
Adaptive Partitioning for Template Functions on
Persistence Diagrams

Sarah Tymochko
Dept. of Computational Mathematics,

Science & Engineering
Michigan State University

East Lansing, MI
tymochko@egr.msu.edu

Elizabeth Munch
Dept. of Computational Mathematics,

Science & Engineering
and Dept. of Mathematics
Michigan State University

East Lansing, MI
muncheli@egr.msu.edu

Firas A. Khasawneh
Dept. of Mechanical Engineering

Michigan State University
East Lansing, Michigan
khasawn3@egr.msu.edu

Abstract—As the field of Topological Data Analysis continues
to show success in theory and in applications, there has been
increasing interest in using tools from this field with methods for
machine learning. Using persistent homology, specifically persis-
tence diagrams, as inputs to machine learning techniques requires
some mathematical creativity. The space of persistence diagrams
does not have the desirable properties for machine learning, thus
methods such as kernel methods and vectorization methods have
been developed. One such featurization of persistence diagrams
by Perea, Munch and Khasawneh in [1] uses continuous, com-
pactly supported functions, referred to as “template functions,”
which results in a stable vector representation of the persistence
diagram. In this paper, we provide a method of adaptively
partitioning persistence diagrams to improve these featurizations
based on localized information in the diagrams. Additionally, we
provide a framework to adaptively select parameters required for
the template functions in order to best utilize the partitioning
method. We present results for application to example data
sets comparing classification results between template function
featurizations with and without partitioning, in addition to other
methods from the literature.

Index Terms—Topological data analysis, machine learning

I. INTRODUCTION

The field of Topological Data Analysis (TDA) uses methods
from algebraic topology to study the underlying shape of data.
Specifically, persistent homology is one tool that studies the
homology of a changing space, resulting in a representation
called a persistence diagram. As persistent homology has
shown success in many application fields, there has been
significant interest in applying statistical and machine learning
techniques to persistence diagrams directly. However, the
space of persistence diagrams lacks many of the desirable
properties for machine learning tasks. Specifically, the space

The work of ST and EM was supported in part by NSF grants DMS-
1800446, CMMI-1800466, and CCF-1907591. FAK acknowledges the
support of the National Science Foundation under grants CMMI-1759823
and DMS1759824.

©2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

of persistence diagrams is not a Banach space, and it does not
have unique geodesics and thus has non-unique means.

Numerous methods have been developed to map persis-
tence diagrams into a space more amenable for machine
learning. These methods include featurization methods, such
as persistence images [2] and persistence landscapes [3],
along with many kernel functions [4]–[11]. We will focus on
one particular featurization using “template functions” [1]. A
template function is any function on R2 that is continuous
and compactly supported. By evaluating a set of these tem-
plate functions on a persistence diagram, we create a feature
vector representation. In this paper, we present a method of
adaptively partitioning persistence diagrams in order to use
the template function featurization on more localized regions
of the persistence diagrams. With this, we develop a method
of adaptively modifying parameter choices for the functions
to better fit the partitions. This new adaptive method uses
fewer features from the original template function featurization
method. In Sec. II-B, we present the original method for
template functions and will describe our modifications of the
method in Sec. III. In Sec. IV, we will present the results of
our method on some example data sets compared to the results
from [1].

II. BACKGROUND

Persistent homology is a method from TDA that studies how
the homology changes as the space changes. In this work we
will briefly describe homology and how persistent homology
can be applied to point cloud data. While persistent homology
can also be applied to data in the form of images or 3d voxel
images, we will only use point cloud data in this paper. We
refer the interested reader to [12]–[14].

A. Homology and persistent homology

Homology is a standard tool in algebraic topology to study
topological structure in different dimensions. In particular,
given a space, X , homology computes a group for dimensions
k = 0, 1, 2, . . ., denoted Hk(X) that represent information
about the structure in each dimension. In particular, dimension
0 studies connected components, dimension 1 studies loops,

ar
X

iv
:1

91
0.

08
50

6v
1

 [
cs

.C
G

]
 1

8
O

ct
 2

01
9

dimension 2 studies voids, and higher dimensions study the
higher dimensional analogues.

We will first introduce a few other concepts in order
to define homology, specifically simplicial homology, more
formally. A simplicial complex, K, is a space built from
simplicies, where an n-simplex is the convex hull of n + 1
affinely independent points. The face of an n-simplex, σ, is
defined to be the convex hull of a nonempty subset of the
vertices of σ. The simplical complex must satisfy the following
requirements: (1) the intersection of any two simplices in K
is also a simplex in K and (2) faces of a simplex in K are
also simplices in K.

For a given simplicial complex K, let Kp be the set of all
p-simplices, p = 0, 1, 2, Then a p-chain, c, is defined to
be a formal sum of p-simplices in K,

c =
∑
σi∈Kp

aiσi,

where coefficients ai ∈ Z2. Note that other fields can be used
for coefficients, but we will focus on the simplified case of Z2

as that is typically what is used for persistent homology. Since
we can add and scale chains by a constant, the collection of p-
chains, Cp(K), called the chain group, forms a vector space.
The boundary map between chain groups is defined as the
linear transformation

∂p : Cp → Cp−1

which maps a p-simplex to the sum of its (p−1)-dimensional
faces. The chain complex is sequence of chain groups con-
nected by the corresponding boundary maps,

· · · ∂p+2−−−→ Cp+1
∂p+1−−−→ Cp

∂p−→ Cp−1
∂p−1−−−→ · · · .

Within a chain group, we define two different kinds of p-
chains that are needed to define the homology groups, cycles
and boundaries. A p-cycle is a p-chain, c, with ∂p(c) = 0,
meaning it has empty boundary. The set of p-cycles is the
kernel of the boundary map, ker(∂p). A p-boundary is a p-
chain that is the boundary of a p + 1-chain, i.e. cp = ∂cp+1

with cp+1 ∈ Cp+1. The set of p-boundaries is the image of
the boundary map, im(∂p). Note that the p+1-boundaries are
a subgroup of the p-cycles. Now, the p-th homology group is
formally defined as

Hp(K) = ker(∂p)/im(∂p+1).

Further, the p-th Betti number is defined to be the rank of the
p-th homology group and is denoted βp.

Persistent homology is a tool for studying the homology
of a parameterized space. We will define the Vietoris-Rips
complex, which is one method of creating a simplicial complex
based on a point cloud. Given a point cloud, X , and a distance,
r, the Vietoris-Rips complex is a simplicial complex where for
every finite set of n points with maximum pairwise distance
at most r, the n− 1 simplex formed by those points is added.

From the Vietoris-Rips complex, for every radius, ri, we get
a simplicial complex, Xri . These complexes have the property

Fig. 1. Example tent function, g(3,2),1, drawn in the birth-death plane (left)
and birth-lifetime plane (right) with d = 5, δ = 1 and ε = 0. This plot is
similar to [1, Fig. 4].

that if ri < rj then Xri ⊆ Xrj . Thus, for any increasing set of
radii, 0 < r0 < r1 < r2 < · · · < rn, we get a nested sequence
of simplicial complexes,

Xr0 ⊆ Xr1 ⊆ Xr2 ⊆ · · · ⊆ Xrn (1)

called a filtration. Computing k dimensional homology of each
space in the filtration, the inclusions in (1) induce linear maps
between the homology groups,

Hk(Xr0)→ Hk(Xr1)→ · · · → Hk(Xrn).

By studying these maps, we study how the homology of the
space changes through the filtration. In particular, we care
about when features appear and disappear in this sequence.
We say a k-dimensional feature, γ is “born” at radius ri if
γ ∈ Hk(xri) but γ 6∈ Hk(xri−1). A feature “dies” at radius rj
if it merges with an older feature going from Xrj−1 to Xrj .

A persistence diagram is a way of representing the births
and deaths of homology classes. The persistence diagram is a
scatter plot where a class that is born at ri and dies at rj is
represented as the point (ri, rj). This is typically called the
birth-death plane. Since in a standard Vietoris-Rips filtration,
a feature is always born before it dies, all persistence points
are above the diagonal through the birth-death plane. Another
popular modification of a persistence diagram is to plot a class
that is born at ri and dies at rj as the point (ri, rj − ri)
where the quantity rj−ri represents how long a feature lived,
or its “lifetime.” This is called the birth-lifetime plane. For
simplicity of definitions to follow, we will be working in the
birth-lifetime plane for the rest of the paper.

B. Featurization Using Template Functions

As proposed in [1], we will consider featurizations of
persistence diagrams based on two types of template functions,
tent functions and interpolating polynomials. We will briefly
describe the method of featurization.

A template function is defined as any function on R2 that
that is continuous, and has compact support contained within
the upper half plane, W := R×R>0

1. A template function f :

1Recall that we use birth-lifetime coordinates throughout the paper; other-
wise, template functions could be equivalently defined to have support above
the diagonal.

Fig. 2. Examples of interpolating polynomials for the meshes A = B =
{1, 2, 3}. The plot drawn at (i, j) shows the polynomial, pi,j , where pi,j = 1
and 0 on all other mesh points. This plot is from [1, Fig. 5].

W→ R can be turned into a function on persistence diagrams
as follows. Given a diagram D, the function is evaluated on
each point in the diagram, and then summed, giving

νf (D) =
∑
x∈D

f(x).

A collection of template functions, T , is called a template
system if the resulting functions on persistence diagrams,
FT = {νf : f ∈ T } separate points. That is, for every pair
of diagrams, D and D′, there exists a function f ∈ T such
that νf (D) 6= νf (D

′). As a true template system is infinite,
vectorization is done by returning (νf1(D), · · · , νfk(D)) for
functions in some subset of the template system. This is
well justified since any function on persistence diagrams
can be approximated by some finite subset of a template
system; see [1, Thm. 29]. In this paper, we will use two
examples of template systems as given in [1]: tent functions
and interpolating polynomials.

Tent functions are an example of template functions that
are meant to probe small regions of the persistence diagram.
Again, recall everything is defined in the birth-lifetime plane.
Given a point a = (a, b), and a radius δ ∈ R>0 with 0 < δ <
b, the tent function is defined to be

ga,δ(x, y) =

∣∣∣∣1− 1

δ
max{|x− a|, |y − b|}

∣∣∣∣
+

,

where | · |+ denotes the positive value of the function, and
0 otherwise. This function is supported on the compact box
[a− δ, a+ δ]× [b− δ, b+ δ], evaluates to 1 at a, and decreases
linearly to 0 on the boundary of the box. Note that since the
box must be compactly supported on persistence diagrams,
the bottom edge of the box cannot lie on the x-axis. Given a
persistence diagram D = {x = (bi, li)}, the tent function is
the sum of the evaluation of this function on all points in the
diagram,

Ga,δ(D) =
∑
x∈D

ga,δ(x).

The full template system consists of all tent functions ga,δ
which have compact support contained in W. However, in
practice, we work with the subset of these tent functions

{G(δi,δj+ε),δ|0 ≤ i ≤ d, 1 ≤ j ≤ d} (2)

by choosing the grid size, d, and a vertical shift, ε, to ensure
g is compactly supported inside W. This gives a d × (d +
1) feature vector. An example of a tent function is shown in
Fig. 1. In this figure, the grid represents the mesh on which
tent functions can be centered. We show a single tent function,
centered at (3, 2) with δ = 1 and ε = 0.

The second template system we work with are interpolating
polynomials. Unlike the localized tent functions, interpolating
polynomials have support that fills out the space, however
to satisfy the properties of template functions, they will be
transformed to have compact support. Given a mesh A =
{ai}mi=0 ⊂ R, the Lagrange polynomial `Aj (x) corresponding
to aj is

`Aj (x) =
∏
i 6=j

x− ai
aj − ai

.

This has the property that `Aj (ak) is 1 if j = k, and 0
otherwise. Then fixing meshes A ⊂ R, B ⊂ R>0, and
coordinates i′ and j′, the template function is

f(x, y) = h(x, y) · |`Ai′ (x)`Bj′(y)|

where h is a hill function forcing the resulting polynomial
to have compact support inside a designated box. In practice,
the box for h is a bounding box containing the mesh A× B
where both meshes A and B are chosen to have d elements;
if this box further encloses all points in all diagrams, then its
existence is implicit and need not be coded at all. Examples
of these interpolating polynomials are shown in Fig. 2.

III. METHODS

The main contribution of this paper is to provide an adaptive
method for choosing a subset of a template system based on K-
means clustering [15]. The method consists of two steps: first,
cluster the points in all diagrams to find regions of interest, and
second, construct localized template function systems based on
these clusters. We will ensure that the collection of these local
template function systems covers all points in the diagrams.

To get the clusters, persistence diagrams in the training set
are combined and input into the standard K-means clustering
algorithm for a selected number of clusters k. Clustering can
be done in multiple ways. For applications using several di-
mensions of diagrams, i.e. 0 and 1 dimensional diagrams, there
are two possible options. The first is combining all diagrams
in the training set regardless of dimension; the second is to
combine only training persistence diagrams of like dimensions,
and get a different set of clusters for each diagram dimension.
Figure 3 shows an example of a persistence diagram with
both 0- and 1-dimensional persistence in the birth-lifetime
plane along with examples showing the two different methods
for generating clusters when using both 0 and 1 dimensional
diagrams. For simplicity, we will label results using the first

Fig. 3. The top left image is an example of a set of persistence diagrams
from the manifold experiment explained in IV-B showing both the 0 and 1
dimensional diagrams in the birth-lifetime plane. The top right image is an
example showing clustering on both 0 and 1 dimensional diagrams together,
which we call “combined partitioning,” and creating 5 partitions. The bottom
left and bottom right are examples showing 0 and 1 dimensional diagrams
respectively, and clustering each dimension separately, which we call “split
partitioning,” creating 3 partitions per dimension. In all except the top left
image, the black stars represent centers of clusters from k-means clustering
while the black boxes represent the partitions.

option as “combined partitioning” while we will label results
using the second option as “split partitioning.”

Then, for each cluster, a covering box, which we call a
partition, is selected based on the bounding box of the points
assigned to that particular cluster. This results in one cover ele-
ment per cluster; however, notice that the partitions themselves
can overlap each other, and so points from the diagrams could
land in the support of more than one partition. For this reason,
the clusters themselves are not particularly interesting, they are
just used to select general regions where persistence points are
located. This method gives us a collection of partitions, each
of which is a rectangular region in the birth-lifetime plane. We
then utilize a collection of template functions contained within
each of these partitions in the same way we would have done
in the original method when given only one bounding box.

We start by describing this process for the tent functions as
defined in Sec. II-B, which have parameters d, δ, and ε. We
develop a method of adaptively selecting d and δ based on each
partition, allowing for a more localized featurization. In our
modified version of the method, d does not need to be the same
in the x and y direction, thus we will write dx, dy to specify
the d parameter in each. Given a particular partition, P =
[xmin, xmax] × [ymin, ymax], we first choose an initial value
of parameter d. From this, δ is calculated to be max{δx, δy}
where δx = xmax−xmin

d and δy is defined similarly. If δx > δy ,
then dx = d and dy = dymax−ymin

δ e. Similarly, if δx < δy then
dx = dxmax−xmin

δ e and dy = d. Figure 4 shows an example of
this adaptive parameter selection process. Note that by virtue
of this notation, the support of the tent functions placed on the
boundary of the partition extends outside the box. This results
in a grid of size (dx+1)×(dy+1) which reduces the number

Fig. 4. Example of steps in adaptive parameter selection for a given partition,
shown as the black rectangle. In this example, we are using tent functions
with d = 2. The leftmost image, we calculate δx and δy and choose δ to
be the larger value. In the middle image, we select dy = 2, calculate dx as
explained in Sec. III which yields dx = 1, and apply a (dx +1)× (dy +1)
grid (shown as the red points) where tent functions will be centered. In the
rightmost image, for the tent centers that lie along the bottom of the partition
(shown as a hollow blue square and solid green square), we check that the
supports (shown as dashed and dotted boxes colored corresponding to their
center) remain above the x-axis. Since they do, no further action is needed.
An example of when the supports do cross the x-axis is shown in Fig. 5.

Fig. 5. Example of steps in adaptive parameter selection for a given partition,
shown as the black rectangle, where the partition is close to the x-axis. In
this example, we are using tent functions with d = 2. The leftmost image,
we apply the same process as in Fig. 4 but the tent supports cross the x-axis.
In the middle image, we shift up the grid where tent centers are placed so
the tent support is at least a small ε > 0 above the x-axis. In the rightmost
image, since the top two tent centers are more than δ/2 outside the paritition,
we remove them, decreasing dy by 1.

of features used per cover element yet ensures that based on
the selected d value that δ is selected appropriately to cover
all points.

Additional precautions are taken to ensure that the support
of the tent functions did not cross the x-axis (or the diagonal
in the birth-death plane). Fix ε > 0, a parameter chosen by
the user, then if after this parameter selection ymin − δ < 0,
then the grid of tent centers is shifted up to ensure the support
of all tent functions is at least ε above the x-axis. If in this
shift, there are tent centers that are greater than δ/2 above the
partition boundary, then they are removed and dy is reduced
by 1. Figure 5 shows a visual example of this special case.

When using the interpolating polynomials, the same process
as above is used to select dx and dy . We do not need a value of
δ because the mesh is defined by a non-uniform Chebyshev
mesh rather than using a regular grid like is done with the
tent functions. Note that for the tent functions, we allow dx
and dy to be zero, resulting in a grid consisting of a single,
row or column of tent centers, however for the interpolating
polynomials we require at least a 2× 2 grid.

IV. EXPERIMENTS

A. Code

The python package teaspoon2 contains code for clas-
sification using tent functions and interpolating polynomials.
Classification was done using RidgeClassifierCV and
LogisticRegression from the sklearn package [16].

B. Manifold Experiment

Replicating an experiment from [1], [2], we generated
collections of point clouds drawn from different manifolds.
Each point cloud consists of 200 points drawn from the
following manifolds:
• Annulus: points drawn uniformly from an annulus with

inner radius 1 and outer radius 2.
• Torus: points drawn uniformly from a torus created from

a rotating circle of radius 1 in the xz-plane centered at
(2, 0) around the z-axis.

• Sphere: points drawn from a sphere in R3 of radius 1.
Uniform noise in [−0.05, 0.05] was added to the radius.

• Cube: points drawn uniformly from [0, 1]2 ⊂ R2.
• 3 Clusters: points drawn from one of three different

normal distributions with means (0, 0), (0, 2), (2, 0), each
with standard deviation of 0.05.

• 3 Clusters of 3 Clusters: points drawn from normal
distributions centered at (0,0), (0,1.5), (1.5,0), (0,4), (1,3),
(1,5), (3,4), (3,5.5), (4.5,5) each with standard deviation
0.05.

These point clouds can be generated using the func-
tion MakeData.PointCloud.testSetManifolds in
teaspoon.

For our method we tested a variety of parameters and
options. For all experiments, we reserve 33% of the data
for testing while the remaining was used for training. All

2https://github.com/lizliz/teaspoon

TABLE I
RESULTS OF CLASSIFICATION OF MANIFOLD DATA AS EXPLAINED IN SEC.

IV-B USING TEMPLATE FUNCTIONS WITH AND WITHOUT PARTITIONIN
FOR DIFFERENT NUMBERS OF EXAMPLES DRAWN FROM EACH TYPE OF
MANIFOLD. RIDGE REGRESSION IS USED FOR CLASSIFICATION IN BOTH

METHODS. SCORES HIGHLIGHTED IN BLUE GIVE THE BEST AVERAGE
SCORE BETWEEN THE TWO METHODS.

Tents
Num No Partitioning Partitioning
Dgms Train Test Train Test

10 99.8%± 0.9 96.5%± 3.2 100%± 0.0 99.5%± 1.5
25 99.9%± 0.3 99.0%± 1.0 99.9%± 0.3 99.6%± 0.8
50 99.9%± 0.2 99.9%± 0.3 100%± 0.0 100%± 0.0
100 99.8%± 0.1 99.7%± 0.4 99.9%± 0.1 99.8%± 0.2
200 99.5%± 0.1 99.5%± 0.3 99.6%± 0.1 99.2%± 0.3

Polynomials
Num No Partitioning Partitioning
Dgms Train Test Train Test

10 99.8%± 0.9 95.0%± 3.9 100%± 0.0 97.5%± 2.5
25 99.7%± 0.5 97.6%± 1.5 99.7%± 0.5 99.4%± 0.9
50 100%± 0.0 99.2%± 0.9 100%± 0.1 99.5%± 0.5
100 99.6%± 0.2 99.3%± 0.5 99.7%± 0.2 99.6%± 0.5
200 99.2%± 0.2 98.9%± 0.5 99.5%± 0.2 99.4%± 0.3

Fig. 6. Results of classification of manifold data as explained in Sec. IV-B
using template functions with and without partitioning. For partitioning
methods, classification is done using logistic regression. Note that in all
plots, the results without partitioning represent the accuracy using 0- and
1-dimensional diagrams. Thus the same accuracy is shown in each plot in a
column.

Fig. 7. Average number of features used for the manifold experiment using
template functions with and without partitioning. These correspond to the
classification accuracies shown in Fig. 6.

the classification results are averaged over 10 runs of the
experiment to control for outliers.

For comparison, Table I shows the results from [1] using
0- and 1-dimensional diagrams with ridge regression for
classification along with our accuracies using our partitioning
method where partitions are selected based on both diagram
dimensions simultaneously, referred to throughout the paper as
“combined partitioning.” For the results from [1], the authors
used tent parameters of d = 10, ε to be half the minimum
lifetime over all training set diagrams, and δ to be chosen to
ensure the bounding box covered the training diagrams. For

our results, we used 3 clusters resulting in 3 partitions and for
both template functions we set a starting value of d = 3 and set
ε to be machine precision, while the additional parameters are
selected as described in Sec. III. Note that in all cases except
one, our partitioning method has a higher testing accuracy.

Figure 6 shows the results of using our partitioning method
on only 0- or 1-dimensional diagrams, on both dimensions
using combined partitioning, and on both dimensions using
split partitioning. Here we still used 3 clusters resulting in 3
partitions, while starting with a value of d = 3 and for both
template functions. For these experiments we used logistic
regression for classification. It is important to note that in [1],
only accuracies using both dimensions were reported so the
accuracies for no partitioning in all plots are from using both
dimensions of diagrams with classification done using ridge
regression. This means that those results are the same across
all plots for a given template function.

Using both 0- and 1-dimensional diagrams with either
split or combined parititoning, using both tent functions and
interpolating polynomials we get above 99% accuracy for all
except a couple cases. Using only 0-dimensional or only 1-
dimensional diagrams, we still get very good accuracy, but
interestingly using 0-dimensional diagrams, the accuracies
seem slightly better. Using only 0-dimensional diagrams, we
almost always outperform the template functions without par-
titioning using both 0- and 1-dimensional diagrams. However,
using tent functions with 1-dimensional diagrams, our method
underperforms. Additionally, Fig. 7 shows the average number
of features used for these experiments. The number of features
used is dependent on which diagrams are being used. For
example, using only 0-dimensional diagrams, we need very
few features as all points in the diagrams fall on the y-axis
for this experiment. Using both 0- and 1-dimensional diagrams
will require more features as we need to cover more of the
diagram. However in all cases, we are using significantly less
features and still achieving comparable or higher accuracies.

C. Shape Data

As in [1], we compared our results to the kernel method
developed in [5] on the synthetic SHREC 2014 data set
[17]. This data set consists of 3D meshes of fifteen humans
(five males, five females and five children) in 20 different
poses. In [5], the authors define a function on each mesh
using the heat kernel signature for 10 different parameters
and compute 0- and 1-dimensional diagrams. Using the 300
pairs of persistence diagrams for each 10 parameter values, we
predict which of the 15 humans is represented in each mesh.

Figure 8 show the results of these experiments using our
partitioning method with tent and interpolating polynomial
functions as well as the results reported in [1] (labeled as
“No Partitioning”) and [5] (labeled as “MSK”). For clarity,
tables showing these results are also located in the appendix in
Tables II. For all experiments with partitioning, we use d = 5
and 5 clusters for partitioning. For the experiments without
partitioning, the authors use d = 20 for both types of template

Fig. 8. Results of classification of shape data as explained in Sec. IV-C using
template functions with and without partitioning. In both columns, MSK gives
the original results from [5]. Ridge regression is used for classification.

Fig. 9. Average number of features used for shape data experiment using our
partitioning method. These correspond to the classification accuracies shown
in Fig. 8.

functions. All accuracies with and without partitioning are
averaged over 10 runs.

For three of the ten parameter values, using tent func-
tions, our method achieves the highest accuracy. Additionally,
the confidence intervals intersect the highest accuracy for
three additional parameters using tent functions. Comparing
tent functions with and without partitioning, it is clear that
partitioning drastically improves most of the accuracies. For
example, using 0- or 1-dimensional diagrams, the top left and
middle left plot in Fig. 8, the green line representing our
testing accuracy is almost always higher than the orange line

representing the testing accuracy without partitioning.
Using interpolating polynomials, our method does not sur-

pass the kernel method or the template functions without
partitioning to achieve the highest accuracy, however the
confidence intervals intersect the highest accuracy for seven
of the ten parameters. Comparing our results to featurization
using interpolating polynomial functions without partitioning,
our results are fairly comperable; for some parameter values
we achieve slightly higher accuracies, while for others we
achieve slightly lower accuracies. Without partitioning, the
interpolating polynomials are not localized and may be picking
up more global structure in the diagrams that is missed
using partitioning, which could explain this lack of drastic
improvement.

Figure 9 shows the average number of features used for
these experiments. It is clear that we are using far less
than the 420 and 441 features used in [1] with tent and
polynomial functions respectively, yet we still achieve good
accuracies, particularly using tent functions. For example, for
the parameters where tent functions with partitioning achieve
the highest accuracy, we use less than 150 features.

V. DISCUSSION

In this paper, we have presented a method of adaptively
partitioning persistence diagrams for featurization using tem-
plate functions. This allows for significant flexibility in the
featurization for the user. Our methods are applicable to
tent function and interpolating polynomial template systems,
but additionally to any functions fitting into the template
framework from [1]. We also provide two different methods
of featurizing using several dimensions of diagrams, either
partitioning all dimensions together, or separately.

For further modification of this method, the k-means cluster-
ing algorithm could be changed to any clustering technique as
chosen by the user. K-means clustering, and other clustering
algorithms can also take weights into account, allowing a
user to weight certain points in the diagram more heavily
than others. A standard example is weighting points based
on the lifetime, as features with longer lifetimes are typically
interpreted as the most significant, while features with shorter
lifetimes are often considered noise.

We have shown that our method works well on standard
examples in comparison to [1] and other featurization methods
available. In particular, our method improves on the results
of template functions without partitioning for the manifold
experiment, achieving above 99% accuracy in almost all cases.
For the SHREC data set, our method improves drastically
upon results without partitioning when used with tent functions
however is not quite as successful using interpolating polyno-
mials. In [1] the authors point out the instinct to emphasize
localization for these persistence diagram featurizations. For
tent functions, which are defined already to be very localized,
our method allows for even closer analysis of regions with
high density of points, ignoring more sparse regions. However,
the interpolating polynomials are more global, where each
function in the template system has support over the entire

region of points in the diagram when not using partitions. In
[1], this seems to be to their advantage as the interpolating
polynomials significantly outperform tent functions on the
SHREC data set. The fact that these functions worked so well
in [1] is surprising, but it may indicate that trying to localize
these functions by restricting their support to the selected
partitions may cause global information to be overlooked.

In general, partitioning the diagrams allows for a more
localized featurization of the diagrams, as is desirable in many
applications. Our method allows for a new adaptation of an
existing featurization method which gives the user significant
freedom to test parameters, existing examples of template
functions, and any other functions that fit the template system
criteria.

REFERENCES

[1] J. A. Perea, E. Munch, and F. A. Khasawneh, “Approximating con-
tinuous functions on persistence diagrams using template functions,”
arXiv:1902.07190, 2019.

[2] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman,
S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier, “Persistence
images: A stable vector representation of persistent homology,” Journal
of Machine Learning Research, vol. 18, no. 8, pp. 1–35, 2017. [Online].
Available: http://jmlr.org/papers/v18/16-337.html

[3] P. Bubenik, “Statistical topological data analysis using persistence
landscapes,” Journal of Machine Learning Research, vol. 16, pp. 77–
102, 2015. [Online]. Available: http://jmlr.org/papers/v16/bubenik15a.
html

[4] G. Kusano, K. Fukumizu, and Y. Hiraoka, “Kernel method for persis-
tence diagrams via kernel embedding and weight factor,” The Journal
of Machine Learning Research, vol. 18, no. 1, pp. 6947–6987, 2017.

[5] J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, “A stable multi-scale
kernel for topological machine learning,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, jun 2015.

[6] R. Kwitt, S. Huber, M. Niethammer, W. Lin, and U. Bauer,
“Statistical topological data analysis - a kernel perspective,” in
Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’15. Cambridge, MA,
USA: MIT Press, 2015, pp. 3070–3078. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2969442.2969582

[7] G. Kusano, K. Fukumizu, and Y. Hiraoka, “Persistence weighted
gaussian kernel for topological data analysis,” in Proceedings of the
33rd International Conference on International Conference on Machine
Learning - Volume 48, ser. ICML’16. JMLR.org, 2016, pp. 2004–2013.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3045390.3045602

[8] M. Carrière, M. Cuturi, and S. Oudot, “Sliced wasserstein kernel for
persistence diagrams.”

[9] R. Anirudh, V. Venkataraman, K. N. Ramamurthy, and P. Turaga, “A
riemannian framework for statistical analysis of topological persistence
diagrams,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). IEEE, jun 2016.

[10] T. Le and M. Yamada, “Persistence fisher kernel: A riemannian manifold
kernel for persistence diagrams,” in NeurIPS, 2018.

[11] X. Zhu, A. Vartanian, M. Bansal, D. Nguyen, and L. Brandl, “Stochastic
multiresolution persistent homology kernel,” in Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
ser. IJCAI’16. AAAI Press, 2016, pp. 2449–2455. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3060832.3060964

[12] H. Edelsbrunner and J. Harer, Computational Topology: An Introduction.
American Mathematical Society, 2010.

[13] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.
[14] E. Munch, “A user’s guide to topological data analysis,” Journal of

Learning Analytics, vol. 4, no. 2, pp. 47–61, jul 2017.
[15] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means

clustering algorithm,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.

http://jmlr.org/papers/v18/16-337.html
http://jmlr.org/papers/v16/bubenik15a.html
http://jmlr.org/papers/v16/bubenik15a.html
http://dl.acm.org/citation.cfm?id=2969442.2969582
http://dl.acm.org/citation.cfm?id=2969442.2969582
http://dl.acm.org/citation.cfm?id=3045390.3045602
http://dl.acm.org/citation.cfm?id=3060832.3060964

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[17] D. Pickup, X. Sun, P. L. Rosin, R. R. Martin, Z. Cheng, Z. Lian,
M. Aono, A. B. Hamza, A. Bronstein, M. Bronstein et al., “Shape
retrieval of non-rigid 3d human models,” International Journal of
Computer Vision, vol. 120, no. 2, pp. 169–193, 2016.

APPENDIX

This appendix gives a table with the accuracies for classi-
fication of the shape data using template functions with and
without partitioning. The data shown in Table II is represented
graphically in Fig. 8.

TABLE II
RESULTS OF CLASSIFICATION OF SHAPE DATA AS EXPLAINED IN SEC. IV-C USING TENT FUNCTIONS AND POLYNOMIAL FUNCTIONS, WITH AND

WITHOUT PARTITIONING. RIDGE REGRESSION IS USED FOR CLASSIFICATION. THE MSK COLUMN GIVES THE ORIGINAL RESULTS FROM [5]. SCORES
HIGHLIGHTED IN BLUE GIVE THE BEST AVERAGE SCORE ACROSS ALL TESTING COLUMNS; SCORES HIGHLIGHTED IN ORANGE HAVE OVERLAPPING

INTERVALS OF STANDARD DEVIATION WITH THE BEST SCORE.

Tents - Partitioning
Dgm0 Dgm1 Dgm0 & Dgm1 Dgm0 & Dgm1

(Combined Partitioning) (Split Partitioning)
Freq MSK Train Test Train Test Train Test Train Test

1 94.7 ± 5.1 97.1 ± 1.8 81.2 ± 4.2 93.9 ± 2.9 70.8 ± 4.4 99.4 ± 0.4 84.7 ± 2.2 100.0 ± 0.0 92.5 ± 2.0
2 99.3 ± 0.9 91.2 ± 0.9 74.8 ± 4.3 97.5 ± 0.8 73.2 ± 4.3 97.7 ± 0.7 79.0 ± 3.6 100.0 ± 0.0 91.8 ± 1.8
3 96.3 ± 2.2 80.4 ± 1.7 57.3 ± 6.7 94.9 ± 3.4 71.3 ± 4.0 97.4 ± 0.8 81.6 ± 2.4 98.8 ± 0.5 86.9 ± 3.3
4 97.3 ± 1.9 62.9 ± 2.5 39.5 ± 5.5 94.8 ± 1.4 83.5 ± 2.6 96.6 ± 1.0 86.8 ± 3.0 98.1 ± 0.8 86.5 ± 3.7
5 96.3 ± 2.5 58.4 ± 2.9 41.5 ± 2.8 96.2 ± 1.7 87.5 ± 1.9 97.6 ± 1.1 91.9 ± 2.3 96.9 ± 1.7 88.3 ± 3.8
6 93.7 ± 3.2 42.3 ± 2.3 35.6 ± 5.0 97.5 ± 0.9 93.1 ± 1.8 97.3 ± 0.9 93.4 ± 2.6 97.3 ± 1.0 91.9 ± 2.5
7 88.0 ± 4.5 48.6 ± 2.6 43.7 ± 3.0 97.4 ± 0.7 92.9 ± 2.0 97.1 ± 0.8 93.3 ± 2.4 97.9 ± 0.9 94.2 ± 2.3
8 88.3 ± 6.0 47.4 ± 3.6 36.6 ± 7.0 95.9 ± 1.0 89.9 ± 2.3 94.6 ± 1.8 92.6 ± 2.0 96.2 ± 0.8 90.4 ± 3.0
9 88.0 ± 5.8 35.9 ± 11.8 25.8 ± 10.8 94.5 ± 1.9 88.9 ± 3.0 95.8 ± 1.0 88.7 ± 1.9 95.6 ± 1.4 88.1 ± 2.5
10 91.0 ± 4.0 11.3 ± 4.8 5.2 ± 3.4 72.4 ± 4.4 67.3 ± 3.6 73.1 ± 3.8 65.8 ± 5.0 73.6 ± 5.4 66.3 ± 5.4

Tents - No Partitioning
Dgm0 Dgm1 Dgm0 & Dgm1

Freq Train Test Train Test Train Test
1 8.3 ± 0.5 3.4 ± 1.1 8.1 ± 0.2 3.7 ± 0.5 8.2 ± 0.3 3.5 ± 0.5
2 8.3 ± 0.3 3.4 ± 0.7 8.2 ± 0.5 3.5 ± 1.1 8.6 ± 0.4 3.0 ± 1.0
3 66.5 ± 2.7 31.8 ± 4.8 50.6 ± 2.1 31.1 ± 4.0 80.5 ± 1.3 44.4 ± 4.3
4 46.2 ± 2.5 27.0 ± 3.8 83.1 ± 1.6 63.5 ± 4.6 89.1 ± 1.5 69.0 ± 4.9
5 28.5 ± 1.4 18.9 ± 4.0 75.2 ± 2.6 58.3 ± 4.6 76.8 ± 2.7 58.4 ± 7.9
6 25.4 ± 1.8 19.0 ± 2.4 96.5 ± 1.1 88.7 ± 2.4 96.8 ± 0.7 89.9 ± 1.7
7 19.4 ± 2.6 10.0 ± 3.4 98.2 ± 0.5 93.6 ± 1.9 98.3 ± 0.6 94.1 ± 2.5
8 10.8 ± 2.6 3.6 ± 2.4 91.9 ± 0.9 88.8 ± 2.7 91.9 ± 1.2 89.7 ± 3.3
9 10.6 ± 2.7 4.3 ± 2.2 63.8 ± 2.7 53.3 ± 5.9 64.9 ± 2.3 53.7 ± 3.8
10 9.2 ± 2.3 3.6 ± 1.7 27.0 ± 3.9 16.2 ± 3.2 27.3 ± 3.4 18.6 ± 5.6

Polynomials - Partitioning
Dgm0 Dgm1 Dgm0 & Dgm1 Dgm0 & Dgm1

(Combined Partitioning) (Split Partitioning)
Freq MSK Train Test Train Test Train Test Train Test

1 94.7 ± 5.1 96.6 ± 1.0 75.3 ± 5.2 96.5 ± 2.2 80.6 ± 2.1 98.8 ± 1.2 83.8 ± 2.8 100.0 ± 0.0 90.4 ± 2.4
2 99.3 ± 0.9 94.4 ± 0.6 72.4 ± 4.2 99.2 ± 1.2 86.0 ± 4.4 99.9 ± 0.2 92.2 ± 1.9 100.0 ± 0.0 94.8 ± 1.4
3 96.3 ± 2.2 84.8 ± 1.4 57.4 ± 4.2 98.8 ± 0.7 90.6 ± 2.5 98.7 ± 0.9 91.9 ± 2.7 100.0 ± 0.1 92.0 ± 2.7
4 97.3 ± 1.9 73.8 ± 2.8 44.1 ± 5.5 96.2 ± 1.9 86.0 ± 2.8 96.0 ± 1.9 83.1 ± 3.2 97.9 ± 0.9 82.7 ± 4.3
5 96.3 ± 2.5 66.4 ± 4.7 37.4 ± 4.8 95.8 ± 2.0 89.8 ± 3.1 99.3 ± 0.5 91.0 ± 3.1 96.4 ± 1.2 84.8 ± 3.0
6 93.7 ± 3.2 57.9 ± 4.0 37.0 ± 5.8 97.9 ± 0.7 91.8 ± 2.3 97.8 ± 0.8 89.6 ± 2.3 98.6 ± 0.4 90.5 ± 3.2
7 88.0 ± 4.5 61.9 ± 2.2 39.5 ± 5.4 97.2 ± 1.0 90.5 ± 2.3 97.5 ± 0.8 93.9 ± 1.6 98.3 ± 0.5 92.9 ± 1.7
8 88.3 ± 6.0 69.0 ± 2.9 50.8 ± 4.5 98.2 ± 0.7 91.4 ± 2.0 98.1 ± 0.9 91.0 ± 3.2 99.4 ± 0.5 92.6 ± 1.8
9 88.0 ± 5.8 68.7 ± 6.1 52.5 ± 6.1 94.5 ± 1.5 88.1 ± 2.0 95.2 ± 1.3 86.3 ± 2.7 95.7 ± 2.2 88.9 ± 3.5
10 91.0 ± 4.0 61.5 ± 5.1 46.3 ± 4.0 96.2 ± 1.1 88.7 ± 3.0 96.8 ± 1.2 90.1 ± 2.5 97.9 ± 1.0 88.8 ± 2.6

Polynomials - No Partitioning
Dgm0 Dgm1 Dgm0 & Dgm1

Freq Train Test Train Test Train Test
1 94.3 ± 0.5 67.1 ± 4.7 99.1 ± 0.3 85.4 ± 3.0 99.8 ± 0.3 90.4 ± 5.3
2 92.1 ± 1.4 60.8 ± 6.3 99.9 ± 0.3 89.9 ± 1.5 100.0 ± 0.0 95.1 ± 2.4
3 83.4 ± 2.4 45.1 ± 2.9 99.6 ± 0.5 88.9 ± 3.0 99.7 ± 0.5 90.0 ± 2.0
4 74.7 ± 2.0 37.4 ± 4.7 99.1 ± 0.7 85.2 ± 2.5 98.6 ± 0.9 84.8 ± 3.9
5 65.3 ± 2.9 27.8 ± 5.0 99.2 ± 0.7 93.0 ± 2.2 99.7 ± 0.4 93.3 ± 2.2
6 67.2 ± 2.5 36.5 ± 3.6 99.2 ± 0.5 93.4 ± 2.8 98.8 ± 0.5 92.9 ± 1.8
7 71.5 ± 2.8 40.9 ± 4.1 98.3 ± 0.7 96.6 ± 0.7 99.0 ± 0.4 95.6 ± 1.4
8 84.2 ± 3.3 63.0 ± 4.5 99.0 ± 0.5 93.0 ± 1.8 99.6 ± 0.4 94.0 ± 2.2
9 83.5 ± 2.7 62.4 ± 5.0 98.4 ± 1.2 92.9 ± 1.5 98.5 ± 1.3 92.6 ± 2.1

10 79.8 ± 2.7 59.0 ± 4.6 96.9 ± 0.6 92.1 ± 1.7 97.7 ± 1.1 89.5 ± 4.6

	I Introduction
	II Background
	II-A Homology and persistent homology
	II-B Featurization Using Template Functions

	III Methods
	IV Experiments
	IV-A Code
	IV-B Manifold Experiment
	IV-C Shape Data

	V Discussion
	References
	Appendix

