-
tion networks have to deal with corrupted images. However,
instead of containing low-level corruptions, a whole region of
the input image is missing. An image completion algorithm,
therefore, has to semantically understand the image. Similarly
to anomaly detecting GANs [23], an image completion net-
work can be used for anomaly detection. An inpainted region
is expected to be fault-free whenever the training data consists
only of normal samples. For example, Munawar and Creusot
[24] used Boltzmann machines to inpaint road images with
the aim to detect anomalies such as obstacles.

III. METHODOLOGY
A. Image Completion Network

Architecture: A fully convolutional network adapted from
[S] and [6] is used for image completion. Overall, the network
consists of 17 layers (see Fig. [2). After the third layer, the
resolution of the feature maps is halved by strided convolution.
In order to increase the receptive fields of the output neurons, a
series of dilated convolutions according to [3] is used (layers 7
- 10). Upscaling back to the input size at layer 13 is performed
by bilinear rescaling followed by a convolution. In accordance
to [6], mirror padding is used for all convolutional layers.
Further, Exponential Linear Unit (ELU) activation functions
are used.

Loss function: The network is trained with L1 reconstruc-
tion loss. The 32 x 32 center region, defined by the binary
mask M, is weighted differently from the remaining region.
With X being the image patch to be inspected, the network is
trained with the loss function

LX)= XN|[Mo(X-FMoX))|,/N
+(1-N||M o (X -F(Mo X)), /N

where © denotes element-wise matrix multiplication, M
denotes the complement mask of M, A\ is the weighting
parameter between the center and the remaining region, N
is the number of pixels of X, and || - ||; denotes the LI
matrix norm. The parameter A was chosen to be 0.9 for the
conducted experiments. Since only the reconstruction error
is relevant for anomaly detection, an adversarial loss is not
included. Only the pixel-wise reconstruction error is relevant
for anomaly detection. Hence, an adversarial loss is not
included, since a more natural looking image does not decrease
the reconstruction error.

Training details: The image completion network was
trained from scratch using the ADAM optimizer [25] with
hyper parameters « = 0.0002, 57 = 0.9, B2 = 0.999,
€ = 10~% and a batch size of 128. All weights were initialized
from a truncated Gaussian distribution with a mean of 0 and a
standard deviation of 1. The biases were zero-initialized. Each
model was trained on 100k-200k batches within 24 hours on
a GTX 1080Ti (see Fig. 3).

B. Pre- and post processing

The image completion network is fed with image patches of
size 128 x 128. The patches are corrupted by masking out the
central area of size 32 x 32. This large ratio between known
and unknown image content provides the network with more
semantic information to complete the center region.

Image patches are extracted in real-time from high res-
olution surface images on randomized positions. This way,
all possible patches are extracted from the raw data during
training. In addition, data augmentation consisting of ran-
domized image transformations is performed. This, however,
usually leads to unwanted border effects. In order to avoid
these effects, patches larger than the target size are extracted
before applying these transformations and center-cropped to
size 128 x 128 afterwards.

After reconstruction of the corrupted image by the network,
the pixel-wise absolute difference between the reconstructed
image and the query image is computed. For anomaly detec-
tion, only the 24 x 24 center region of this absolute difference
image is used. Image patches in which defects appear close
to the border of the cut out 32 x 32 center region, the
neural network seems to generate local continuations of the
bordering defects. By considering only the 24 x 24 center
region, these unwanted continuations are mostly excluded. In
order to ensure that anomalies in the test data end up in this
window as a whole at least once, a moving window with stride
16 is used.

C. Reported metrics

In contrast to the training and validation data, which is fault-
free for the most part, the test data set contain significantly
more defects including highly visible ones. Nevertheless, the
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Fig. 4. PR and ROC curve of all tested methods on data set A.

test data set is extremely class imbalanced, especially on
pixel level. Certain metrics, such as accuracy, are therefore
misleading. For this reason the precision-recall curves (PRCs)
are reported. Additionally the more commonly used ROC
curves are reported. All metrics are computed on pixel level.

IV. EXPERIMENTS
A. Data sets

The experiments are conducted on surface images of deco-
rated free-form plastic parts. The part’s decoration show sig-
nificant part-to-part variations in terms of distortion, location
and appearance of the pattern primitive. The part positioning,
however, remains constant from part to part. Multiple views
are provided per part in order to cover the whole surface to
be inspected. Overall, two types of decorated parts are tested,
resulting in two data sets (A and B). In data set A, 4 views are
provided per part. Data set A comprises 34 parts for training,
8 for validation and 17 for testing. The test set includes several
different visible defects that have been manually labeled. In
data set B, there are 3 views per part with 12 parts for training,
12 for validation and 4 for testing. Both data sets include very
eye-catching defects as well as very low contrasted defects
that are hardly visible for humans.

B. Results

The proposed algorithm is compared to a classical au-
toencoder (bilinear downscaling to size 32 x 32, followed
by FC(32%,128) — ReLU — FC(128, 322) and upscaling back
to size 128 x 128) and AnoGANSs. Latter were recently
introduced in 2017 by |Schlegl et al.| [23]]. For the comparison
with AnoGANSs, the implementation of |Ayad et al.| [26] was
applied on patches of size 64 x 64. Since AnoGANSs require
a time intensive optimization process to generate one single
image patch, comparisons are only performed on data set
A. AnoGANs seem to fail to reconstruct image patches that
show visible edges of the region of interest. For this reason,
such patches are not considered in the reported metrics.
Furthermore, for the evaluation of AnoGANSs, image patches
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TABLE I
SUMMARY OF RESULTS

AUPRC | AUROC
ours (A) 0.63 0.99
AnoGAN (A) 0.08 0.84
Autoencoder (A) 0.01 0.78
ours (B) 0.26 0.98

that were obviously reconstructed incorrect (presumably due
to the optimizer being stuck in a local minimum) are also not
considered in the reported metrics.

On data set A, the proposed algorithm achieves an AUROC
(area under ROC curve) of 0.99 and an AUPRC (area under
PR curve) of 0.63. Clearly visible anomalies could be reliably
detected (see Fig. [5ah). Most of the weakly contrasted defects
also stand out in the anomaly image compared to residual
patterns, which are a result of slight mismatches between
generated and query image (see Fig. [5bp). As suspected,
however, very weakly contrasted defects (see Fig. [5ck) cannot
be distinguished from the residual pattern structures in the
anomaly image. Nevertheless, the proposed algorithm clearly
surpasses the other tested methods in both AUROC and
AUPRC (see [). On data set B, the model was also trained
from scratch, achieving a similarly high AUROC (0.98) and
AUPRC (0.26) (see Fig. [5dd).

V. CONCLUSION

In this paper, the evaluation of surface inspection data is
performed by a deep convolutional neural network that is
trained to complete image patches whose center region is cut
out. Since the network is trained exclusively on fault-free data,
it completes the image patches with a fault-free version of
the missing image region. The reconstruction error provides
a pixel-wise anomaly score, which is subsequently used for
defect detection. The network is trained with L1 reconstruction
loss with the missing center region being weighted differently
compared to the remaining region. Despite not utilizing an
adversarial loss, the generated image patches can barely be
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(d) Defects on data set B.

Fig. 5. Examples of image patches that are put through the proposed pipeline. Each row (consisting of three images) of each sub figure shows one example.
The images on the left show the query images. The images in the middle show the images reconstructed by the DCNN. Note that the center regions of
the reconstructed images do not contain the defective structures of the query images. The images on the right show the pixel-wise absolute values of the
difference images between query images and reconstructed images for the corresponding center regions. Fig. [Sal and Fig. show examples of defects that
can be detected by the proposed method. Fig. [5c| shows examples of defects that are too weakly contrasted to be detected. Fig. [5d] shows examples of data

set B.

distinguished from real ones. Distinctly contrasted anomalies
can be detected, while very weakly contrasted ones are often
confused with residual patterns. On data set A, the proposed
algorithm achieves a pixel-wise AUROC (area under ROC
curve) of 0.95 and a pixel-wise AUPRC (area under PRC
curve) of 0.43 and thus clearly surpasses the other tested
methods.
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