
 

 

 

LoGANv2: Conditional Style-Based Logo Generation
with Generative Adversarial Networks
Citation for published version (APA):

Oeldorf, C., & Spanakis, G. (2019). LoGANv2: Conditional Style-Based Logo Generation with Generative
Adversarial Networks. In M. A. Wani, T. M. Khoshgoftaar, D. Wang, H. Wang, & N. Seliya (Eds.), 18th
IEEE International Conference On Machine Learning And Applications, ICMLA 2019, Boca Raton, FL,
USA, December 16-19, 2019 (pp. 462-468). IEEE Xplore. https://doi.org/10.1109/ICMLA.2019.00086

Document status and date:
Published: 01/12/2019

DOI:
10.1109/ICMLA.2019.00086

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 26 Apr. 2024

https://doi.org/10.1109/ICMLA.2019.00086
https://doi.org/10.1109/ICMLA.2019.00086
https://cris.maastrichtuniversity.nl/en/publications/1b095e91-3aaf-43f9-a7a8-cee1004151bf


LoGANv2: Conditional Style-Based Logo Generation with Generative Adversarial
Networks

Cedric Oeldorf
Department of Data Science and Knowledge Engineering

Maastricht University
Maastricht, The Netherlands

Email: cedric.oeldorf@gmail.com

Gerasimos Spanakis
Department of Data Science and Knowledge Engineering

Maastricht University
Maastricht, The Netherlands

Email: jerry.spanakis@maastrichtuniversity.nl

Abstract—Domains such as logo synthesis, in which the data
has a high degree of multi-modality, still pose a challenge
for generative adversarial networks (GANs). Recent research
shows that progressive training (ProGAN) and mapping net-
work extensions (StyleGAN) enable both increased training
stability for higher dimensional problems and better feature
separation within the embedded latent space. However, these
architectures leave limited control over shaping the output of
the network. This paper explores a conditional extension to the
StyleGAN architecture with the aim of firstly, improving on
the low resolution results of previous research and, secondly,
increasing the controllability of the output through the use of
synthetic class-conditions. Furthermore, methods of extracting
such class conditions are explored, where the challenge lies in
the fact that, visual logo characteristics are hard to define.
The introduced conditional style-based generator architecture
is trained on the extracted class-conditions in two experiments
and studied relative to the performance of an unconditional
model. Results show that, whilst the unconditional model
more closely matches the training distribution, high quality
conditions enabled the embedding of finer details onto the
latent space, leading to more diverse output.

1. Introduction

Since their inception, Generative Adversarial Networks
(GANs) showed the way to a whole new generation of neural
network (NN) applications [1].

Tackling a creative domain such as design can provide
creative professionals with tools that both assist and augment
their work. One such domain requiring vast amounts of
creativity is that of brand/logo design. With most Americans
exposed to 4,000 to 20,000 advertisements a day 1, compa-
nies are paying ever increasing attention to their branding.
This puts pressure on designers to come up with aesthetic
yet innovative and unique designs in an attempt to set their
designs apart from the masses.

GANs could potentially assist designers by either pro-
viding them with inspiration or by reducing the number of

1. https://www.forbes.com/sites/forbesagencycouncil/2017/08/25/
finding-brand-success-in-the-digital-world/#284e641b626e

design iterations undergone with clients. A drawback con-
cerning GAN generated content is that samples are created
from an unknown noise distribution. In order to facilitate
specification based content generation, the user must be able
to shape this latent input code in such a way that it allows
for an intuitive determination of style.

The implementation of class conditions, which guide the
network to produce output associated with the features of a
specific class, could serve as a possible approach to this. A
challenge to this approach lies in the fact that logos would
need to be labelled based on their visual characteristics,
given that visual logo characteristics are hard to define.

Furthermore, the high degree of multi-modality of logos
[2] increases the complexity of the task. Whilst being a
problem that has been tackled in previous research [2], [3]
showing somewhat stable 32 × 32 pixel results, such a small
resolution is undesirable for real use as most details are not
identifiable. Considering that model complexity exponen-
tially increases with image size, another challenge involves
generating higher resolution and more detailed logos.

With the various aspects of the problem in mind, we
engage with the following questions throughout this research
paper:

• How can we extract high-quality and easily definable
conditions from logos?

• Can we increase input/output image resolution
whilst retaining stable training and sensible results?

• How does enforcing conditions on a GAN affect
performance on multi-modal data?

Both our data and python implementation are available
via GitHub 2.

2. Background and Related Work

First experiments involved conditional GANs for logo
synthesis and manipulation [2]. Results showed that includ-
ing conditioning labels as input to a GAN has a positive
effect on training stability as it promotes feature disentangle-
ment, given that the synthetic labels are meaningful. State-
of-the-art performance was achieved in terms of quantitative

2. https://github.com/cedricoeldorf/ConditionalStyleGAN

462

2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA)

978-1-7281-4550-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICMLA.2019.00086



performance metrics by their Wasserstein GAN (WGAN)
extended with an auxiliary classifier (WGAN-AC). How-
ever, they concluded that results looked more appealing in
terms of human judgment when produced by their layer
conditional deep convolutional GAN (DCGAN-LC).

Shortly thereafter, notable results were achieved through
the use of colour as a condition within a WGAN-AC using
gradient penalty [3]. Albeit achieving promising results,
the paper confirmed that the conditions need to convey
meaningful information that can guide the logo in feature
disentanglement, else the generator sets back to a random
state.

2.1. Progressive Training

The issue of GAN stability is tackled by adjusting the
training methodology to start training on low resolution
images and add higher resolution layers as training pro-
gresses [4]. Considering that low resolution images hold
fewer modes and less class information [5], the network
is enabled to learn large-scale patterns in the data and then
pivot from learning coarse to progressively more fine detail
as resolution increases [4]. Not only does this stabilize
training, but also speeds it up through the fact that the
network does not need to tackle the task of immediately
mapping the intermediate latent space to high resolution
imagery [4].

Whilst progressive training solves GAN stability for high
resolution training to a large extent, the embedding of a
complex data distribution onto a (relatively) small latent
space results in unavoidable feature entanglement. That is,
multiple features are mapped to single positions in the
space. Such entanglement leads to significantly difficulty in
controlling the output of the network, which, if we refer
to our problem statement, is something we would like to
achieve. This brings us to an extension of this architecture
presented in the following section.

2.2. Style-Based Generator

By combining progressive training, a mapping network
and adaptive instance normalization, feature entanglement
as mentioned in Section 2.1 can be combated with the
StyleGAN architecture [6].

We outline the upcoming subsections by exploring the
alphabetical markings on Figure 1. Marked as ”(a)” in the
figure, we start by describing the mapping network, which
provides the input to the generator and serves as the base-
line combatant to feature disentanglement. This is followed
by marking ”(b)”, which describes how the output of the
mapping network is fed into the progressive generator and
”(c)” explores how stochastic variation can be introduced
to the model. Marking ”(d)” lies close to the loss function,
which we explore for our specific case in Section 4.

2.2.1. Mapping Network. In order to gain independent
control over individual low- to high-level features, a feed-
forward neural network can be used as a mapping network.

Figure 1. An outline of StyleGAN architectural elements. The mapping
network transforms the initial latent vector z into w by feeding it through
a feed-forward neural network (FFNN). The progressively grown generator
takes both latent vector and noise inputs at all layers. The discriminator
grows with the generator and returns a loss metric which is backpropagated
to both networks.

As opposed to feeding a random vector straight into the
generator, the input is projected onto an intermediate latent
space w by being fed through a mapping network [6]. This
latent space allows controls of ”styles” within convolutional
layers at each resolution using Adaptive Instance Normal-
ization explored in the next subsection .

2.2.2. Adaptive Instance Normalization. Replacing batch
normalization, significant improvement concerning style
transfer results was observed when instance normalization
(IN) was first introduced [7].

IN(x) = γ(
x− μ(x)
σ(x)

) + β (1)

IN is seen in Equation 1, where μ(x) and σ(x) represent
scale and bias. It normalizes input with respect to a certain
style which is defined by the parameters γ and β. In order to
allow this equation to adapt to any given style, an adaptive
affine transformation can be used.

AdaIN(x, y) = σ(y)(
x− μ(x)
σ(x)

) + μ(y) (2)

Adaptive instance normalization (AdaIN), as shown in
the above equation, takes an additional input of style y in
order to replace the two parameters of IN with a scale σ(y)
and a bias μ(y) [8].

In context of the mapping network in section 2.2.1,
the intermediate space w is transformed into the scale and
bias of the AdaIN equation. Noting that w reflects the
style, AdaIN, through it’s normalization process, defines
the importance of individual parameters in the convolutional
layers. Thus, through AdaIN, the feature map is translated
into a visual representation.

2.2.3. Stochastic Variation. In order to introduce stochastic
variation into the model, it was proposed to add noise to

463



Figure 2. Inserting Noise into the Generator

each channel of the individual convolutional layers as seen
in Figure 2 [6].

The noise inputs take the form of two-dimensional ma-
trices sampled from a Gaussian distribution. These are then
scaled to match the dimensions within the layer and applied
to each channel [6]. This introduces variation within that
feature space.

2.2.4. Drawback: Limited control. In the scenario such
as wanting to generate a specific type of logo for a client,
we would want to give generator a specification by which it
should synthesize a logo. Although the addition of the map-
ping network allows for increased control of style/features
through W, this space is is quite large and likely imperfect.
Each value of W would need to be mapped to a feature in
order to allow for human control of the synthesized logo.

As the goal set in this paper is to be able to generate
logos based by some form of input, a possible solution to
this problem is introduced as the model used in this this
work in Chapter 4.

3. Data Preprocessing and Label Extraction

This section introduces both data and methods used to
extract meaningful class-conditions from logos. There are
three stages, data preprocessing in which the logos are
cleaned and prepared, feature extraction in which we project
the logos into a quantifiable space and clustering in which
K-means clustering applied to the mentioned space.

3.1. BoostedLLD

The data used to train the models for our experiments is
based off of the LLD-logo [2] dataset, which was prepro-
cessed and boosted with additional images in order to be a
more precise fit for our problem domain.

3.1.1. Large Logo Data. First introduced by Sage et al.
(2018), the large logo dataset (LLD) comes in two forms,
LLD-icon and LLD-logo. The icon version consists of 32px
favicons, whereas the logo version consists of up to 400px
logos scraped from twitter. Whilst previous research in logo
synthesis [2], [3] made use of or focused on the icons set,
we opted for the logo version as the higher resolution is in
line with our research goals.

Whilst the LLD-logo set consists of 122,920 logos, many
of these logos consist purely of text. As we would like
to shift the focus of our model away from fonts and text,
we decided to drop all text-based logos using the tesseract
[9] open-source optical character recognition model. After
dropping all images that had identifiable text on them, we
were left with circa 40 000 logos.

3.1.2. Boosting. With the aim of diversifying and extending
the remaining data after the preprocessing of the LLD-
logo set, we scraped Google for new logo-like images.
Keywords pertaining to topics such as nature, technology
and illustrated characters were used in what resulted in circa
15 000 additional images for our training data.

3.2. Label Extraction

In order to train our model in a conditional manner,
we need class labels for our data. These can be extracted
through clustering-based methods, of which the two we used
are outlined below.

3.2.1. Object-Classification-Based Clustering. Using the
Google Vision API3, each logo is given 4 to 8 word labels
that describe the contents. In order to bring the word labels
into a quantitative space, we use a a pre-trained Word2Vec
model4 [10]. Having multiple words per logo, the midpoint
between the word vectors of each individual logo is calcu-
lated and serves as the spatial representation for each logo.
K-means clustering [11] then is used to partition the images
into segments with the aim of having these represent unique
visual properties within the logos. Whilst there is some
separation of visual characteristics, it is not immediately
clear what a cluster should represent.

3.2.2. ResNet Embedding Layer. Our second clustering
approach follows the same steps as the first but with a
different labelling technique. It makes use of the last max
pooling layer of a pre-trained VGG16 [12] network in order
to project input images into a 512-dimensional feature space.
Samples taken from the clusters show that certain clusters
represent certain visual characteristics, more so than in
section 3.2.1.

4. Conditional Style-Based Generator

Recalling from Section 2.2.4, the unconditional Style-
GAN architecture only allows for limited control over the
produced output. Taking a step towards lifting this limi-
tation, we introduce multiple extensions to the StyleGAN
architecture which when combined turn it into a class-
conditional model.

Such conditions would not only allow the specification
of a style preceding output generation, but might also assist
the model in learning a larger number of complex modes

3. https://cloud.google.com/vision/

4. https://code.google.com/archive/p/word2vec/

464



Figure 3. Producing a conditional latent vector for the StyleGAN architec-
ture

[2]. Considering that many related research efforts make use
of very structured image domains where images across the
distribution share, for example, locality of landmarks [6],
[13], we pay special attention to easing learning within the
by nature highly multi-modal logo domain.

4.1. Architecture

Motivated by the drawbacks in Section 2, we propose us-
ing a conditional framework for the StyleGAN architecture.
There are two major differences between the conditional and
unconditional StyleGAN architectures: (a) integrating class-
conditions into intermediate latent space and (b) updating
the loss function to take class-conditions into consideration.

4.1.1. Intermediate Latent Space. Recalling that in the
StyleGAN architecture, a random vector is fed through a
mapping network, which in turn produces the input vector
for the generator. The incorporation of conditions into this
process takes place just before the mapping network as
outlined in Figure 3.

We can see how the latent embedding W depends
on both the random input and the class-conditions. The
process is run in mini-batches of size n, which is how we
define the process mathematically below.

We introduce two matrices in Equation 3. Firstly, Z ∼
N (μ, σ2) , which is a matrix comprised of the initial latent
space of size n × d, where n is the size of the mini-batch
and d is the length of the matrix. Secondly, Y , which is
a matrix of the one-hot-encoded conditions of size n × c,
where c is the number of classes we introduce.

Z =

⎡
⎢⎢⎣
l11 l11 · · · l1d
l21
...
ln1 ln2 · · · lnd

⎤
⎥⎥⎦ ;Y =

⎡
⎢⎢⎣
y11 y11 · · · y1c
y21

...
yn1 yn2 · · · ync

⎤
⎥⎥⎦

(3)

W , which is the matrix holding the final latent input vectors,
is calculated in Equation 4. Y is multiplied with matrix
R ∼ N (μ, σ2) of size n × c and concatenating the result
with Z.

W = f([Y ×R]�Z) (4)

The feed-forward neural network, which has also been
defined as out mapping network, is represented as f in Equa-
tion 4. The result, W ends up having the same dimensions
as L.

4.1.2. Updated Loss Function. Updating the WGAN loss
function, the used loss function shows the discriminator
considering the conditioning labels paired with respective
output/training data [14]. Equation 5 represents this updated
loss, where y are the class-conditions.

�θD [fθD(x|y)− fθD(G(w|y))] (5)

The architecture makes use of a gradient penalty term.
Combining the term with equation 5, we are left with a
conditional WGAN-GP loss function as seen in equation 6
below:

�θD[fθD(x|y)− fθD(G(w|y))]︸ ︷︷ ︸
Discriminator Loss

+λ[(|| �x̂ D(x̂|y)||2 − 1)2]︸ ︷︷ ︸
Gradient Penalty

(6)

Where x̂ is uniformly sampled along straight lines be-
tween pairs of real and generated data points [15].

5. Experimental Design & Results

The architecture undergoes three core experiments.

• Experiment 1: StyleGAN architecture (no condi-
tions)

• Experiment 2: StyleGAN conditioned on object-
classification-based labels

• Experiment 3: StyleGAN conditioned on ResNet-
feature-based labels

These experiments and their evaluation aim to tackle the
posed research questions of whether we can generate higher
resolution logos and how both the low- and high-quality
conditions extracted in Section 3 affect model performance.
We first describe each experiment and their respective model
outputs and then go deeper into the results analysis by
performing both a qualitative and quantitative evaluation in
which all models are compared. The major traits we are
looking for are: image quality, diversity and homogeneity
within a class-condition. Image quality and diversity are
explored both qualitatively and quantitatively. Homogeneity
within a class-condition will be explored visually and only
applies to experiment 2 and 3.

5.1. Quantitative Evaluation

Using a quantitative measure for analyzing the perfor-
mance of a GAN is especially difficult for a domain such

465



as logo synthesis, as the quality of a logo is a subjective
metric. The inception score makes use of Google’s Inception
classifier [16] in order to measure the diversity of objects
within generated images. If generated images hold a diverse
set of recognizable objects, the inception score will be high.

IS(G) = exp(Ex∼pgDKL(P (y|x)||p(y))) (7)

Mathematically, the score is computed as the exponential
of the KL-divergence DKL between distributions p(y|x) and
p(y).

Whilst this was shown to correlate well with subjective
human judgment of image quality [7], the scores outcome
relies heavily on objects being present in the data.

This score was extended with the proposed Frechet
Inception Distance [17], which has been prominently used
in many of the latest GAN related papers [2], [4], [6]. The
difference lies in that the distribution statistics are extracted
from the feature space of an intermediate layer as opposed
to from the output layer. Mathematically it can be described
as:

FID(x, g) = ||μx − μg||22 + Tr(
∑
x

+
∑
g

−2(
∑
x

∑
g

)1/2)

(8)
where μ represents the mean and

∑
the covariance

of the embedded layer of both x, the training data, and
g, the generated data. We want to minimize this distance,
thus the smaller FID, the higher the quality of generated
images. The fact that the FID does not make use of object
classification, makes it a good score for this paper, as logos
often by nature do not contain classifiable objects.

Taking the elements in equation 8 into account, we see
the calculated score will represent both how similar the
logos are to the training data in terms of quality, but also in
terms of produced diversity captured by the covariance.

5.2. Qualitative Evaluation

In order to subjectively measure the quality of the re-
sults, we not only view the raw results, but also analyze how
well the latent embedding captured the training distribution.
This is done through the truncation trick introduced below.

5.2.1. Truncation Trick. Within the distribution p(x) of
the training data, some areas of the sampling space can be
of low density due to lack of representation in the training
data [6]. Mathematically, this is achieved by calculating the
center of mass in our latent vector W as:

w̄ = Ez∼P (z)[f(z)] (9)

this point represents a type of mean generated image
of the learned distribution. By increasing ψ in equation
reftruncation2, we specify how far we would like to deviate
from this center of mass. The higher the value, the more we
move towards the fringes of the distribution.

w′ = w̄ + ψ(w − w̄) (10)

Frechet Inception Distance
Experiment 1 (no conditions) 47.4694
Experiment 2 (object label conditions) 71.6898
Experiment 3 (ResNet feature conditions) 101.9211

TABLE 1. FID SCORES FOR EVERY EXPERIMENT. A LOW FID SCORE

IN OUR CASE IMPLIES THAT THE SYNTHESIZED LOGOS AND REAL

LOGOS CARRY CLOSELY-RELATED VISUAL FEATURES.

Figure 4. Experiment 1: Synthesized logos

5.3. Experiment 1: No Conditions

In order to set a baseline with which to compare our
conditional models with, a model was trained that does not
make use of any conditions. This represents the StyleGAN
architecture as it was presented in the paper it was proposed
in [6]. Synthesized logos are presented in Figure 4.

Image quality Produced logos appear to be stable and
consistently of high quality. The majority of the designs
are very simple, with logos such as in B1 and B2 being
rare. This could be an indication that some modes were not
embedded on the latent space. According to the FID in Table
5.3, logos produced in experiment 1 are shown to be closest
to matching the distribution of the training data.

Diversity We see many shape and colour repetitions with a
few truly unique designs such as in G1 and D10 of Figure
4. Additionally, when comparing this experiment’s behavior
over different truncation values in Figure 7, we see that
the fringes of the learned embedding aren’t very stable,
implying that some low density modes were dropped. Based
on this we can gather that output was ”conservative” but in
line with the models goals.

5.4. Experiment 2: Object Classification Based
Conditions

As was pointed out in Section 3.2.1, these conditions do
not show much visual separation and often embody similar
styles across multiple conditions. The model produced sub-
jectively good-looking logos as seen in Figure 5. However,
it did suffer from slow learning, which might be indicative
of low-quality conditions acting as a sort of regularizer.

466



Figure 5. Experiment 2: Synthesized Logos

Image quality Many examples are not as clearly defined
nor as sharp as in the previous case. Occasionally, such as
in B2,E6 and F7, we find logos with fine very fine details,
which is indicative of the model having embedded a few
complexities of the distribution. However, such fine details
quickly seem to form nonsensical output such as E1, and
most logos follow a general square or circle trend. Con-
sidering that the FID score in Table 5.3 is much higher, we
gather that the images do not match the training distribution
well, however, results are fairly unique.

Diversity Whilst we do find a lot of repetition such as in
G8 and H9, the seem to generally be quite diverse compared
to experiment 1. A possible reason for this is that through
the conditions, the embedding of the complexities within the
training data distribution becomes simpler.

Homogeneity The lack of visual separation within the con-
ditional classes of this experiment expectantly resulted in
almost no homogeneity within the conditions. We do see
weak trends such as ”blue” in row C, leading us to believe
that with improved class conditions we would see strong
visual representation of these in each row.

5.5. Experiment 3: ResNet Feature Conditions

The third experiment made use of conditions based on
the clustered output of an embedded ResNet layer. These
conditions were of significant higher quality compared to
those of Experiment 2, as pointed out in Section 3.2.2. The
high quality labels seem to support the models learning by
feeding it meaningful information. We display synthesized
logos in Figure 6.

Image Quality Whilst it is surely the most creative of the
three models described, the logos produced in this experi-
ment see both clearly defined, high-quality examples (e.g.
C5,C8 or D9), but also incoherent shapes that don’t seem
to resemble anything we see in the training data (e.g. F7 or
H1). If we take into account that the FID of experiment
3 is more than double that of experiment 1, it can be

Figure 6. Experiment 3: Synthesized Logos

deduced that finer output detail leads to quick divergence
from the training distribution. Unfortunately the FID metric
cannot take the visual creativity of the output into account,
a property at which in our opinion experiment 3 excelled.

Furthermore, in Figure 7, experiment 3 clearly retains
the highest image quality of the three models at a truncation
value of 1. This is in line with our expectations, where the
high-quality conditions enabled the model to better learn the
complexities of the training data distribution with respect to
each class.

Diversity Even within each condition, the model consis-
tently produces a diverse set of examples. This is indicative
of the model being capable of learning even the high level
features of the training data distribution.

Homogeneity As expected, using visually coherent class-
conditions shows a high magnitude of homogeneity of style
within the conditions. We derive from this that the condi-
tions aided style separation within the latent space, allowing
for the mapping of specific conditions to features commonly
found within each.

6. Conclusion

In this paper, we experimented with a conditional exten-
sion to the popular StyleGAN architecture in order to control
the output of logo generation. We showed that meaningful
conditions can help the model capture modes that might
not be captured by an unconditional model. High-quality
conditions inserted into the latent code proved to be a viable
approach to controlling the output of a synthesis network.

We found that extracting easily definable classes from
logos poses a challenge. Whilst the method involving
the clustered output of ResNet layer embedding provided
us with visually distinct groupings, we saw within the
object-classification based method that creating automated

467



Figure 7. Experimental results over different truncation values

language-labels does not result in descriptions that define
the visual characteristics of logos. Moreover, both condi-
tional and unconditional StyleGAN architectures enabled
stable training for a resolution 4 times larger compared
to previous research. We attribute this outcome to the fact
that progressive training simplifies the distributions to be
embedded on the latent code. Furthermore, experiments have
shown that the introduction of class-conditions in the model
enables it to learn a larger number of modes in the context
of highly multi-modal data. Lastly, a trade-off between the
robustness and detail of generated output was observed. The
conditional models were shown to produce more unique
logos with fine features, but at the cost of also producing
some nonsensical output. The unconditional model however,
which generated mostly very simple but realistic logos,
did not see the same amount of nonsensical output. We
additionally proposed a new data set that shifts the focus
of the LLD collection away from text-based designs and
more towards illustrations. Although the size of the data set
was significantly reduced, we believe that the higher quality
played a significant factor in the success of our models.

In future, it would be desirable to head towards a text-
input based architecture, especially when considering the
use-cases of the logo domain. If successful, this would offer
a very simple and straightforward way of controlling the
latent embedding, and with that the architecture’s output.

References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, 2014, pp.
2672–2680.

[2] A. Sage, E. Agustsson, R. Timofte, and L. Van Gool, “Logo synthesis
and manipulation with clustered generative adversarial networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 5879–5888.

[3] A. Mino and G. Spanakis, “Logan: Generating logos with a generative
adversarial neural network conditioned on color,” in 2018 17th IEEE
International Conference on Machine Learning and Applications
(ICMLA). IEEE, 2018, pp. 965–970.

[4] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” arXiv preprint
arXiv:1710.10196, 2017.

[5] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier gans,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
2642–2651.

[6] T. Karras, S. Laine, and T. Aila, “A style-based generator ar-
chitecture for generative adversarial networks,” arXiv preprint
arXiv:1812.04948, 2018.

[7] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Improved texture net-
works: Maximizing quality and diversity in feed-forward stylization
and texture synthesis,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 6924–6932.

[8] X. Huang and S. Belongie, “Arbitrary style transfer in real-time
with adaptive instance normalization,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 1501–1510.

[9] R. Smith, “An overview of the tesseract ocr engine,” in Ninth Inter-
national Conference on Document Analysis and Recognition (ICDAR
2007), vol. 2. IEEE, 2007, pp. 629–633.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[11] J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” in Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, vol. 1, no. 14.
Oakland, CA, USA, 1967, pp. 281–297.

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[13] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[14] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
2017, pp. 1125–1134.

[15] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved training of wasserstein gans,” in Advances in
Neural Information Processing Systems, 2017, pp. 5767–5777.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1–9.

[17] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
iter, “Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” in Advances in Neural Information Processing
Systems, 2017, pp. 6626–6637.

468


