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Abstract—This work presents a novel ensemble of Bayesian
Neural Networks (BNNs) for control of safety-critical systems.
Decision making for safety-critical systems is challenging due
to performance requirements with significant consequences in
the event of failure. In practice, failure of such systems can be
avoided by introducing redundancies of control. Neural Networks
(NNs) are generally not used for safety-critical systems as they
can behave in unexpected ways in response to novel inputs. In
addition, there may not be any indication as to when they will
fail. BNNs have been recognized for their ability to produce not
only viable outputs but also provide a measure of uncertainty in
these outputs. This work combines the knowledge of prediction
uncertainty obtained from BNNs and ensemble control for a
redundant control methodology. Our technique is applied to an
agile autonomous driving task. Multiple BNNs are trained to
control a vehicle in an end-to-end fashion on different sensor
inputs provided by the system. We show that an individual
network is successful in maneuvering around the track but
crashes in the presence of unforeseen input noise. Our proposed
ensemble of BNNs shows successful task performance even in the
event of multiple sensor failures.

Supplementary video: https://youtu.be/poRbH kB2M
Index Terms—Bayesian Neural Network, End-to-End Control,

Ensemble Control, Safety-critical Systems

I. INTRODUCTION

Neural Networks (NNs) are currently one of the most pow-
erful tools for solving difficult problems in decision making
such as playing Go [1] or medical diagnosis [2], [3]. Notably,
NNs are able to perform rapid and complex computations
through relatively simple nonlinear calculations and massive
parallel structures. Because of this, NNs have been applied to a
variety of difficult classification and regression problems from
object detection to robotics. One such task that benefits from
the performance of NNs is end-to-end imitation learning for
autonomous driving. In this task, difficulty arises in mapping
sensor inputs into driving commands [4]. Previous work, such
as [4]–[6], shows the successful use of end-to-end imitation
learning with applications to autonomous driving and manipu-
lation with visual inputs. Under the imitation learning settings,
a system can efficiently learn a task, guided by an expert.
However, much of the previous work does not investigate the
robustness of the learned end-to-end model to compromised
sensors.

This work was supported by Amazon Web Services (AWS) and Komatsu
Ltd.

Although NNs are capable of successfully completing dif-
ficult tasks in a variety of applications, they are not without
drawbacks. One drawback is that it can be nearly impossible
to determine what the output of the NN will be given an
input without using the NN itself. This is due to the nonlinear
computational structure and a large number of parameters.
Another drawback is that NNs are also heavily reliant on
data; they generally can not make use of prior knowledge
such as dynamics models. When confronted with a new
input, the output of the network can vary drastically, even if
there are similarities to inputs from training data. Even small
perturbations to the input can alter the output of Deep NNs [7],
[8] and the Deep NNs are easily fooled [9]. This means we do
not have a consistent mapping from inputs to outputs. In the
context of safety, traditional NNs do not provide a measure of
uncertainty of the output.

In recent years, however, new improvements have been
made on probabilistic NNs. Bayesian Neural Networks
(BNNs) are a probabilistic network structure that produces
a distribution of outputs rather than a single output. This
output distribution provides valuable information showing
how certain or uncertain the output is. With the ability to
measure uncertainty, NNs become a viable option for ensemble
techniques used for decision making. Ensemble techniques
consist of a set of hypotheses from which they choose one as
the output. In [10], the ensembles of perturbed models are used
to perform robust trajectory optimization with respect to model
uncertainty. The work in [11] demonstrated that a simple
ensemble model can effectively approximate the predictive
uncertainty of Deep Learning (DL) if the objective function
obeys a proper scoring rule. This method used multiple NNs
with different initializations to serve as individual models of an
ensemble for approximating predictive uncertainty. However,
the obtained predictive uncertainty was not directly used for
improving the performance of the target task.

With knowledge of the uncertainty of each hypothesis,
ensemble techniques can be used in safety-critical systems
where the failure of the system causes tragic results. In this
work, we propose a novel ensemble of end-to-end BNNs to
provide an elegant solution to sensor failure in safety-critical
systems. Our method is applied to the platform seen in Fig. 1,
with the task of agile autonomous driving. With aggressive
maneuvers on harsh terrain, sensors can fail from damage
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or are unable to operate effectively with rapidly changing
conditions.

The rest of this paper is organized as follows: in Section II,
we provide background information for the key ideas used in
this paper. In Section III we introduce our ensemble BNNs
structures and provide the algorithm for decision making. We
discuss the expert used for data collection in Section IV and
present results in Section V. Finally, we give our conclusions
and discuss future work in Section VI.

II. BACKGROUND

In this section, we will cover a few concepts central to
our proposed research solution. In order to detect sensor
failure, we will be measuring uncertainty in NN models,
in comparison to the more traditional approach of sensor
fault detection before passing sensor information to a NN.
There exists an extensive literature on sensor failure detection
[12]–[14] that demonstrates its application in various fields.
However, this approach requires knowledge of the expected
sensor outputs to determine whether a reading is normal or
faulty. Our approach lets the learned model itself address
this problem by utilizing the probabilistic counterpart of the
traditional NNs, namely BNNs. This Bayesian approach of
deep learning removes the need for any beforehand knowledge
of expected sensor outputs. A brief overview of types of
uncertainty is given to provide the motivation of BNNs. We
finish by briefly covering Imitation Learning, which is the
method we use to train our models.

A. Aleatoric and Epistemic Uncertainty

Model uncertainty can be classified into two major cat-
egories [15]: aleatoric and epistemic uncertainty. Aleatoric
uncertainty is a result of the model’s inability to fully describe
the environment, while epistemic uncertainty is a result of the
inability to acquire unlimited data. In the first case, uncertainty
arises when different outcomes are obtained even with the
same experimental setup. The source of this type of uncertainty
is the hidden variables that can not be perfectly characterized
or measured. Epistemic uncertainty arises when the model is
presented data not seen previously. The source for this type of
uncertainty is a data set that does not fully cover the sample
space. In application, it is not possible to completely eliminate
either form of uncertainty as we do not have access to a perfect
model or unlimited data.

The origin of aleatoric uncertainty suggests that we should
be able to train a model to output this type of uncertainty

Fig. 1. Left: The 1/5 scaled ground vehicle for autonomous driving and
racing. Right: The oval track used for experiments.

given data. Meanwhile, we should also be able to measure
the epistemic uncertainty of a model through some form of
sampling. In this paper, the total predictive uncertainty is
calculated to be the combination of both uncertainty types.

B. Bayesian Neural Networks

Currently, there exist two popular methods to obtain a pre-
dictive probability distribution in the deep learning literature.
The first technique uses Bayesian Backpropagation [16], which
assigns a probability prior, usually Gaussian, to the weights
in the network. The network is trained by minimizing the
Kullback-Leibler (KL) divergence between the distribution on
the weights and the true Bayesian posterior distribution.

The second approach uses dropout layers to produce a
predictive distribution resulting from a probabilistic network
structure [17]. The Monte Carlo dropout approach is adopted
in this paper since the alternative approach requires at least
doubling the number of parameters in the network, which
makes it difficult to run a large scale convolutional Neural
Networks with only the computational resources on-board the
vehicle. Using the existing NN structure with dropout added
to every weight layer, weights in the network are randomly
dropped with a certain probability. At every forward pass, we
sample a dropout mask from a Bernoulli distribution to deter-
mine weights dropped in each layer. During the backward pass,
only the remaining weights are updated. The outputs of the
network then become a Gaussian Distribution, returning the
mean and variance of the prediction values. When trained with
the loss function described in Section III-B and Section III-C,
these outputs becomes a combination of aleatoric and epis-
temic uncertainty. The work in [17] shows the mathematical
equivalence between an approximated deep Gaussian process
and a NN with arbitrary depth and nonlinearities when dropout
layers are applied before and after every weight layer. The
output distribution is estimated with Monte Carlo sampling,
which can be done in parallel to reduce run-time.

C. Imitation Learning

Imitation Learning (IL), also called “learning from demon-
stration”, is a type of supervised machine learning. IL is
often used when the optimal solution to the task is not easily
accessible or too computationally expensive to run in real
time. IL algorithms assume that an oracle policy or expert is
available. The expert can utilize resources that are unavailable
for the imitation learner at test time, such as additional sensory
information and computing power. In the case of autonomous
driving, the expert can be a sophisticated optimal control
algorithm or an experienced human driver. The observation-
action or state-action pairs generated by the expert is then used
to train the imitation learner. The goal of IL is to mimic the
expert’s behavior as well as possible. In [4] IL’s ability to
perform the autonomous driving task with low-cost sensors is
demonstrated on real-world experiments.

In the traditional formulation, the goal is often to find
a policy π : O → U that minimizes an expected loss or



maximizes an expected reward over a discrete finite time
horizon H:

min
π

Epπ

[
H−1∑
t=0

l(xt, ut)

]
, (1)

where xt ∈ S, ut ∈ U , and S,O,U are the state, observation
and admissible control spaces respectively. l is the immediate
loss function. pπ is the joint distribution of xt, ut, and ot ∈ O
for the policy π for t = 0, ...,H − 1.

For imitation learning, this equation changes slightly. The
goal now becomes to learn a policy that minimizes a loss
function that characterizes the difference between the learned
model and the expert policy π∗ rather than the most optimal
π:

πNN = arg min
π

Epπ∗ [l(xt, ut)] , (2)

where ut = π(ot) and πNN denotes the neural network policy
chosen. In our work, we trained our networks with batch
imitation learning.

III. ENSEMBLE BAYESIAN DECISION MAKING

A. Problem Formulation

The main problem considered in this paper is the au-
tonomous driving task for a 1/5 scaled ground vehicle (Fig. 1)
using deep neural network-based end-to-end control policies
under the sensor failure cases. As mentioned in Section I,
many applications of deep end-to-end control do not provide
a principle solution to sensor failure. Most self-driving cars
today depend on different kinds of sensors including Lidar,
Radar, GPS, and cameras. However, in the real world, these
sensors are vulnerable to noise. In one example, differential
GPS (dGPS) is widely used for autonomous driving to obtain
global positions in the world frame. Despite many advances in
GPS technology, there is always the probability that the GPS
signal jumps or slightly diverges from the true position. In
areas with obstacles such as tall buildings or indoor parking
lots, GPS tends to fail altogether. Additionally, cameras are
sensitive to light conditions and interference from external
sources. In autonomous driving, even a slight shift of the
GPS data or an obscured camera may cause the car to pass
the center line of the road with significant consequences. To
avoid these failures, system redundancy is crucial for the safe
operation of autonomous driving.

System redundancy is commonly applied in many safety-
critical applications, where multiple backup systems exist to
prevent catastrophic failure from one faulty component, as
shown in [18]. Redundancy is usually achieved by either
duplicating the same system or using different systems that
perform the same task. It is easy to have duplicative systems
available in case of failure, but they are vulnerable to faults
of the underlying system. Dissimilar backups, where different
hardware, software, and control laws are used in each backup
system, can alleviate this problem, but it is hard to determine
how the backup systems are prioritized when a failure occurs.

In this work, an ensemble Bayesian decision making process
is used to provide system redundancy. Multiple BNNs are
implemented on the vehicle, each taking in a different sensory
input and having the capability of performing the task on its
own. Each BNN is trained end-to-end, learning the low-level
control actions from each sensor input. When one or more
of the sensors is compromised, the associated predictive un-
certainty to the failed sensor should see a significant increase
that causes the system to switch to the remaining functional
networks.

B. Ensemble Structure
Our ensemble consists of 3 BNNs. Each BNN differs in their

network input as well as their network structure. They output
the mean, û, and the variance, σ̂2, of the model caused by the
aleatoric uncertainty. The first BNN is trained on the fully-
observable state data gathered from GPS module. Its network
structure is fully connected with ReLU activation functions
and layers of width 1024, 512, 256, and 128, respectively. The
second network is trained on images taken from the camera on
the left side of the vehicle shown in Fig. 3. It is using the VGG
16 [19]-like network, with modifications to include dropout
at each layer as well as output the variance, σ̂2 stemming
from aleatoric uncertainty [20]. This deep neural network is
composed of ∼30 million trainable parameters, depending on
the size of the input. The last network is trained on images
taken from the camera on the right side of the vehicle shown
in Fig. 3 and has the same network structure as the second
network. The overall network structure can be seen in Fig. 2.

To ensure that the outputs of each BNN are the mean and
variance due to aleatoric uncertainty, the heteroscedastic loss
function is used. This loss function used is defined in [15],
and is as follows:

L(π) =
1

2σ̂2
||u∗ − û||2 +

1

2
log(σ̂2), (3)

where π is the current policy of the network, u∗ is the expert’s
action for input x, û is the aleatoric mean for input x, σ̂2 is the
aleatoric variance for input x. To see how σ̂2 is a measure of
the aleatoric variance, let us think about how aleatoric variance
should behave. We would like that the predictions (û) that are
close to the expert’s output (u∗) – resulting in a low residual
error – have low aleatoric variance. Predictions that are far
away from the expert’s output – resulting in a high residual
error – should also have high aleatoric variance. To minimize
Eq. (3) when the residual error is high, σ̂2 must increase so
that the residual error does not have a strong impact on the
loss. When the residual error is small, it is observed that σ̂2

also needs to be small in order to minimize Eq. (3). Intuitively,
since σ̂2 follows the increase or decrease of the residual error
to obtain a minimal loss, [15] concludes that σ̂2 is at least
an approximation of the aleatoric variance. In practice, the
heteroscedastic loss function is modified slightly to:

L(π) =
1

2
exp(−s)||u∗ − û||2 +

1

2
s, (4)

where s = log(σ̂2). By regressing with s, we avoid a potential
’division by 0’ error and can still easily calculate σ̂2. These
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Fig. 2. Ensemble Network Structure composed of end-to-end Bayesian
Networks.

means and variances are then used to find the output of the
ensemble network as described in the next section.

C. Implementation

To get a better calibrated uncertainty measure, we used
Concrete Dropout [21], which allows for automatic tuning of
the dropout probability in large models. The output of the
redundant system structure is calculated in Algorithm 1. As
described in Section II-B, we need to sample our networks
multiple times in order to generate the output predictive
distribution. In Algorithm 1, instead of conducting multiple
runs of the network i on a single input xi, we duplicate each
input nMC times to create an input sequence Xi, and then
input this sequence through the network, where nMC is the
number of samples used for Monte Carlo sampling. The two
outputs of network i are a vector of control commands ûi and a
vector of the aleatoric variances σ̂2

i . Using these vector outputs
the overall variance (aleatoric and epistemic combined) of
each BNN is calculated with the following equation (step 4 in

Algorithm 1 Ensemble Bayesian Neural Networks
Input:

xL: Image from left camera;
xR: Image from right camera;
xGPS : States from GPS

1: while Task not failed do
2: XL,XR,XGPS ← Duplicate xL,xR,xGPS
3: ûL, σ̂

2
L ← DropoutVGG16(XL)

ûR, σ̂
2
R ← DropoutVGG16(XR)

ûGPS , σ̂
2
GPS ← FC4(XGPS)

4: uL, uR, uGPS ← Mean(ûL, ûR, ûGPS)
σ2
L, σ

2
R, σ

2
GPS ← Var(ûL, ûR, ûGPS , σ̂2

L, σ̂
2
R, σ̂

2
GPS)

5: ū← MinVar(uL, uR, uGPS , σ2
L, σ

2
R, σ

2
GPS)

6: end while
Output: ū: Steering command for the vehicle

Algorithm 1):

σ2
i = V ar(ui) ≈

1

K

K∑
k=1

û2ik −

(
1

K

K∑
k=1

ûik

)2

︸ ︷︷ ︸
epistemic

+
1

K

K∑
k=1

σ̂2
ik︸ ︷︷ ︸

aleatoric

,

(5)
where ui is the output of network i, ûi is the aleatoric mean
of network i, σ̂2

i is the aleatoric variance of network i, and
(ûi, σ̂

2
i ) is the set of K sampled outputs from network i. The

control of each network i is calculated as the mean of that
network’s sampled outputs:

ui =
1

K

K∑
k=1

ûik . (6)

Note that, in step 3 in Algorithm 1, the computation
(prediction) of all Bayesian Networks happens in parallel.

Finally the output ū is chosen from the network i with the
lowest variance, σ2

i , as shown in step 5.
There are two possible ways to do the ensemble Bayesian

decision making. One approach is weighting individual net-
work policies with some weights that inversely proportional
to their variance. However, this weighting approach is not an
optimal solution when the system encounters a multi-modal
situation. For example, if one of the network policies tries to
drive a vehicle to the left and the other tries to steer it to the
right and they have almost equal weights, the ensemble of the
policies will guide the vehicle to go straight. This can lead to a
tragic result if the network policies made a prediction to drive
either left or right and there is an obstacle on the straight.

The other way to do ensemble Bayesian decision making
is to pick the best decision according to its confidence, as we
proposed in step 5 in Algorithm 1. This approach helps avoid
choosing non-optimal control policies in multi-modal decision
cases.

IV. DATA COLLECTION

In order to train each learner (BNN) in the ensemble, the
iterative Linear Quadratic Gaussian/Model Predictive Con-
trol Differential Dynamic Programming (iLQG/MPC-DDP)



[22] algorithm was used as an expert. Differential Dynamic
Programming (DDP) is an algorithm that uses second-order
approximations of the cost function and system dynamics
around a nominal trajectory to solve the Bellman equation.
The optimal control policy is then used to update the nominal
trajectory. Running DDP in Model Predictive Control (MPC)
fashion means that at every timestep, only the first control
action is executed by the system, and the control policy is re-
optimized at the next timestep when new state information is
received. For our long-term autonomous driving task, we used
the receding horizon DDP [22].

Using GPS data, the expert had the following state space
[px, py , θ, ψ, Vx, Vy , θ̇] as input, where px and py are global
positions in the world frame, θ and ψ are the heading and roll
angle of the car, Vx and Vy are the body frame longitudinal
and lateral velocities, and θ̇ is the derivative of the heading
angle.

We considered the cost function for the optimal controller
composed of an arbitrary state-dependent cost and a quadratic
control cost. The state-dependent term was designed to stay in
the center of the track (px,des, py,des) while maintaining the
desired forward velocity Vx,des. We set Vx,des as 5m/s when
we collect data. For the control cost, we used the same weights
for both throttle and steering.

The expert drove around an oval track seen in Fig. 1 for
100 laps in one direction to gather data for each learner. As
it drove around, the GPS data and truncated 64x128x3 RGB
images from the left and right cameras were saved in order to
train each of the learner models described in Section III. For
training of the Dropout VGG 16 Net [20], we did not use any
data augmentation technique (random flips, rotations, contrast,
brightness, saturation, jitter, etc.) but we truncated and cropped
the original 4k image to reduce the size of it to 64x128x3.
All of our models were trained in batch with Tensorflow 1

using the Adam optimizer [23] and the heteroscedastic loss in
Eq. (4).

V. EXPERIMENTS/RESULTS

All computation was executed on-board the vehicle with
our NVIDIA GeForce GTX 1050 GPU and we were able to
obtain 10 Monte Carlo samples (nMC = 10) of the ensemble
in real time (20Hz). We injected artificial noise signal to each

1https://www.tensorflow.org/

Fig. 3. Platform sensors connected to the on-board computer. Left: Two vision
cameras, 1280x1024, 70fps, global shutter, synchronously triggered. Right:
RTK-corrected Hemisphere Eclipse P307 GPS module, position at 20Hz.

(a) Raw image (b) Image with artificial noise

Fig. 4. Artificial noise injected to an input image at test time.

sensor similar to a real-world situation in which a sensor
malfunctions. The position noise was sampled from a uniform
distribution to make the ”new position” appear to be outside
of the track. This is commonly seen as GPS data jumps from
one location to another. For images, rows of gray bars were
added to simulate periodic noise caused by electro-mechanical
interference during the image capturing process (Fig. 4b).

First, we tested each BNN in the ensemble network without
any artificial noise injected. Each BNN was able to drive the
vehicle autonomously until the vehicle’s batteries run out and
there were no failures. In all experiments, we considered the
failure cases as when the vehicle crashes to the boundaries of
the track and cannot move forward.

Next, each learner in the ensemble was tested individually
on the vehicle with artificial noise injected. After 4 laps of
normal operation, noise was added to the corresponding sensor
and crashes occurred immediately, as shown in Fig. 5b, Fig. 5c
and Fig. 5d. The test was repeated 10 times for each learner
and crashes followed promptly after noise injection every time.
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Fig. 5. Trajectory plots of imitation learning of autonomous driving with
injected noise. The red trajectories are after the noise injected to each model’s
input after 4 laps of autonomous driving. We ran 10 experiments for each and
all end-to-end learners immediately failed the task.

Following this experiment, the Ensemble Bayesian Neural
Networks algorithm was tested without noise injection. The

https://www.tensorflow.org/


vehicle achieved similar performance to the expert, as seen in
Fig. 5a, and was able to run at a high speed with no crashes.

Finally, the Ensemble BNN algorithm was tested with noise
injection. The time horizon for testing was set to be 17
laps. The algorithm was tested on the track 3 times for a
total of 51 laps. After 4 laps of normal operation (Fig. 6a),
frequent noise was added to each sensor in the order of GPS,
left camera, and right camera for 2 laps. Normal operation
resumed for another 2 laps before the next noise injection.
As we can see from the normal operation case in Fig. 6a,
GPS NN was usually used for most of the time. This is
because the structure of the GPS NN and the data (7 states)
used for it were not complex as the structure of the Dropout
VGG 16 network [20] and the data (RGB image) used for it.
With a simpler structure and data, it is reasonable to have a
smaller variance from the probabilistic network after training.
Moreover, without any injection of artificial noise, GPS data
at test time does not change much compared to the training
data whereas the image from the camera slightly changes due
to the change of the lighting conditions and the environment
around the vehicle. Fig. 6b shows that when artificial GPS
noise was added, the algorithm opted to use camera inputs
for navigation as a result of orders of magnitude increase in
prediction uncertainty from the fully connected GPS NN. For
both normal case and GPS-noise injected case, we observe
that the left camera NN was used more often than the right
camera NN. We believe this behavior is task-specific, as the
vehicle run the oval track in counterclockwise for both data-
collecting and testing. Since the left camera is able to see the
left track boundary more often than the right camera does,
the left camera NN is more confident about its prediction,
resulting in smaller variance. Fig. 6c demonstrated a decrease
in usage of the left camera input, since image noise caused
uncertainty from the corresponding network to double. Similar
results can be found in Fig. 6d when image noise was added
to both left and right cameras. Compared to the cases where
we did not inject any noise (Fig. 6a) or noise was injected in
a single camera (Fig. 6c), we can see the decreased usage of
both cameras. For all cases of noise injection scenarios, the
noise was injected frequently, but not always, so the noise-
injected learner could be used intermittently when the noise
did not exist. The usage of each learner with sensor noise
injection is listed in Table I. In all cases, the usage of the
sensor(s) was decreased when the artificial noise was injected
to the sensor(s). Even with large noise, which causes the
immediate failure of the task for an individual BNN, all laps
were completed without any failure. The complete trial can be
seen in the video online2.

VI. CONCLUSIONS

In this paper, we introduced an Ensemble Bayesian Neural
Network structure for system redundancy in the decision mak-
ing of safety-critical systems. Our algorithm was implemented
on an autonomous driving task using end-to-end Imitation

2https://youtu.be/poRbH kB2M

TABLE I
LEARNER USAGE ON EACH LAP

Laps 1-4, 7-8, 11-12 5-6 9-10 13-14
Noise injected in - GPS Left Cam Both Cams
GPS NN(%) 73.4 22.7 72.5 83.6
Left Cam NN(%) 13.9 42.7 10.0 8.1
Right Cam NN(%) 12.7 34.6 17.5 8.3

Learning. Prediction uncertainty capturing both model im-
perfection and data insufficiency of each BNN within the
ensemble was used to switch between the different policy
outputs. Experimental results verified the robustness of our
proposed method against compromised sensor inputs. Our
method can play an important role in any kind of autonomous
systems using multiple sensors, especially in dealing with
safety-critical tasks.

For future works on Ensemble Bayesian decision making,
we will further investigate the switching mechanism in the
ensemble to ensure safe and stable operation during switching.
Furthermore, we will explore smooth Bayesian mixing models
as an alternative to our current switching mechanism. Finally,
we would like to also extend this Ensemble Bayesian approach
to robust filtering and state estimation problems, where we use
multiple sensors or networks.
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(a) 1-4th, 7-8th, 11-12th, and 15-17th laps of trajectory plots of Ensemble
Bayesian decision making without any artificial noise injected.
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(b) 5-6th laps with frequent noise injected in position x and y data in the
GPS signal.
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(c) 9-10th laps with frequent noise injected in the left camera.
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(d) 13-14th laps with frequent noise injected in both cameras.

Fig. 6. Each lap is plotted with the colors of the learner whose action has been chosen: GPS NN, Left camera NN and Right camera NN. The algorithm
was tested on the track 3 times for a total of 51 laps without failure of the task.
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