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Abstract—Financial transactions can be considered edges in a
heterogeneous graph between entities sending money and entities
receiving money. For financial institutions, such a graph is likely
large (with millions or billions of edges) while also sparsely
connected. It becomes challenging to apply machine learning to
such large and sparse graphs. Graph representation learning
seeks to embed the nodes of a graph into a euclidean vector
space such that graph topological properties are preserved after
the transformation. In this paper, we present a novel application
of representation learning to bipartite graphs of credit card trans-
actions in order to learn embeddings of account and merchant
entities. Our framework is inspired by popular approaches in
graph embeddings and is trained on two internal transaction
datasets. This approach yields highly effective embeddings, as
quantified by link prediction AUC and F1 score. Further, the
resulting entity vectors retain intuitive semantic similarity that
is explored through visualizations and other qualitative analyses.
Finally, we show how these embeddings can be used as features
in downstream machine learning business applications such as
fraud detection.

I. INTRODUCTION

Financial transactions between merchants, customers,
lenders, and banks present a rich view of the economic activity
within a market. It can be useful to consider this type of
data as a heterogeneous graph of market participants which
are connected by edges (transactions). This is a particularly
useful formulation for tackling critical business problems like
credit risk modeling, fraud detection, and money laundering
detection. However, such a graph will be very high dimen-
sional (with tens or hundreds of millions of vertices) and very
sparse (with each vertex interacting with a fraction of the other
vertices), thus limiting the graph’s utility for common machine
learning tasks.

In recent years, graph embeddings techniques have grown
in popularity as a means for learning latent representations of
vertices on large-scale networks. Certain techniques like Graph
Convolutional Networks (GCNs), DeepWalk, and node2vec
attempt to encode topological structure from graphs into dense
representations such that nodes with high levels of neighbor-
hood overlap are co-located in the embedding space. This is
commonly referred to as geometric similarity, which captures
both graphical substructure as well as similarity among any
ancillary features - e.g merchant type in the context of financial
transactions - that belong to any particular vertex. Embeddings
produced by the aforementioned techniques can also serve as
useful features for downstream supervised tasks.

In this work, we present a novel application of graph embed-
ding techniques to problems in financial services. In particular,

we focus on large-scale datasets of credit card transactions
which define an implicit bipartite graph between account-
holders and merchants.1 We demonstrate that embedding these
transactions can lead to representations which encode eco-
nomic properties such as spending patterns, geography, and
merchant industry/category. In Section 2, we briefly explore
current literature on representation learning for large-scale
graph networks. We then formally present our own method
in Section 3, and quantitatively and qualitatively evaluate our
results on multiple financial transaction datasets in Section
4. We conclude by demonstrating how these embeddings can
benefit downstream tasks such as fraud detection.

II. RELATED WORK

A. Types of Graph Embedding Techniques

One way to group graph embedding techniques is based on
the type of input they can incorporate. Inputs can be homo-
geneous where all nodes are of the same type, heterogeneous
with multiple types of nodes and auxiliary information graphs
that contain node, edge or neighborhood features. In homo-
geneous graphs, the challenge is to encode the neighborhood
topology of the nodes in a computationally feasible manner
[1], [2]. The latent vectors are expected to preserve different
orders of node proximity (e.g. [3]) and different ranges of
structural identity (e.g. [4], [5]). Therefore, the rich contex-
tual information they carry makes node embeddings useful
for multiple unsupervised learning tasks such as predicting
missing links [6] as well as recommendation and ranking of
the most relevant nodes [7], [8]. Furthermore, modifying the
properties of random walks can assist the learned embeddings
in encapsulating both local and global graph properties [9],
[10], [7]. The problem of heterogeneous graph embedding was
addressed with metapath2vec [11], where metapaths among
specific entities types are defined and then random walks
are generated only in accordance to those metapath schemes.
This approach was extended in [12] to include node attributes
and multiplex edges. Further advancements have allowed the
incorporation of node and edge feature vectors (auxiliary infor-
mation) to facilitate inductive learning of representations [13].
In these works, the estimation of node embeddings proceeds
through typical sampling-based approaches [14], [15].

1All trademarks referenced herein for illustrative and education purposes
only and are owned by their respective owners.
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B. Large Scale Applications In Industry
Many internet-scale recommendation systems use graph

embedding techniques to supply millions of customers with
potentially useful or interesting content related to their past
interests [16], [17], [18], [19]. These systems typically model
vertices as users, content, or products on very large graphs, and
several instances of graph embeddings techniques [20] have
been applied to networks with millions of unique entities, with
even a few applications in the financial services space [21]
using autoencoders to create embeddings on account trans-
action data. Embeddings from these approaches are typically
used in downstream applications like product recommendation
[18], [22] and maximizing proper ad placement [23]. This
transfer learning approach is very similar to the impact that
word embeddings have had for a variety of NLP tasks [24],
[25], [26]. To our knowledge, the method proposed in this
paper is the first application of graph-embeddings to financial
transactions.

III. METHODOLOGY

A. Projections of Heterogeneous Graphs
The credit card transaction graph is a bipartite graph be-

tween accounts and merchants, with a transaction forming
an edge. While much previous work has studied embed-
dings of homogeneous graphs, [11] consider heterogeneous
graphs in their metapath2vec framework. Here, a metapath
scheme is chosen to determine which sequence of node types
are considered in the walks. Then, only random walks that
are consistent with this scheme are generated for training
embeddings. Concretely, in our bipartite graph we might
consider a metapath such as {Account, Merchant, Account}
or {Merchant, Account, Merchant}. Given these schemes, we
would only consider graph walks that adhere to such triplets:
identifying accounts as similar because they shop at the same
merchant (and vice versa). Alternatively, we can reach similar
training sets by instead inducing two homogeneous projection
graphs derived from the original bipartite graph: an accounts
graph and a merchants graph. Short random walks on these
homogeneous graphs will induce the same training pairs as
those that would have been generated according to the short
metapath schemes. As described below, this approach brings
enhanced computational gains and flexibility. The results and
analyses reported here will focus exclusively on the merchant
embeddings.

B. Pre-processing Stage: Modeling a Graph as Pairs of Trans-
actions

In the projection graph(s), an edge between two merchant
vertices represents the presence of at least one account who
made transactions at both merchants within a specified time
window. The more often an account shops at the same two
merchants within a fixed time window, the greater the weight
on that edge. We read all transactions into a table that fits in
memory, as shown in part (a) of Figure 1. We then transform
this table into pairs of transactions by only keeping merchants
that processed a transaction from the same account-holder
within a specified time window. We set the time window

Brand-Level Graph Raw Merchant Graph
# nodes ∼ 104 ∼ 106 raw merchants
# edges ∼ 107 ∼ 109

TABLE I
DATASET DESCRIPTIONS. FOR THE BRAND-LEVEL AND RAW MERCHANT

GRAPHS. NOTE THAT THE LARGER RAW MERCHANT DATASET MORE
CLOSELY REFLECTS THE SIZE OF A TYPICAL TRANSACTION GRAPH.

depending on the node type that we are looking at as well as
the density of the graph. For instance we would want a smaller
window for grouping similar accounts on a merchant than we
would for grouping merchants on an account. In general, we
find that increasing the time window too large can lead to
significantly more connections between unrelated merchants,
which decreases the quality of the embeddings.

Storing this information within a table allows the user to
distribute the aforementioned time windowing strategy over
all rows of merchants, instead of individually running random
walk operations from every merchant vertex 2. Part (b) in
Figure 1 shows examples of transaction pairs after time-
windowing. Multiple transaction pairs with the same two
merchants indirectly represent a weighted edge between those
merchants on a graph. In effect, this formulation allows us to
model a weighted graph without explicitly creating one.

1) Brand Level Merchant Names vs Raw Merchant Names:
When creating training pairs, we consider two different ap-
proaches. The first is using the raw merchant name and
appending it with the zip code. The raw merchant name
differentiates between franchise locations, but some unrelated
merchants have the same raw merchant name. For this reason,
the zip code is appended to the name to properly differentiate.
This gives us many merchants to work with, as well as a
less dense graph as accounts are less likely to be paired
together. Table I shows that the raw merchant graph contains
approximately 106 merchants and 109 edges.

The other approach is to use the brand-level merchant name
which rolls up all franchises to the same name. This creates
a highly interconnected graph, as everyone nationwide who
shops at a particular brand is likely to be paired with another
similar shopper. This causes the number of pairs formed with
the brand-level graph to be far larger than those of the raw
merchant. Additionally, for rarely-occurring merchants, it can
be challenging to accurately identify the correct brand entity.
Due to these factors, we drop any merchants with fewer than
50 transactions per day. Table I shows that the brand-level
graph contains approximately 104 merchants and 107 edges.

2) Separating Online from Offline Transaction Pairs: Prior
to training, we place online merchants and physical merchants
into two distinct tables. When looking at raw merchant names
we find that online retailers - e.g Amazon.com, Newegg.com
- often precede or follow several other unrelated merchants
in transaction sequences. Even though there are physical
merchants that also frequently appear in many transaction
pairs, these vendors are typically separated into several stores
with distinguishable identifiers - e.g McDonalds 94123. Con-

2While algorithms for distributed random walks on graphs do exist, these
techniques are non-trivial to implement and excessive for creating pairs of
transactions (or equivalently, short walks of length 2).
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Fig. 1. Model pipeline, from data pre-processing to training with Skip-gram. Using stringent time windows and pairs of transaction pairs (example time
window, t = 50 seconds) allows for creating meaningful embeddings on graphs with millions of unique entities.

sequently, each store is likely to be close to other merchants
in the same geographic region. Online merchants, however,
are location-agnostic and similar to supernodes on a graph
that have a disproportionately high number of edges. Train-
ing on each set separately allows us to create embedding
representations for merchants that are not biased by artificial
relationships in the raw transactional data.

C. Approximating DeepWalk with Transaction Pairs
We posit that for this financial graph, short-range interac-

tions (one-hop and two-hop neighborhoods) will be sufficient
to yield effective embeddings. When viewed in this way, we
can consider random walks on a graph in the limit of either
(i) very short walk lengths or (ii) very short context windows
within walks. At this short-range limit, we consider only two-
hop walks on the bipartite graph, or equivalently, one-hop
walks on the homogeneous projection. Our embeddings are
trained using negative sampling, with node-pairs generated as
just described used as positive samples. Negative samples are
generated by sampling nodes at random (assuring no actual
edge exists), using the negative sampling strategy described in
[27]. This leads to optimization of the following loss:

minimize
φ

L(φ) = −
∑
m∈V

[log P (y = 1|φ(m), φ(mpos))

+ kE[log P (y = 0|φ(m), φ(mneg)]], (1)

where m ∈ V denotes a merchant selected from a set of
unique merchant entities, V , the mapping function φ : m ∈
V 7→ Rd retrieves the embedding representation for any given
merchant, mpos denotes a positive sample merchant for a given

merchant, and mneg denotes a negative sample chosen from
V and k is the number of negative samples.

If we interpret equation (1) from a graph-based perspec-
tive, minimizing this objective function amounts to creating
embedding representations that capture first-order proximity
relationships between different merchants on a graph. Repre-
senting the transactional graph as pairs forces the model to
capture these first-order relationships. Part of the motivation
for not exploring higher-order relationships is to guarantee true
noise samples during training. As transactional data is often
noisy, maintaining a small context window makes it easier to
guarantee that a negatively sampled merchant does not appear
in the immediate vicinity of a merchant of interest. A larger
context window also increases the probability of interrelating
merchants that are not actually meaningfully similar. However,
the use of the time-window strategy does allow for a tune-
able parameter that can act similarly to capturing higher order
relationships. Intuitively, if positive pairs are generated from
all merchants that a single account has shopped at in an entire
month, then this is a higher order proximity than if only a one
hour time window had been considered.

Furthermore, [28] demonstrates that if the number of ran-
dom walks per vertex is large enough, the expected average
walk length for each one of them will converge to the shortest
path between source and destination vertex. In other words,
by significantly increasing the number of walks, the expected
walk length reduces to that of the shortest path. Thus, using
transaction pairs - or truncated random walks of length 2 -
serves as an approximation to the shortest path between a mer-
chant and every semantically similar merchant. Our qualitative
and quantitative analysis in Section IV demonstrates that this
approximation is effective.
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Fig. 2. Impact of embedding dimensionality. While increasing embedding
dimensionality yields very large quantitative improvements on LPA at low
dimensionality, results quickly stagnate after 10 or more dimensions and
overfitting is observed.

Link Prediction AUC (LPA) F1 Score
Brand-Level Merchant Graph 0.90 0.67
Raw Merchant Graph 0.68 0.67

TABLE II
MODEL PERFORMANCE AFTER 2 EPOCHS OF TRAINING ON ALL

DATASETS. THE MODEL LIKELY PERFORMS VERY WELL ON THE SMALLER
BRANDED DATASET DUE TO FEWER INSTANCES OF OVERREPRESENTED /

UNDERREPRESENTED MERCHANTS IN THIS GRAPH.

IV. RESULTS

We train our model on both merchant datasets for roughly 2
epochs on 48 vCPUs. For quantitative analysis, we present F1,
link prediction AUC and area under the precision-recall curve
for evaluating our embeddings with an internal fraud detection
tool. We report F1 and LPA scores from running experiments
on both the raw and brand-level merchant datasets, but use the
brand-level dataset for presenting embeddings visualizations
due to its smaller size.

A. Performance on Brand-Level Network
1) Quantitative Analysis: We start by analyzing our

model’s effectiveness on the brand-level graph. In Table II,
we see that the model achieves a link prediction AUC of
roughly 0.91 and a F1 score of 0.67. The model’s high
performance on both metrics demonstrate its capability to learn
meaningful relationships even within smaller-sized graphs of
roughly 10,000 or fewer elements. This performance also
demonstrates that training on pairs of transactions (as opposed
to long sequences) is not detrimental to creating high-quality
embeddings. This is to be expected, as training Skip-gram
with a sequence length of 2 simplifies its objective function to
optimize at every iteration. This in turn forces the system to
create node embeddings that encode meaningful information
about the edges in their surrounding subgraph.

In Figure 2, we present an analysis on how embedding
dimensionality affects the model’s performance. We see that
increasing dimensionality from 2 to 5 yields a roughly 13%
improvement in link prediction AUC, but further increasing
this hyperparameter does not yield significant benefits on this
particular metric. This is likely due to the brand-level dataset’s
small vocabulary size (roughly 104 unique merchants). This
diagram suggests that only a small embedding dimensionality

Adidas
Nike

Reebok
Timberland

Delta Air Lines
United Airlines

American Airlines
Frontier Airlines

West Elm
Anthropologie
Crate&Barrel
Pottery Barn

KFC
Taco Bell

Little Caesars
Burger King

Starbucks
Panera Bread

Dunkin Donuts
Jamba Juice

Gap
Banana Republic
Ann Taylor Loft

J Crew
TABLE III

MERCHANT NEAREST NEIGHBORS DERIVED FROM THE BRAND-LEVEL
MERCHANT GRAPH. FOR EACH QUERY MERCHANT VECTOR (IN BOLD),

THE TOP THREE NEAREST NEIGHBOR MERCHANT VECTORS ARE SHOWN.

is required to adequately capture semantic similarity for the
brand-level transactional dataset discussed in this paper.

2) Qualitative Analysis: The brand-level merchant graph
embeddings provide intuitive consistency. With word em-
beddings, a common observation is that words which are
semantically similar tend to be embedded in close proximity.
Here, we redefine semantic similarity to be sets of merchants
which are interchangeable for any given commerce purpose.
That is, two merchants are semantically similar if they exist
in the same industry, category, price point or all of the above.
With this in mind, we report in Table III the nearest neighbor
merchant vectors for several household brands. For example,
we see that the nearest neighbors to the KFC vector are
not only other restaurants, but other fast food competitors.
As can be seen in Table III, this holds true across many
industries including fashion, air travel, food, and furniture.
The West Elm vector presents an interesting result. Two of
the three nearest neighbors are obviously correct: Pottery Barn
and Crate&Barrel are also furniture manufacturers. However,
the closest neighbor in the entire merchant space is actually
Anthropologie, a store which is most commonly known as a
fashion brand. However, within Anthropologie’s offerings is
an extensive home furnishings and furniture section. Overall,
these findings indicate that semantically similar merchants are
typically embedded close together.

This general pattern of separability-by-industry extends
across the whole embedding space. Figure 3 shows a low-
dimensional visualization of the embedding space for our
brand-level merchant graph. As expected, merchants which
serve the same industry or category tend to co-locate in
similar areas of the embedding space: a visual extension of
the results of Table III. In the left of Figure 3, we can note
that sporting goods brands such as Nike, Under Armour, and
Columbia are located close to each other. Similarly, note that
airlines are co-located, as well as fast food (top). Finally,
the bottom close-up shows a region of the embedding space
with merchants such as Jpay, INMATE PAYMENT, SECURUS
INMATE CALL-V. These companies provide a set of services
for telecommunications and payments into and out-of the
American prison system. That is, the customers of these
companies are inmates (and family members of inmates) who
must use these merchants to conduct common activities. Due
to these specialized services, there should be very little overlap
between these merchants and any accounts not affiliated with
inmates. It is encouraging that our graph embedding system
is able to accurately embed these merchants together.
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Fig. 3. Example clusters found in a two dimensional t-SNE projection of brand-level embeddings. Best viewed digitally.

A final set of questions we can ask with these brand-
level merchant embeddings is whether relationships between
merchants can be consistently observed within and between
industries. In much the same way that analogical reasoning
tasks can be accomplished with word vectors, it might be
feasible to identify compelling relationships between merchant
vectors.

One way to construct analogies for merchants is to devise
relations between merchants within one category and deter-
mine if the same relationship holds (geometrically) across
categories. As a concrete example, we can recognize that

within a particular industry, there will exist several offerings
that are not direct competitors but instead operate at different
price points. For example, within automobiles, the typical
Porsche price point is well above that of Honda, though
they offer the same basic good. If there is a direction in
the embedding space that encodes price point (or quality or
luxury) then this component should contribute to all merchants
across all industries. In this way, the embeddings can elucidate
analogies such as ”Porsche is to Honda as blank is to Old
Navy”.

Uncovering such a direction can be achieved in several ways
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Fig. 4. Merchant embeddings tend to encode typical price point of goods.
Merchants from multiple industries visualized in the subspace spanned by the
fourth and fifth principal components. Pairs of merchants are joined by dotted
lines, with each pair containing a high-end merchant and a more affordable
counterpart. Across disparate industries, the relationship between high-end
offerings and affordable offerings is embedded in a consistent direction of
this space.

([29], [30]). For our purposes, we assumed that such a direc-
tion, if it existed, was likely a dominant source of variation be-
tween the embeddings and that this direction is likely captured
by one or a few principal components of variation. With this
in mind, we identified several pairs of merchants which exist
in the same category yet span a range of price points. These
included: {Gap and Old Navy}, {Nordstrom and Nordstrom
Rack}, {Ritz-Carlton and Fairfield Inn}, and so on. These pairs
were chosen because they represent nearly identical offerings
within a category, but at a high and low price point. In Figure
4, we visualize these paired merchant vectors as projected into
a convenient subspace spanned by two principal components.
Interestingly, the relationship (slope) between the low-end and
high-end offering is nearly parallel for all of these pairs.
There indeed exists a direction in the embedding space which
encodes price point and this direction is consistent across these
disparate industries.

B. Performance on Raw Merchant Network

%∆ in AUpr
Fraud Detection Tool +
Raw Merchant Embeddings +0.9%
Fraud Detection Tool +
MLP[Raw Merchant Embeddings] +5.2%

TABLE IV
TRAINING AN INTERNAL FRAUD DETECTION TOOL WITH ONLY

MERCHANT EMBEDDINGS OR WITH PROJECTED MERCHANT EMBEDDINGS
(THROUGH A MULTI-LAYER PERCEPTRON) YIELDS HIGHER

CLASSIFICATION PERFORMANCE OVER AN INTERNAL BASELINE MODEL.

1) Quantitative Analysis: We see in Table II that the model
performs similarly on the raw merchant graph with respect
to F1 score. Achieving a 0.67 score on the one million plus
merchant graph demonstrates the model’s ability to maintain

meaningful embedding representations that are not heavily
influenced by outliers in the larger-sized graph. While the
model scores lower on lower link prediction AUC (0.68) for
this dataset, we expect to see a drop-off due to training on
a sparser graph; there are far more instances of merchants
in this network that are only connected to a few neighboring
vendors. Still, even with this obstacle, the model is able to
create embedding vectors that are semantically meaningful as
indicated by the top-5 closest neighbors to the examples given
in Table V. For example, the first two columns show fast-
food merchants that not cluster together by type - e.g Dunkin,
Nature’s Way Cafe - but also by geographic region.

2) Qualitative Analysis: Table V shows nearest neighbors
for several raw merchant vectors. Since these raw merchant en-
tities correspond to physical locations, it is not surprising that
geography plays a large role in this embedding space. In Table
V, each entity is shown alongside its zipcode, confirming that
merchant vectors tend to be embedded near other merchants in
the same geographic area. (Note that zipcode and geography
are not inputs to the model). We see that the top-5 neighbors
for DUNKIN #332240 Q35 are not only other stores in the
same chain - e.g DUNKIN #341663, DUNKIN #341663 Q35
- but even loosely related cafes like NATURE’S WAY CAFE
BO that lie within neighboring counties in Florida. Further, the
nearest neighbors here highlight what is potentially a naming
or logging error in the point-of-sale system. Note that the same
physical store location DUNKIN #341663 shows up under two
entity names: DUNKIN #341663 Q and DUNKIN #341663
Q35. This demonstrates an interesting potential for this kind
of analysis to be leveraged for entity resolution based not on
string similarity, but based on correlated shoppers. Finally,
the second and third examples illustrate some ways that the
model can capture local geographic cultural nuances such as
the high proportion of breweries in Portland, Oregon where
Powell’s Burnside is located, when compared the number of
coffee shops in Los Angeles, CA where The Last Book Store
is located.

DUNKIN #332240 Q35 33442 POWELL’S BURNSIDE 97209 THE LAST BOOK STORE 90013
CHUCK E CHEESE 682 33428 TRIMET TVM 97202 PAMPAS GRILL- STYL 90036
DUNKIN #341663 Q 33442 TARGET 00027912 97205 SQ *BLUE BOTTLE COF 90013
DUNKIN #341663 Q35 33442 10 BARREL BREWING CO 97209 HIGHLAND PARK BOWL 90042
NATURE’S WAY CAFE BO 33431 DESCHUTES BREWERY 97209 VERVE COFFEE ROASTERS 90014
DD/BR #338392 Q3 33073 PORTLAND JAPANESE GARD 97205 GRILL CONCEPTS - S 90404

TABLE V
EXAMPLES OF MERCHANT SIMILARITIES WHEN TRAINED USING THE RAW

MERCHANT NAME. EACH MERCHANT IS SHOWN ALONGSIDE ITS ZIP
CODE. GEOGRAPHY IS A STRONG SIGNAL IN THESE EMBEDDINGS, BUT

SEMANTIC AND REGIONAL INFLUENCE CAN ALSO BE OBSERVED.

C. Application to Fraud Detection

We also assess the quality of our raw merchant embed-
dings by evalauting them in a transfer learning task involving
transaction fraud detection. Results on these experiments are
reported relative to a baseline model (the details of which we
omit here) and are quantified by the area under the precision-
recall curve (AUpr). In Table IV, we see that directly using
the trained embeddings from the raw merchant graph yields a
roughly 1.0% improvement in fraud classification AUpr when
these embeddings are included as additional features to the
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model. One downside of this approach is the large expansion
of the feature space in order to include the embeddings. To
overcome this, we additionally tested a model whereby we
added a trainable MLP that took as input the embedding for
a transaction’s merchant and predicted a binary output for
fraud. This ancillary model, once trained, can then be used to
output a single fraud score per transaction, conveying only the
information contained in the merchant embedding space that is
useful for fraud detection. This single score is then passed into
the base model as an additional feature and yields a 5.2% boost
in efficacy. Merchants that engage in fraudulent transactions
typically engage with similar vendors over all transaction
pairs. As our model’s objective is to encode transactional
behavior within each merchant’s embedding representation,
we attribute an increase in classification accuracy to capturing
semantically meaningful features that allow the classifier to
better identify likely-fraudulent merchants.

V. CONCLUSION

In this paper, we propose an approach for training embed-
dings of entities from financial transactions. Our approach
poses sequences of financial transactions as a graph, where
a customer engaging in a transaction at two merchants within
a specified time window constitutes an edge between those two
merchant in the network. We demonstrate that this approach
results in semantically meaningful embedding vectors for up to
millions of unique merchant entities. We quantitatively show in
Section IV that our model scores strongly with respect to link
prediction AUC and F1 evaluation scores, and also provides
lift in classification accuracy for an internal fraud detection
tool.

The results presented here were primarily based on cap-
turing network topology only, while omitting ancillary at-
tributes about accounts, merchants, and transactions. Future
work remains to be done to incorporate techniques such as
those described in ([6], [12]). Lastly, we hope to analyze
how embeddings impact other downstream applications in
the financial services such as marketing and credit charge-off
prediction.
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