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Abstract

Demand variance can result in a mismatch between planned supply and ac-
tual demand. Demand shaping strategies such as pricing can be used to
reduce the imbalance between supply and demand. In this work, we propose
to consider the demand shaping factor in forecasting. We present a method
to reallocate the historical elastic demand to reduce variance, thus making
forecasting and supply planning more effective.

Keywords: demand forecasting; demand shaping; demand variance; supply
planning

1. Introduction

Demand forecasting can help businesses estimate future demand and plan
supply. Take Instacart as an example. We forecast hourly demand using
historical data, as illustrated in Figure 1. The following steps can be used
to forecast demand for a future hour (e.g., 10-11 am). First, extract the
historical demand for the hour. Figure 2 shows the 10-11 demand in the past
10 days. Then, use a time series model to forecast demand for the hour.

Although time series models can capture trend and seasonality in demand,
there can still be a large unexplained variance making forecasting challenging.
For the 10-11 demand time series shown in Figure 2, there is no obvious
seasonality or trend, and the unexplained variance is high. Figure 3 shows a
box plot demonstrating the demand variability at each hour from the data
in Figure 2.

1Dong Liang contributed to this work during his employment at Instacart during
1/30/2017 to 6/16/2017.
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Figure 1: Hourly demand from the past 10 days (data are simulated for illustrative pur-
poses).
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Figure 2: Demand at 10-11 am in the past
10 days.
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Figure 3: Variability of the demand at each
hour (a box spans the first quartile to the
third quartile).

The impact of variance on forecasting and supply planning is illustrated
as follows. Table 1 describes two historical demand patterns (each with a
probability of 50%). Consider two forecasts, one using the average of the two
patterns at each hour, and another just using pattern 1.

Assume one unit of supply can serve one unit of demand, and the cost of
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Hour Pattern 1 Pattern 2 Forecast 1 Forecast 2
9 - 10 10 20 15 10
10 - 11 20 10 15 20

Table 1: Historical demand patterns each with a probability of 50%.

losing one unit of demand or holding one unit of excessive supply is 1. The
expected costs for the two forecasts are shown in Table 2. Both forecasts cost
10 in total. The variance makes a zero-cost forecast seemingly impossible.

In this work, we propose to consider elastic demand (demand responsive
to demand shaping tactics) in forecasting so that the variance can be reduced.

Hour Forecast Pattern 1 (cost) Pattern 2 (cost) Expected cost
Forecast 1 9 - 10 15 10 (5) 20 (5) 0.5*5+0.5*5=5

10 - 11 15 20 (5) 10 (5) 0.5*5+0.5*5=5
Forecast 2 9 - 10 10 10 (0) 20 (10) 0.5*0+0.5*10=5

10 - 11 20 20 (0) 10 (10) 0.5*0+0.5*10=5

Table 2: The expected costs of two forecasts.

2. Related work

Demand variance poses challenges in supply chain management. Failure
to account for demand variance could either lead to unsatisfied customer
demand translating to a loss of market share or excessively high inventory
holding costs [4, 2].

Strategies have been proposed for reducing demand variance. In a con-
text where orders occur at fixed intervals, suppliers’ demand variance will
generally decline as the customers’ order interval is lengthened [1]. For a
manufacturing process consisting of multiple stages, it was observed that re-
versing two consecutive stages of a process could lead to variance reduction
[3]. These strategies may require substantial changes to an existing product
or process.

Demand shaping strategies such as pricing have been used for reducing
demand variance [5], but most work focuses on the demand side. In this work,
we consider elastic demand in the forecasting process, so that the variance
in demand can be reduced, and supply planning can be more effective.
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Figure 4: Illustration of the availability and pricing information of the delivery windows
on Instacart.
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Figure 5: 9-10 has 10 units of elastic demand and a subset (0%-100%) can be reallocated
to 10-11.

3. Elastic Demand

In some situations, certain customers are flexible on the product/service
options, and so demand shaping strategies such as pricing can influence their
choices. The demand responsive to demand shaping tactics is referred to as
the elastic demand. Note some historical orders were influenced by demand
shaping. Based on the availability and pricing information customers saw
(illustrated in Figure 4), we can infer the choices customers would have made
without demand shaping.

For the example shown in Figure 4, the “within 1 hour” and “within 2
hours” options are more expensive than the “1-2pm” option. We also know
customers typically prefer faster deliveries. Therefore, for customers placing
orders for 1-2pm, there is a high chance that they could have chosen “within
1 hour” given the same price.

In the rest of this work, we assume the amount of elastic demand is known
and focus on how to reallocate it.

For the example in Table 1, assume 10 units of demand at 9-10 in pattern
2 is elastic and can be reallocated to 10-11. As illustrated in Figure 5, the
new demand can be any integer value between 10 and 20 at 9-10, and between
10 and 20 at 10-11, respectively.

With elastic demand considered, both forecasts have smaller expected
costs and forecast 2 has a zero cost, as shown in Table 3.

In this article, we propose to consider the elastic demand (demand respon-
sive to demand shaping) in the forecasting process. We present a method to
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Hour Forecast Pattern 1 (cost) Pattern 2 New (cost) Expected cost
Forecast 1 9 - 10 15 10 (5) [20,19,...,10] (0) 0.5*5+0.5*0=2.5

10 - 11 15 20 (5) [10,11,...,20] (0) 0.5*5+0.5*0=2.5
Forecast 2 9 - 10 10 10 (0) [20,19,...,10] (0) 0

10 - 11 20 30 (0) [10,11,...,20] (0) 0

Table 3: Expected costs of the two forecasts considering Pattern 2 has 10 units of elastic
demand.

reallocate the elastic demand in historical data so that the variance of the
optimized demand is minimized, leading to more effective forecasts.

4. Elastic demand optimization

Consider an illustrative example first. Figure 6 (left) shows two time
series (referred to as demand series) each with 3 time slots. We want the
difference between the demand series to be small. Assuming each time slot
of the demand series has 10 units of elastic demand that can be shifted to
its adjacent time slots, we can reallocate the demand as follows so that the
two series become identical. First shift 5 units from T1 to T2, resulting in
the series shown in Figure 6 (middle). Then, shift 5 units from T2 to T3,
resulting in two identical series, as shown in Figure 6 (right).
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Figure 6: Reallocate elastic demand to make the two demand series identical.

From this example, we can generalize the goal, input, and output as
follows.
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• Goal: shifting the right amount of elastic demand to minimize the
variance between the new demand series.

• Input: historical demand series, and the amount of elastic demand.

• Output: shifted demand series

We propose the following formulation with a limitation that elastic de-
mand can only be shifted between adjacent time slots.

Consider K historical demand series, each including T time slots. One
example of such a series is hourly demand per day. Let Dk,t denote the ob-
served demand at time t of the kth series. The goal is to forecast hourly
demand D̃t based on the K demand series data. Assuming demand at dif-
ferent time slots is independent, the mean of Dk,t where k = 1, . . . , K for a
given t is the solution in terms of minimizing the sum of squared error

minimize
D̃t

(Dk,t − D̃t)
2

Consider a certain percentage of demand at t of the kth series is elastic
and shiftable between adjacent time slots. Let xk,t,t+1 denote the percentage
of Dk,t that are shifted between Dk,t and Dk,t+1. A positive xk,t,t+1 indicates
demand shifted from t to t+1, and a negative value indicates demand shifted
from t + 1 to t. The goal is to find xk,t,t+1 (for all k and t) to minimize the
variance of the shifted demand.

minimize
∑

k,t

{Dk,t−1 · xk,t−1,t +Dx,t · (1− xk,t,t+1)− D̃t}
2

subject to xk,t,t+1 ∈ [Lk,t,t+1, Uk,t,t+1], t = 1, . . . , T

D̃t ≥ 0, t = 1, . . . , T

where Lk,t,t+1 and Uk,t,t+1 are the lower and upper limits of xk,t,t+1. U(>=
0) is essentially the percentage of elastic demand that can be shifted from
t to t + 1, and L(<= 0) is the percentage of elastic demand shiftable from
t+ 1 to t. Also, let Dk,0 = 0, xk,0,1 = 0 and xk,T,T+1 = 0.

In addition, when two solutions have similar variance, the one with a
smaller xk,t,t+1 may be preferred. To this end, we add a regularization term.
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minimize
∑

k,t

{Dk,t−1 · xk,t−1,t +Dx,t · (1− xk,t,t+1)− D̃t}
2 + λ ·

∑

k,t

x2

k,t,t+1

subject to xk,t,t+1 ∈ [Lk,t,t+1, Uk,t,t+1], t = 1, . . . , T

D̃t ≥ 0, t = 1, . . . , T

This is a convex optimization problem which means an optimal solution
can be found. In addition, the same property holds with changes such as,
using different λs for different xk,t,t+1, and regularizing the amount of shifted
demand (Dx,t ∗ xk,t,t−1) instead of the percentage.

Let Dk,t denote the demand after being shifted, i.e., Dk,t = Dk,t−1 ·
xk,t,t−1 + Dx,t · (1 − xk,t,t+1). We can prove for any given k, the total de-
mand is not changed after being shifted.

Theorem 1. For a given k,
∑

tDk,t =
∑

tDk,t.

Proof.
∑

t Dk,t =
∑

t{Dk,t−1 · xk,t−1,t + Dx,t · (1 − xk,t,t+1)} = Dk,0 · xk,0,1 +
Dk,1 · (1− xk,1,2) +Dk,1 · xk,1,2 +Dk,2 · (1− xk,2,3) + . . .+Dk,T−1 · xk,T−1,T +
Dk,T · (1− xk,T,T+1)

since Dk,0, xk,0,1, xk,T,T+1 are zeros,
∑

t
Dk,t =

∑
t
Dk,t

It should be noted that the following linear optimization formulation
could achieve the same purpose.

minimize
∑

k,t

|Dk,t−1 · xk,t−1,t +Dx,t · (1− xk,t,t+1)− D̃t|+ λ ·
∑

k,t

|xk,t,t+1|

subject to xk,t,t+1 ∈ [Lk,t,t+1, Uk,t,t+1], t = 1, . . . , T

D̃t ≥ 0, t = 1, . . . , T

5. Experiments

Consider the example shown in Table 1. Table 4 shows original demand,
and the shifted demand at different values of L (percentage of elastic demand
shiftable to the earlier time slot), U (percentage of elastic demand shiftable
to the later time slot) and λ. The following statistics are calculated: the
average variance at each hour, the shifting percentage (p) from 9-10 to 10-11
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L U λ 9-10 10-11 var p |p| |p|

Pattern 1 10 20 50

Pattern 2 20 10

Pattern 1∗ -1 1 0 13 17 0 -0.3 0.3 0.325

Pattern 2∗ -1 1 0 13 17 0.35 0.35

Pattern 1∗ 0 1 0 7 23 0 0.3 0.3 0.475

Pattern 2∗ 0 1 0 7 23 0.65 0.65

Pattern 1∗ -1 0 0 20 10 0 -1 1 0.5

Pattern 2∗ -1 0 0 20 10 0 0

Pattern 1∗ -1 1 1 12 18 0 -0.2 0.2 0.3

Pattern 2∗ -1 1 1 12 18 0.4 0.4

Pattern 1∗ -0.1 0.1 0 11 19 24.5 -0.1 0.1 0.1

Pattern 2∗ -0.1 0.1 0 18 12 0.1 0.1

Table 4: Original and shifted demand (marked with ∗) at different parameters, and the
summary statistics.

for pattern 1 and pattern 2, the absolute values of p (|p|), and the average of
|p| (|p|).

When there is no limit on the amount of elastic demand, i.e., L = 1
or/and U = 1, the demand can be shifted so that the two patterns become
identical and therefore the average variance is zero. As expected, when the
magnitude of shifting percentage is penalized (λ = 1), the average of the
magnitude of p, |p|, is reduced. When U = 0.1 and L = −0.1, 10% of the
demand at 9-10 of pattern 1 is shifted from 10-11, and 10% of the demand
at 9-10 of pattern 2 is shifted to 10-11. The average variance is reduced but
not zero, indicating the amount of elastic demand is not large enough for a
zero variance.

Next, we consider the demand series shown in Figure 1. For simplicity,
when applying the optimization framework, we let the lower and upper limits
of the shifting percentages have the same absolute value, i.e., U = −L.

The average variance at different Us and λs are shown in Figure 7. The
relationship between var and U is the same for λ ∈ (0, 1) (the two curves
overlap). The average variance decreases quickly as U increases from 0 and
reaches a small value when U gets close to 0.6. When λ increases to 10 or
100, the average variance still decreases initially but remain at a larger value
after some points. This is because when λ gets large enough, the cost of
increased shifting probabilities can exceed the cost of a larger variance.

The average magnitudes of shifting probabilities at different Us and λs
are shown in Figure 8. In general, |p| increases as U increases. However,
with a larger λ, the growth of |p| is smaller.
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Figure 8: The average magnitude of shift-
ing probabilities at different Us and λs.

Note for λ = 0, the average magnitude of shifting probabilities decreases
when U increases from 0.8 to 1. This is because when U is large enough,
there can be multiple solutions (p) leading to the same variance reduction,
and with a zero λ there is no preference for a samller p. For cases with λ > 0,
|p| becomes at a constant after some point (when there are multiple solutions
with the same variance reduction, the solution with a smaller

∑
k,t x

2
k,t,t+1 is

preferred).
Figure 9 shows the demand series optimized with λ = 1 and 0% (original

demand), 10%, 20%, 30%, 40%, and 50% elastic demand, respectively. With
larger elastic demand percentages, the variance of hourly demand become
smaller, and the demand series tend to have clearer patterns.

Figure 10 shows the average of hourly demand variance for each group of
demand series in Figure 9. As expected, a larger amount of elastic demand
leads to a smaller variance. However, the first 10% elastic demand produces
the largest variance reduction.

6. Conclusions

A large demand variance can result in a high cost due to lost sales or
excessive supply. In this work, we showed historical elastic demand can be
reallocated to reduce the variance, hence making demand forecasting more
effective.

As Instacart has hourly delivery windows, we focus on hourly demand
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Figure 9: Original demand series and new
demand series for different percentages of
elastic demand.

Figure 10: The average of hourly variance
for each group of demand series in Figure
9.

with a daily cycle and assume the elastic demand can be reallocated among
the adjacent hours from the same day. If seasonality exists in the days of
week, the proposed method can be applied to the demand series from different
days of week separately.

To extend the method to handle daily demand with a weekly cycle or
monthly demand with a yearly cycle, the formulation should be changed to
allow the demand to be shiftable between the end of a cycle and the start of
next cycle.
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