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Abstract—Learning knowledge embedding representation is an
increasingly important technology. However, the choice of hyper-
parameters is seldom justified and usually relies on exhaustive
search. Understanding the effect of hyperparameter combinations
on embedding quality is crucial to avoid the inefficient process
and enhance practicality of embedding representation along
subsequent machine learning applications. This work focuses on
translational embedding models for multi-relational categorized
data in the clinical domain. We trained and evaluated models
with different combinations of hyperparameters on two clinical
datasets. We contrasted the results by comparing metric distri-
butions and fitting a random forest regression model. Classifiers
were trained to assess embedding representation quality. Finally,
clustering was tested as a validation protocol. We observed
consistent patterns of hyperparameter preference and identified
those that achieved better results respectively. However, results
show different patterns regarding link prediction, which is taken
as strong evidence that traditional evaluation protocol used for
open-domain data does not necessarily lead to the best embedding
representation for categorized data.

Index Terms—electronic health records; multi-relational data;
knowledge graphs; embedding representation; link prediction;
clustering; classification;

I. INTRODUCTION

Domain-specific data sources usually contain high dimen-
sional data which makes data-driven tasks such as knowledge
reasoning and inference challenging. In the clinical domain,
the storage of patient information in the form of an electronic
health record (EHR) allows recording of everything from
symptoms to test results and diagnoses, with standardized
definitions to ensure consistency. Consequently, the problem
of representing multi-relational data has gained more attention
in the last decade as long as more knowledge graphs (KGs)
become available and useful as supporting resources for a va-
riety of machine learning applications. Knowledge embedding
representation (KER) methods are able to learn and operate
on the latent feature representation of the constituents and
on their semantic relatedness. Thus, KER has the ability to
semantically encode multi-relational data in such a way that
this latent representation can be efficiently used as a feeding
input in subsequent machine learning applications [1].

In open-domain KGs, the heterogeneous nature of the data
sources where facts are usually extracted from makes the
data typically inaccurate. Moreover, although containing a
huge number of triplets, most open-domain KGs are incom-
plete, covering only a small subset of the true knowledge
that they are supposed to represent. In domain-specific KGs,
incompleteness results from missing values and cardinality-
related inconsistencies that are usually produced by automatic
IE processes from unstructured data sources (e.g. clinical
notes) [2]. Learning the distributed representation of multi-
relational data has been used as an efficient tool to com-
plete and validate knowledge bases without requiring extra
knowledge. Knowledge base completion or link prediction
(LP) refers to the problem of predicting new links (or new
relationships) between entities by automatically recovering
missing facts based on the observed ones.

In a knowledge graph G constructed with a set of facts S in
the form of triples, each triple (h, r, t) has a pair of head h and
tail t entities, collectively termed as entities e ∈ E , connected
by a relation r ∈ R. KG embedding methods in general aim
to represent entities and relations as vectors in a continuous k-
dimensional vector space R, so that entity embedding vectors
e ∈ Rk will be learned together with a relation embedding
vector r ∈ Rk. By learning how to operate on the latent feature
representation of the triple constituents, embedding models are
able to use semantic relatedness to enforce the embedding
compatibility. Different types of embedding models for KGs
have been proposed, with a common goal to improve low-
dimensional KG representation as evaluated by specific tasks.

TransE [3] is a baseline translational approach that use
simple assumptions to learn vectors h, t, r ∈ Rk, so that every
relation r is a translation between h and t in the embedding
space. The pair of embedded entities in a triple (h, r, t) can
be approximately connected by r with low error (h+ r ≈ t).
In addition, a plausibility score function for an embedded
triple is calculated as the distance between h + r and t.
HEXTRATO [4] is a knowledge embedding approach design
to operate with categorized multi-relational data that extends
TransE with ontology-based constraints. In this work, we use



HEXTRATO to assess the quality of embedding representation
of clinical datasets by contrasting usual LP evaluation protocol
against classification and clustering tasks. We analyze the
accuracy effect of hyperparameter choice when evaluating the
resulting embedding representation in a classification task,
and we conduct non-parametric sensitivity analysis based
on feature importance and partial dependence analysis from
random forest regression modeling. In addition, we explore
clustering as an alternative validation protocol for KER.

We contrast how the combinations of hyperparameters in
learning embedding representation of categorized domain-
specific clinical knowledge bases reflect on narrowing down
the choices for better representation quality in such KGs, so
that an exhaustive grid search can be avoided. Complemen-
tary evaluation assessment based on Spearman’s rank order
correlation coefficient is reported. We found some consistent
patterns that can inform the choice of hyperparameters. How-
ever, the decision should take into consideration the intended
application of the embedding representations, as the best
combination of hyperparameters to optimize LP tends to differ
from that for a subsequent classification task. Although LP
and either cluster or classification tasks have low or almost
no observable correlation, when directly comparing clustering
accuracy against classification F1 scores for specific sets of
hyperparameters, we observed consistent patterns in which the
correlation is stronger.

II. METHOD

Although most embedding methods use open-domain multi-
relational data for evaluation purposes, such datasets are not
usually enriched with extra metadata and are inherently noisy
and incomplete. In this work, we aim to utilize clinical
multi-relational categorized data constructed with information
extracted from EHR systems. Such clinical datasets may not be
complete, but the overall task here is not focused on knowledge
graph completion. Instead, we aim to learn entity embedding
representation that can be used as input for further health-
related machine learning applications.

Categorized KGs are created with additional metadata, in
which each resulting triple is presented in the form (ch:h,
r, ct:t), where ch and ct represent the types of h and t,
and each relation is restricted by domain and range – e.g.,
in (patient:P01, hasGender, gender:male), the
relation hasGender is constrained by the domain patient and
the range gender.

We evaluate a set of strategies aiming to improve KER for
categorized data. We present an evaluation protocol for embed-
ding clinical knowledge graphs that comprises the following
steps: (a) firstly, we use HEXTRATO to embed categorized
entities and relations; (b) secondly, we perform a classifica-
tion task using the resulting embedding representation; and
(c) finally, we evaluate the accuracy of KER by clustering
entity embeddings as an alternative validation protocol for the
traditional LP metrics. The latter is focused on contrasting the
correlation between multiple accuracy results.

TABLE I: Statistics of domain-specific clinical benchmark
datasets, given by the number of entities, relations, types, and
triples in each dataset split – training (LRN), validation (VLD),
tuning (TUN) and test (TST) sets [4].

EHR Datasets
# (number of) Demographics Pregnancy
Entities 2,237 3,088
Relations 6 5
Types 7 4
Triples (total) 15,345 20,768

LRN 13,875 14,588
VLD 463 1,997
TUN 475 2,093
TST 532 2,090

A. Datasets

In this work, we focus on clinical datasets1 obtained from
InfoSaude (InfoHealth) [5], an EHR system. An overview of
each dataset is presented below and statistics are depicted in
Tables I and II – in both datasets, all relations have the domain
patient as head type.

EHR-Demographics comprises a set of 2,185 randomly
selected patients who had at least one admission between
2014 and 2016. Each patient is described by a set of basic
demographic information, including gender, age (range in
years) in the admission, marital status (unknown for about
15% of the patients), education level, and two flags indicating
whether the patient is known to be either a smoker or pregnant,
and the social groups assigned according to a diverse set
of rules mainly based on demographic and historical clinical
conditions. Demographic features are represented by many-
to-one relations, whereas association of each patient to social
groups is given by a many-to-many relation.

EHR-Pregnancy is a dataset used to identify correlations
between pre- and post-clinical conditions on pregnant patients
with abnormal pregnancy termination, comprised by a set of
2,879 randomly selected pregnant female patients in which
pregnancy was inadvertently and abnormally interrupted be-
fore the expected date of birth; each patient is described by age
(range in years), known date of last menstrual period (LMP),
whether the patient had an abortion (regardless of reason),
and a list of ICD-10 (the 10th revision of the International
Classification of Diseases) codes [6] registered either before or
after the LMP date. This is a dataset mostly comprising many-
to-many relations that connects patients with corresponding the
diagnoses.

B. Clinical KER

We used HEXTRATO [4] to pre-train a set of embedding
models for each clinical dataset, which is an embedding
approach originally designed for multi-relational categorized
data. Unlike other translational models, HEXTRATO is design
for domain-specific datasets. It is fundamentally a translational

1https://github.com/hextrato/KER/tree/master/datasets/ – we obtained per-
mission from the InfoSaude team to use and publish de-identified versions of
each dataset.



TABLE II: Relation cardinality in the EHR datasets.

(a) Demographics

Relation Cardinality Range # Triples
hasGender N:1 gender 2185
ageRange N:1 interval 2185
hasMaritalStatus N:1 maritalStatus 1844
hasMaxEducation N:1 education 1815
isSmoker N:1 boolean 2185
isPregnant N:1 boolean 506
isSocialGroup N:N socialGroup 4625

(b) Pregnancy

Relation Cardinality Range # Triples
ageYearsWhenLMP N:1 interval 2879
hadAbortion N:1 boolean 2879
ageWeeksWhenInterrupted N:1 interval 2879
ICDBeforeLMP N:N ICD 5776
ICDAfterLMP N:N ICD 6355

model which extends TransE with four ontology-based con-
straints that make use of source metadata.

Given a training set S of categorized triplets (ch:h,r,ct:t),
HEXTRATO learns embedding vectors for entities and re-
lations, so that each categorized entity c:e is represented
by an embedding vector ec ∈ Rk, and each relation r is
represented by a embedding vector r ∈ Rk. A score function
fr (Equation 1) represents an L2-norm dissimilarity. We used
stochastic gradient descent (SGD) [7] for optimization in order
to minimize the margin-based loss function L (Equation 2)
adapted from TransE, where γ is the margin parameter, S
is the set of correct triples, S ′ is the set of incorrect triples
(ch:h,r,ct:t′), and [x]+ = max(0, x).

fr(hch , tct) = ‖hch + r − tct‖l2 (1)

L =
∑

(ch:h,r,ct:t)∈S
(ch:h,r,ct:t

′)∈S′

[γ + fr(hch , tct)− fr(hch , t′ct)]+ (2)

Pre-processing steps included splitting datasets into 4 sub-
sets for learning (LRN), validation (VLD), tuning (TUN) and
testing (TST) as presented in Table I. HEXTRATO uses a
tuning set to choose the best of multiple replicas independently
initialized with random vector representations for each entity
and relation. For each model with a distinct set of hyperpa-
rameters, 5 replicas were trained and validated based on the
LP metrics of predicting t. After going through all training and
validation cycles for a maximum of 1000 epochs, the instances
are scored on the tuning set for comparison and the best one
is selected. Final results are obtained using the test set.

We trained models for all combinations of the following
hyperparameters: learning rate λ ∈ {0.001, 0.01, 0.1}, margin
γ ∈ {1.0, 2.0, 4.0}, embedding dimension k ∈ {8, 16, 32, 64},
and the proposed ontology constraints in a cumulative way,
including types, isolated values, disjoint groups, and functional
relations (correspondingly labelled as H+T, H+TI, H+TID,
and H+TIDF in Fig. 1). Embedding vectors are initialized

with random uniform normalized values [8]. Each training step
generates a corresponding corrupted triple for the correct one.
Finally, a regularization constraint is imposed on the entity
embedding vectors, at the end of each training cycle. This
prevents loss minimization by artificially increasing the entity
embedding norms.

C. Embedding Evaluation Protocol

KER methods are commonly evaluated on the link predic-
tion task, which involves predicting a correct element that
is missing to complete a triple (h, r, t). It usually refers to
entity prediction to predict either h from the given (?, r, t) or
t from the given (h, r, ?). Instead of a single outcome, a ranked
list of candidate entities is returned. Using tail prediction as
an example, in order to derive this list, a similarity score is
calculated using the scoring function for every candidate triple
(h, r, e) generated from all possible entities e, and ranked in
descending order. HEXTRATO follows a similar evaluation
protocol for link prediction. For each testing triple, the model
predicts t given (ch : h, r, ct : ?). For each entity in a set of
candidates a dissimilarity score is calculated, and the rank of
the correct missing entity is recorded.

There are multiple metrics to assess the performance of a
model on this task. Mean rank (MR) takes the average of the
recorded ranks of all correct entities. Mean reciprocal rank
(MRR) calculates this average after taking the reciprocal of
the ranks of all correct entities, so it is more robust against
outliers than MR, where achieving lower MR or higher MRR
are taken as good LP scores. HEXTRATO reports the best
MR and competitive MRR scores when compared to other
translational models in an open-domain LP task.

D. Classification

In order to formulate a possible embedding quality evalua-
tion task, we propose a set of Multi-layer Perceptron (MLP)
classifiers that take selected entity embedding vectors as input
to predict a specific label for each entity: (a) within the EHR-
Demographics dataset, each patient is predicted to be in none
or multiple of the sixteen social groups, and (b) within the
EHR-Pregnancy dataset, each patient is predicted to whether
or not having an abortion based on other clinical conditions.
Each patient set is randomly assigned to the training set
(80%), validation set (10%) or the testing set (10%) while
maintaining class proportionality. We do not aim to create the
best classifiers, but to contrast the quality of all embedding
models, as in how good each one performs when learning
representations and resembles the original information such as
specific entity classes. Therefore, the classifiers have the same
controlled structure and parameters unless necessary variations
are necessary for the classification task.

Each classifier is designed with three layers. The first
input layer has a number of nodes the same as the input
vector dimensions. The hidden layer has two times the nodes
of the input layer and a sigmoid activation function. The
third output layer has node size according to the number of
labels in each classification. For the Pregnancy, the task is



TABLE III: Resulting Spearman’s correlation coefficients among link prediction (MRR), classification, and clustering tasks.

Spearman’s Coefficients
MRR vs MRR vs Classification vs

EHR Dataset Target Type Target Relation # of Classes Classification Clustering Clustering
Demographics Patient hasMaritalStatus 4 -0.124 -0.073 +0.143

ageStage 6 +0.152 +0.056 +0.327
Pregnancy Patient hadAbortion 2 -0.063 -0.178 +0.625

ageWeeksPregnancyInterrupted 15 -0.495 -0.032 +0.609

a binary classification problem - the output layer has one
single node with that outputs a probability distribution. For the
Demographics dataset, the task is a multi-class classification,
so the output layer has sixteen nodes with sigmoid activation
function. Each label is independently predicted as true if the
output value is above a 0.5 threshold. All the hidden and output
layers were trained with a uniform kernel initialization.

A stochastic gradient descent (SGD) optimizer is used for
training in all classification tasks with 0.01 learning rate and
no decay. The categorical cross-entropy loss is used in the
Pregnancy dataset, whereas the binary cross-entropy is used
in the Demographics instead. Datasets have an unbalanced
number of instances in each class, which causes the classifiers
to predict only for the majority class. To overcome this, we
used the class distributions which proportionally add more
weights to the instances belonging to the minority classes
such that all classes are equally represented in training. In
each learning epoch, the model learns from the training set
to minimize loss, and then makes prediction on the validation
set. Validation accuracy is monitored during training and the
model is saved if the metric improved after each epoch. After
5000 epochs, the best model is loaded and evaluated on the
test set. Accuracy is given by the weighted-by-class F1 score
calculated from the predictions, which takes class imbalance
into account.

E. Clustering

We compare whether the clustering accuracy on each target
relation is correlated to the accuracy given by the MRR metric
from the LP task and accuracy from the classification task.
For each dataset, we perform cluster analysis (using K-means)
separately on the resulting embedding models, so the number
of clustering is pairwise with number of models. The target
entity types used for clustering and the set of target labels
obtained from relation in each KG are described in Table III.

We compare the clustering result from each target label
against the embedding model LP accuracy given by MRR
and the accuracy given by the classification task. To calculate
the K-means accuracy, we use the predominant target label
in each cluster as intra-cluster accuracy (Acck). The overall
relation clustering accuracy (Accr) is taken as the intra-cluster
weighted average (Equation 3). The weighted average Accr
considers the number of entities in order to weight each
cluster, so that the degree of influence in which intra-cluster
accuracy contributes to the overall accuracy rate depends on
the proportion of the target predominant labels Tk in each
cluster k regarding the total number of target labels L.

Accr =

∑4L
k=1Acck ∗

Tk

L∑N
k=1

Tk

L

(3)

We use 4 × L target clusters to evaluate L target labels,
so that it is expected multiple clusters having the same
predominant target label, whereas less representative labels in
the KG being kept out of the accuracy means.

III. RESULTS

We question whether there are associations and patterns
between dataset shapes and sizes, hyperparameters and the
quality of learned representations. The objective is to under-
stand important factors that determine the effectiveness of
representation learning in the clinical domain, so that instead
of conducting exhaustive search of the best hyperparameters,
we can start with reasonable confined options. We compre-
hensively trained and tested models of several combinations
of hyperparameters to compare and contrast their evaluation
results against classification and clustering tasks.

A. Hyperparameter evaluation

The same hyperparameter setup can produce different re-
sults in different datasets comparatively to other setups. This
implies that at a certain level, dataset feature differentiation can
lead to variation in the test score achieved. In addition, we ob-
served none of the particular combinations of hyperparameters
significantly outperform the others. Besides specific variety of
hyperparameter sets with best performance, many top-ranked
models achieved similar scores. We analyze the bigger picture
of how these combinations affect the KER learning process
and provide some evidence for hyperparameter selection.

In order to identify any patterns between hyperparameters
and evaluation metrics in individual KGs, we make use of
our comprehensive data to produce heatmaps to visualize
the distribution of scores stratified by individual hyperpa-
rameters. In Fig. 1, (a) and (b) show the LP score (MRR)
distribution heatmaps (separated blocks belong to a distinct
hyperparameter, with intervals on the y-axis “closed on the
right”), whereas (c) and (d) show the classification (F1)
score distribution heatmaps for each corresponding dataset.
Each column represents MRR scores across all models when
that hyperparameter option is chosen. Comparing between
the set of options for a particular hyperparameter shows its
overall impact on link prediction. Although less quantitative
than conventional sensitivity analyses, these heatmaps provide
a unique view of uncertainty in embedding representation



(a) Demographics (MRR) (b) Pregnancy (MRR)

(c) Demographics (F1) (d) Pregnancy (F1)

Fig. 1: Link prediction (MRR) and classification (F1) score distribution heatmaps by hyperparameter for each dataset.

learning with respect to hyperparameter choices in all possible
combinations.

There are three important pieces of information we can
acquire from the heatmaps. Firstly, they show the highest
achievable MRR interval and the proportion of models in
it. For example, in Demographics, H+TIDF set of ontology
constraints has many more models achieving 0.55 to 0.60
MRR than the other two sets, which is the same observed
for learning rate equals 0.001. Secondly, we can look at the
spread of the distributions, where the heatmap illustrates model
concentrations and their relative positions in the distributions.
For example, different margins γ in Demographics and Preg-
nancy are similar in MRR spread, though γ = 1.0 gives better
concentration. Finally, some consistent patterns can be ob-
served across the heatmaps: (a) for ontology constraints, H+TI
rarely reach the highest MRR interval; (b) higher dimensions
usually allow models to reach higher MRR although 64 is
not necessarily better than 32; (c) for learning rate, 0.1 is
inferior in most of the scenarios; and (d) a higher margin
(e.g. γ > 4.0) is generally less preferable. The latter two
suggest that, instead of helping within the learning process,
higher values of such hyperparameters produce too much noise
pushing the entities beyond the surface of the hyperspace,
inducing constant regularization, which has a negative effect
on the accuracy.

Lastly, in order to understand the contribution of each
hyperparameter at the broader context of all trained models,

(a) Demographics (b) Pregnancy

Fig. 2: Random forest regression models for EHR datasets
predicting MRR, with feature importance for all dimensions.
Error bars indicate the standard deviation. “Ont. constr.” stands
for ontology constraint.

we performed a sensitivity analysis with a random forest
regression model [9]. Our findings suggest that, before
stratifying the data into different dimensions, learning rate
is the most important hyperparameter for MRR prediction,
remaining highly important in both datasets (Fig. 2). The
importance of learning rate can be noticeably attributed to the
negative effect of high value for λ = 0.1.



B. Clustering and Classification tasks

For each dataset, we used the resulting embeddings and
labels for each entity as the input for the clustering model
in order to obtain the clustering result accuracy of each
embedding model. Then, we compared the accuracy from
both evaluation protocols by correlating MRR accuracy against
clustering accuracy. We report Spearman’s rank order correla-
tion coefficient between each method in Table III.

By comparing the MRR and clustering accuracy, we found
correlations are consistently weak for both datasets. Unexpect-
edly, for Demographics and Pregnancy datasets, evaluation
metrics are mostly uncorrelated to each other, and justification
is a two-fold: (a) in both datasets we observed high accuracy
repeatedly resulting from clustering, which is not consistent
with relatively low accuracy given the LP metrics; alternatively
(b) both datasets are predominantly compound by many-to-
many relations, whereas we used many-to-one relations to
perform the proposed clustering protocol, and the predominant
relations can be overlaying the semantic relationship contribu-
tion given by the other relations. Finally, correlations between
MRR and clustering are expected to be positive. However, we
found contradictory results when analyzing more specific sets
of hyperparameters in both EHR datasets, which led us to
further reflect on whether certain shapes of datasets suit better
for distinct evaluation protocols.

Spearman’s coefficient was also used to assess how the
classifier scores correlate with the LP metrics. Notably once
again, LP metrics have very weak or no observable correlation
with Demographics and Pregnancy classifier accuracy. The
Spearman rank-order correlation coefficients between MRR
and F1 score are -0.19 for Demographics and +0.21 for
Pregnancy. This may be caused by similar justification as the
ones given for clustering. Further analysis in each dataset is
required in order to identify whether their high proportion of
triples with many-to-many relations or the triple count of each
dataset may also be a strong determinant.

A summary of hyperparameters choices that have the high-
est average predicted F1 score along the classification task
includes: (a) the ontology constraint set of H+TID topped in
many partial dependence analyses, while H+TIDF is much
less preferred; (b) 32 embedding dimensions is the best or
second-best model and doubling k to 64 only has marginal
benefits; (c) regarding learning rate, 0.1 is likewise undesired,
however, the overall preference for 0.01 is the opposite of
presented for the MRR random forest model; and (d) the
learning margin γ = 1.0 is predominantly preferable, whereas
2.0 can occasionally outperform at higher dimensions.

IV. CONCLUSIONS

KER models with the best link prediction accuracy can
result from different combinations of hyperparameters and
rely on training dataset shapes or sizes. The primary aim of
this work is to evaluate whether link prediction accurately
reflects the quality of the resulting embeddings for categorized
data, and whether they can be efficiently used in subsequent
machine learning tasks instead of KG completion.

We analyzed the MRR distribution of all models that share
a particular hyperparameter variant in heatmaps. Additionally,
we conducted a non-parametric sensitivity analysis by random
forest regression modeling that takes into consideration models
of all combinations. It has the strength of modeling non-linear
relationship and that the feature importance can be easily
calculated. This can reflect the relative influence of chang-
ing individual hyperparameter options on predicted MRR.
However, this approach assumes hyperparameter independence
which may be violated.

Experimental results show that LP metrics might not al-
ways reflect quality of the embeddings from categorized data
intended for subsequent machine learning tasks. Alternative
metric based on the K-Means clustering was tested. In gen-
eral, clustering accuracy has low or almost no observable
correlation with LP metrics. However, although the observed
correlations between LP and either clustering or classification
tasks are weak, this correlation tends to be stronger when
directly comparing clustering accuracy and classification F1
scores for specific sets of hyperparameters. We observed
some consistent patterns that can inform the choice of hy-
perparameters. The decision should take into consideration
the intended application of the embedding representations.
Most importantly, the best combination of hyperparameters
to optimize LP performance tends to differ from that for a
subsequent classification task.
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