
Machine learning to predict developmental neurotoxicity with 
high-throughput data from 2D bio-engineered tissues

Finn Kuusisto1,*, Vitor Santos Costa2, Zhonggang Hou1,+, James Thomson1,3,4, David 
Page5, Ron Stewart1

1Morgridge Institute for Research, Regenerative Biology, Madison, WI, USA

2University of Porto, Department of Computer Science, Porto, Portugal

3University of Wisconsin, Department of Cell and Regenerative Biology, Madison, WI, USA

4University of California, Department of Molecular, Cellular, and Developmental Biology, Santa 
Barbara, CA, USA

5Duke University, Department of Biostatistics and Bioinformatics, Durham, NC, USA

Abstract

There is a growing need for fast and accurate methods for testing developmental neurotoxicity 

across several chemical exposure sources. Current approaches, such as in vivo animal studies, and 

assays of animal and human primary cell cultures, suffer from challenges related to time, cost, and 

applicability to human physiology. Prior work has demonstrated success employing machine 

learning to predict developmental neurotoxicity using gene expression data collected from human 

3D tissue models exposed to various compounds. The 3D model is biologically similar to 

developing neural structures, but its complexity necessitates extensive expertise and effort to 

employ. By instead focusing solely on constructing an assay of developmental neurotoxicity, we 

propose that a simpler 2D tissue model may prove sufficient. We thus compare the accuracy of 

predictive models trained on data from a 2D tissue model with those trained on data from a 3D 

tissue model, and find the 2D model to be substantially more accurate. Furthermore, we find the 

2D model to be more robust under stringent gene set selection, whereas the 3D model suffers 

substantial accuracy degradation. While both approaches have advantages and disadvantages, we 

propose that our described 2D approach could be a valuable tool for decision makers when 

prioritizing neurotoxicity screening.
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I. INTRODUCTION

The Toxic Substances Control Act (TSCA) lists 84,000 chemicals, almost all of which have 

not been tested for developmental neurotoxicity [1]. The developing human brain is 

especially sensitive to toxic exposures [2], and estimated costs of early developmental 

neurotoxicity exposure are enormous [3], [4]. Fast, inexpensive, and accurate methods for 

testing developmental neurotoxicity are thus urgently needed.

Current approaches involve in vivo animal studies, and assays of animal and human primary 

cell and tissue cultures. These approaches suffer from challenges such as time, cost, 

availability of primary cells and tissues, and poor applicability to human physiology [5], [6], 

[7]. The result of these difficulties can be observed in part by a decrease in drug approval 

rates despite increases in research and development spending [8]. Human pluripotent stem 

cells can help address these challenges by providing a scalable source of applicable human 

cells at relatively low cost.

In 2012, the National Institutes of Health (NIH) launched the Microphysiological Systems 

Program [6], a collaboration with the Defense Advanced Research Projects Agency 

(DARPA) and the U.S. Food and Drug Administration (FDA), to develop human tissue chips 

containing bio-engineered tissue models that mimic human physiology. The aim of this 

program is to use these chips to predict the safety and efficacy of candidate drugs. Within 

this program, Schwartz et al. developed 3D constructs of developing human neural tissue 

from several cell types and trained machine learning models to predict developmental 

neurotoxicity with gene expression data gathered from these constructs [9]. The 3D model is 

capable of accurately identifying compounds that are neurotoxic, and it shows potential for 

recapitulating relevant biological mechanisms, thus demonstrating potential for further 

insight. Nevertheless, this 3D model is necessarily complex and requires extensive expertise 

and manual effort to construct and employ successfully. In cases where the goal is only to 

construct an assay of developmental neurotoxicity, we propose that it may be sufficient to 

use a simpler 2D tissue model cultured from a single cell type.

Here, we report results applying off-the-shelf machine learning algorithms to a simpler 2D 

model of neural tissue. We run several experiments with varying numbers of chemical 

exposure lengths and feature selection methods. We compare the accuracy of learned models 

between those trained on data from a 2D tissue model and those trained on data from a 3D 

tissue model. Importantly, we find that our accuracy in distinguishing known human 

developmental neurotoxins from non-toxins is substantially higher when using the 2D model 

than when using the 3D model. We describe our data collection and predictive experiments 

in the next section, follow with a discussion of results, and finish with conclusions and 

proposals for future work.

II. MATERIALS AND METHODS

For all of our experiments, we consider a dataset of 45 compounds. Our outcome of interest 

is a binary prediction of toxic or non-toxic, and of these 45 compounds, 29 are considered 

toxic and 16 are considered non-toxic. These 45 compounds are a subset of the 70 used in 
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prior work [9]. For our experiments here, we use the same compound concentrations and the 

same toxic/non-toxic binary labels assigned to each compound from this prior work (see 

Section V for more information about the data).

We collect transcriptome-wide gene expression profiles via RNA sequencing (RNA-Seq) 

from 2D tissue cultures following exposure to these compounds. We use the 45 compound 

subset of 3D tissue culture data from the prior work [9] as our comparison gene expression 

data for 3D tissue cultures. Throughout the paper, we refer to these datasets as the 2D and 

3D dataset, respectively. Both datasets consist of gene expression measurements in 

transcripts per million reads (TPM) from 19,084 protein-coding genes for every sample. 

Each sample thus represents a gene expression profile from either a 2D or 3D tissue sample, 

a single compound, and a single length of exposure to that compound.

To collect gene expression data for our 2D experiments, we seeded neural progenitor cells 

(NPC) on Matrigel coated plates and started compound treatment on the same day (day 0). 

We collected samples at 11 time points of exposure: 1, 2, 3, 4, 6, 8, 10, 15, 21, 27, and 39 

days. We then performed RNA-Seq and calculated gene expression values in transcripts per 

million reads. The dataset contains at most one biological sample for each compound and 

exposure length. There are missing samples for some exposure lengths of some compounds 

because of cell death and other experimental factors (see Table I). For more information 

about our cell culture approach, our sequencing pipeline, and how to access the data and 

code, see Section V.

The 3D dataset contains samples at two time points of exposure: 2 and 7 days. There are two 

biological samples for each compound at each time point, with no missing samples.

Overall, the goal of our prediction experiments is then to learn a model that can map from 

gene expression profiles (19,084 features) to a binary label of toxic or non-toxic. We make 

no prior assumptions about the common or unique biological effects of the compounds in the 

expression data. Thus, we make no attempt to separate or explicitly model different types of 

toxicity or non-toxicity that each individual compound may elicit. Similarly, we make no 

attempt to explicitly model the effects of different compound exposure lengths and do not 

include exposure length as an input feature. Instead, we simply allow the machine learning 

algorithms to observe samples from many different compounds at different exposure lengths 

and find patterns across the gene expression profiles that are associated with toxicity or non-

toxicity. Using this approach, we aim to develop an accurate predictive model that 

generalizes beyond any single exposure length or type of toxicity. The primary advantage of 

this approach is thus its generalizability, but the disadvantage is that analyzing the model to 

understand any one particular toxic effect becomes more difficult because all individual 

signals are effectively combined.

We first describe and perform three sets of prediction experiments, performing each 

separately on the 2D and 3D datasets, and compare results. The first experiment evaluates 

the ability to predict toxicity by training and testing common machine learning models on 

samples from a single time point of compound exposure. Next, we evaluate the ability to 

predict toxicity by training and testing models using all available time points of compound 
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exposure pooled together. Finally, we evaluate the same models once more using all time 

points of exposure but with the addition of feature selection.

A. Classification experiments

We used four common machine learning algorithms in our classification experiments: 

support vector machines (SVMs), logistic regression, random forests, and naive Bayes. 

Traditional support vector machines (SVM) are binary classifiers that construct a maximum-

margin decision boundary separating the two classes of training samples [10]. Logistic 

regression is a binary classification algorithm that models the posterior probability of the 

response variable as a logistic function applied to a linear combination of the predictor 

variables and model coefficients [11]. Random forest classifiers produce class predictions by 

aggregating over an ensemble of decision trees [12], each of which is fit using a bootstrap 

sample of the training dataset. Naive Bayes is a probabilistic graphical model that makes the 

strong simplifying assumption that all predictor variables are conditionally independent of 

one another given the class label [13].

We used the Scikit-learn [14] (v0.18.2) implementations of these algorithms, specifically the 

SVC, LogisticRegression, RandomForestClassifier, and MultinomialNB classes, 

respectively. For SVMs, we used a linear kernel, probability estimates, and scaled gene 

expression values to [0.0, 1.0]. For logistic regression, we standardized the data, used L2 

regularization, and used the dual formulation. For both SVMs and logistic regression, we 

used internal cross-validation to select the C parameter from {0.0001, 0.001, 0.01, 0.1, 1.0, 

10.0, 100.0, 1000.0}. For random forests, we used the entropy splitting criterion and 100 

trees. We used the default settings for all other algorithm parameters.

To evaluate the predictive performance of these algorithms, we used the receiver operating 

characteristic (ROC) curve and the area under the curve (AUC). We used this standard 

metric to get an overall sense of predictive performance without having to choose a single 

classification threshold for each model. An AUC of 1.0 represents a perfect ordering of toxic 

and non-toxic compounds, whereas an AUC of 0.5 represents random guessing.

We used a standard leave-one-compound-out cross-validation for all of our experiments to 

avoid overly optimistic estimates of future predictive performance. This means that we 

performed each experiment in 45 steps, corresponding with the 45 compounds in our 

dataset. For each step, a single compound was held out of the training set, a model was 

trained on the remaining 44 compounds, and the model was used to make a prediction for 

the held out compound. We then aggregated the predictions across all 45 compounds to 

make the final ROC curve evaluation. Note that in experiments where we pooled multiple 

samples for each compound (e.g. samples from different exposure lengths), we held out all 

samples for the held out compound at once and averaged the predicted probabilities across 

samples to produce the final compound prediction.

For our first classification experiment, we trained and tested our models using only one 

compound exposure length at a time. The experiment shows there is variation in predictive 

performance over the extent of exposure lengths. We ran five replicates of each to account 
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for AUC variations between runs due to randomness in some of the algorithms. Results for 

the 2D and 3D datasets can be found in Figure 1.

For our second classification experiment, we trained and tested our models by pooling 

samples from all exposure lengths together into one dataset. Recall that we do not explicitly 

model the different exposure lengths, instead opting to simply include different exposure 

lengths as additional samples of the same compounds. Again, we computed probability 

estimates for each compound by averaging the individual sample estimates. As before, we 

ran five replicates of each. Figure 2 (top) shows a comparison of AUCs for each of the 

algorithms between the 2D and 3D tissue culture methods.

Because there are fewer exposure lengths in the 3D dataset, there is a chance that differences 

in accuracy between the 2D and 3D dataset are a result of having many more exposure 

lengths in the 2D dataset. To account for this difference, we ran two smaller pooled 

experiments in the 2D dataset combining only two exposure lengths each. The exposure 

lengths in the 3D dataset are two days and seven days, but we do not have a seven day 

exposure length in our 2D dataset. Six and eight days of exposure are the closest analogous 

lengths in the 2D dataset. Thus, we ran these two day experiments in two ways, once by 

pooling days two and six, and another by pooling days two and eight. Again, we ran five 

replicates of each. Figure 2 (bottom) shows the results.

B. Feature selection experiments

We next trained the same models using all days pooled, but also applied feature selection. 

We ran experiments on 19 different fixed sizes of selected gene sets: 1,000 genes down 

through 100 with a step size of 100, and through 10 genes with a step size of 10. We chose 

these gene set sizes to demonstrate a wide range of model performance from large triple 

digit feature sets all the way down to small double digit sets. We used the same feature 

selection algorithms for the 2D and 3D datasets, and all algorithms used the same set of 

selected features for their respective datasets. We performed feature selection for each fold 

of cross-validation with the same data used for training the predictive models to avoid overly 

optimistic estimates of AUC.

We used three algorithms for our feature selection experiments: recursive feature 

elimination, filtering by mutual information, and sparse logistic regression. Recursive 

feature elimination works by recursively training a linear model and eliminating the least 

important features in each step, until some stopping condition is met [15] (e.g. a desired 

feature set size). Mutual information feature selection ranks all features by their mutual 

information with the class label and then filters to a specified feature set size [16]. Sparse 

logistic regression works by applying L1, rather than L2, regularization to the model, driving 

many feature coefficients to 0 and thus leading to a smaller feature set [17].

Again, we used Scikit-learn [14] implementations for these algorithms, specifically the RFE, 

SelectKBest, and LogisticRegression classes, respectively. For recursive feature elimination, 

we scaled expression values to [0.0, 1.0], used a linear SVM with C set to 1.0, and used a 

step size of 1%. For sparse logistic regression selection, we standardized the data, used L1 

regularization, and set C to 1.0. We used the default settings for all other parameters.

Kuusisto et al. Page 5

Proc Int Conf Mach Learn Appl. Author manuscript; available in PMC 2020 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note that the RFE and mutual information methods easily lend themselves to selection of 

exact numbers of genes, whereas spare logistic regression does not. Thus, for sparse logistic 

regression, we first ran the sparse model and then selected the top K genes by the magnitude 

of their learned coefficients. We skipped experiments with the sparse logistic regression 

method when K was larger than the number of nonzero learned coefficients. As before, we 

ran five replicates of each experiment to account for AUC variations between runs. Figures 3 

and 4 show the results from these experiments on the 2D and 3D datasets, respectively.

Because we performed feature selection for each fold of leave-one-compound-out cross-

validation, each feature selection method was effectively performed 45 times for each gene 

set size. To assess the variability of each feature selection method on these datasets, we 

report the number of unique genes selected across all folds combined for each method at a 

gene set size of 10 (see Table II). Each feature selection method may thus pick a maximum 

of 450 genes, and a minimum of 10, across all folds.

III. RESULTS AND DISCUSSION

Figure 1 shows the single day-by-day prediction results for the 2D and 3D datasets. Each 

point along the x-axis shows the predictive performance of a model that is trained and tested 

on samples at a single length of compound exposure in days. Error bars around the points 

show a 95% confidence interval from the five replicate runs of each algorithm and exposure 

length. Recall that 1.0 is a perfect AUC, while 0.5 is equivalent to random guessing. one 

commonality between the two culture methods is that naive Bayes does not appear to 

perform as well as the other three algorithms. This is perhaps unsurprising due to the high 

dimensionality of the dataset, which skews naive Bayes’ predictions more toward 0.0 and 

1.0. Predictive performance appears to improve overall at longer exposure lengths in the 2D 

dataset. This same trend is not immediately apparent in the 3D dataset, but trends are 

difficult to support with only two exposure lengths. The overall result, however, indicates 

that we can exceed the predictive performance of the 3D tissue model using the simpler 2D 

tissue model.

Figure 2 (top) shows a side-by-side comparison of the models on the 2D and 3D datasets 

when all available exposure lengths are pooled for training and testing. Again, error bars 

around the points show a 95% confidence interval from the five replicate runs of each. All of 

the models have substantially better AUC on the 2D dataset than on the 3D dataset. Naive 

Bayes again does not appear to perform as well as the other algorithms, but has substantially 

better accuracy on the 2D dataset once all of the samples are pooled.

Recall that the 2D dataset has several more compound exposure lengths than the 3D dataset. 

Figure 2 (bottom) shows results on the 2D dataset when pooling only two days of compound 

exposure, which is analogous to the two available in the 3D dataset. Again, naive Bayes does 

not perform as well as the other algorithms. Still, in all cases, the 2D models perform better 

than the analogous experiments on the 3D dataset. This suggests that the accuracy of the 

models on the 2D dataset is not simply a result of having a greater number of samples from a 

larger range of compound exposure lengths.
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Finally, Figures 3 and 4 show results from the same pooled models with the addition of three 

feature selection methods. The horizontal axis gives the AUC at 19 decreasing gene set 

sizes, from 1,000 genes down to 10 genes. The results show a common trend of accuracy 

degradation with smaller gene set sizes, but the trend is more pronounced in the 3D dataset. 

For example, no method has an AUC above 0.8 in the 3D dataset at a gene set size of 10, 

whereas all but one method has an AUC above 0.9 in the 2D dataset.

In addition to better prediction, Table II shows that all of the feature selection methods 

generally selected more consistent sets of genes across folds on the 2D dataset, suggesting 

that the predictive signal may be less distributed in the 2D dataset than in the 3D dataset. 

Note that there is no overlap between the 2D and 3D selected gene sets for any of the three 

methods, suggesting that the predictive signal is also distinct between 2D and 3D.

Overall, the 2D tissue model appears to produce more accurate and more consistent 

predictive models. Certainly some difference between the two could result from differences 

in sample preparation and the sequencing depth achieved for each, but we think two more 

obvious potential explanations stand out. First, the 2D tissue model, being composed of only 

one cell type, is less complex than the 3D model and thus produces a less variable signal. 

Second, compound diffusion is likely more complete in the 2D tissue model than in 3D. 

Both of these potential explanations could lead to stronger signals of gene expression 

perturbation for the machine learning algorithms to detect.

IV. CONCLUSIONS

Here, we present common machine learning models applied to the task of predicting 

developmental neurotoxicity of several compounds from gene expression data. We compare 

the AUCs of these models between datasets collected from a 2D tissue culture approach, and 

a more complex 3D tissue culture approach. We compare results from training models on 

single lengths of compound exposure, from multiple pooled lengths of exposure, and with 

the addition of feature selection. Overall, our results show that the models trained on data 

collected from a simpler 2D tissue model are more accurate than those trained on data from 

a 3D model. While a 3D tissue model is perhaps more likely to recapitulate relevant biology 

needed to fully understand toxicity mechanisms, a 2D tissue model is certainly a viable 

option and easier to produce efficiently [18]. We would thus still recommend a 3D tissue 

model if the primary goal is to study biological mechanisms in depth, but our results here 

suggest that the 2D tissue model is an excellent choice for producing a broad toxicity assay.

Furthermore, our results show that models trained on the 2D data experience very little 

degradation in AUC under stringent feature selection, whereas the models trained on 3D data 

show extensive degradation. Our results also demonstrate that the genes selected were more 

consistent across folds on the 2D data than on the 3D data; this is important because it 

suggests that we may be able to simplify the model even further by reducing the number of 

genes that need to be quantified to perhaps far fewer than 100 without loss of accuracy. With 

a much smaller gene set, it may be possible to develop a similar assay using quantification 

methods that are still faster and cheaper than RNA-Seq. We propose this direction of 

research for future work.
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We further propose evaluating the use of 2D tissue models made from simpler cell types 

than NPCs to predict developmental neurotoxicity or toxicity in general. NPCs require 

substantial experience to successfully differentiate and culture, whereas a tissue culture 

based on a cell type such as dermal fibroblasts may be more approachable. While such a cell 

type may not be neural in nature, and the pattern of response would surely be different, the 

cell may still exhibit gene expression perturbations indicative of toxicity sufficient for the 

purposes of an assay.

Current models for toxicity screening are simply too slow and expensive to comprehensively 

test all new or less understood chemical exposures. These models are certainly here to stay 

for the foreseeable future, but high-throughput screening methods, such as we have 

presented here, show a great deal of potential. We hope and expect that both of these 

approaches may complement one another and accelerate findings by helping stakeholders 

choose which exposures to explore further and with what urgency.

V. DATA COLLECTION AND AVAILABILITY

Supplementary material with detailed explanations of our cell culturing and RNA 

sequencing approaches can be found at https://morgridge.org/research/regenerative-biology/

bioinformatics/publications. Our 2D tissue model sequencing data are available through 

GEO Series accession number GSE126786, and the 3D tissue model sequencing data we use 

for comparison are available through GEO Series accession number GSE63935. All code 

and processed expression data can be found on GitHub at https://github.com/finnkuusisto/

DevTox2D.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
AUCs for single day train and test on the 2D (top) and 3D (bottom) tissue culture datasets. 

Error bars around points give a 95% confidence interval from five replicate runs of each.
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Fig. 2. 
Comparison of AUCs between 2D and 3D tissue culture methods when all available 

exposure lengths are pooled for train and test (top), and when only two days of exposure are 

pooled for the 2D method (bottom). The 3D results are the same in both. Error bars around 

points give a 95% confidence interval from five replicate runs of each experiment.

Kuusisto et al. Page 11

Proc Int Conf Mach Learn Appl. Author manuscript; available in PMC 2020 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
AUCs for models trained and tested with feature selection on all exposure lengths pooled for 

the 2D dataset. The horizontal axis is the selected gene set size. Error bars give a 95% 

confidence interval from five replicate runs each.
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Fig. 4. 
AUCs for models trained and tested with feature selection on all exposure lengths pooled for 

the 3D dataset. The horizontal axis is the selected gene set size. Error bars give a 95% 

confidence interval from five replicate runs each.

Kuusisto et al. Page 13

Proc Int Conf Mach Learn Appl. Author manuscript; available in PMC 2020 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript
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TABLE I

MISSING SAMPLES FROM THE 2D TISSUE CULTURE DATASET.

Chemical Missing Days

Toxic

Arsenic 8 - 39

Busulfan 8 - 39

Cadmium 8 - 39

Cytosine β-D-arabinofuranoside 8 - 39

5-Fluorouracil 8 - 21

2-Imidazolidinethione 21

Maneb 2 - 39

Okadaic Acid 8 - 39

PD166866 8

U0126 21

Vincristine 8 - 39

Non-Toxic

Acetaminophen 8, 15

Aspirin 8 - 39

Glucosamine 15 - 39

Glycerol 8 - 27

Ibuprofen 15

Naproxen sodium 6

PEG 3350 15

Glyphosate 8, 15

Sorbitol 8 - 21

Saccharin 8 - 27
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TABLE II

CROSS-VALIDATION UNIONS OF SELECTED GENES WITH K OF 10.

Culture RFE Mutual Info Sparse LR

2D 99 25 37

3D 153 81 41
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