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Abstract

The representations learned by deep neural networks are difficult to interpret in
part due to their large parameter space and the complexities introduced by their
multi-layer structure. We introduce a method for computing persistent homology
over the graphical activation structure of neural networks, which provides access
to the task-relevant substructures activated throughout the network for a given
input. This topological perspective provides unique insights into the distributed
representations encoded by neural networks in terms of the shape of their activation
structures. We demonstrate the value of this approach by showing an alternative
explanation for the existence of adversarial examples. By studying the topology
of network activations across multiple architectures and datasets, we find that
adversarial perturbations do not add activations that target the semantic structure
of the adversarial class as previously hypothesized. Rather, adversarial examples
are explainable as alterations to the dominant activation structures induced by the
original image, suggesting the class representations learned by deep networks are
problematically sparse on the input space.

1 Introduction

Neural networks are a class of learning model often characterized by the layer-wise composition
of nonlinear functions parameterized by neurons which pass activation values through weighted
connections between layers. This structure allows these models a high degree of expressivity in terms
of transformations of the input space or task-specific representations learnable by the model, resulting
in state-of-the-art performance in complex domains where relevant features are difficult to construct
a priori.

The expressivity of these models comes at the cost of interpretability. With tunable parameters
numbering in the millions for even modestly sized neural networks [11], it is difficult to probe the
representations constructed by these models, and extracting reasoning for a specific network decision
given an input harder still. Lacking this interpretability, neural networks elicit a range of peculiar
behaviors, most striking of which are their susceptibility to adversarial examples.

We present a method for computing persistent homology over the activation graph of a neural
networks. The output is a graded set of subgraphs which we find to be intimately related to the
task-specific semantics learned by the network. We discuss the benefits of such a decomposition
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prove its use by studying the peculiarities of learned representations within neural networks and the
extent to which adversarial examples exploit these representations within the network.

1.1 Related Work

Prior work investigating neural network representations generally takes the form of representation
similarity analysis. In [12], the authors investigate how to align neural network features based on their
activations according to layer-wise bipartite and spectral clustering matching between activations,
and note that representation codes are primarily distributed across neurons and the basis vectors
spanned by individual units are not necessarily unique across networks, even if architecture is held
constant. The understanding that representations are distributed is an important motivating factor for
the methods presented in this paper. Similar approaches to understanding neural network activations
through methods related to representation similarity analysis and cannonical correlation analysis are
numerous [16, 15, 20, 10, 18]).

The application of tools from topology, especially persistent homology, to analyze neural networks
is relatively new. Recently, persistent homology has been used to analyze the parameter space of
neural networks, especially during the training process [8, 5]. Most similar to the current work is
[17] wherein the authors take a similar approach to constructing the network graph and associated
filtration, but analyze the parameters of the network during training as opposed to the induced graph.

Recent publications providing progress towards a fundamental understanding of adversarial examples
are numerous. Most notably, Katz et al. [9] and Weng et al. [21] have found that computing a
provably secure region of the input space is approximately computationally hard. Mahloujifar et al.
[14] explain the prevalence of adversarial examples by making a connection to the “concentration
of measure” in metric spaces. Recently, Zhange et al. [23] found that adversaries are more dense
sufficiently far from the manifold of training data.

2 Neural Network Topology

By viewing a neural network as a weighted, undirected graph–a metric space–we can use persistent
homology to investigate its invariant topological properties across all edge weight resolutions. We
consider only forward architectures in this construction, but a similar approach may be used to
investigate more complex architectures with, for example, recurrent structure. Background on
persistent homology can be found in the Supplemental Materials as well as [6] and [4].

There are two ways to construct a graph representation of a neural network. These are the static
network consisting of (possibly trained) weight matrices connecting each layer’s nodes to the next
layer’s, and the induced network consisting of this same structure augmented by the activation
functions and an input applied to the neural network. In this paper, we are concerned with the latter
induced graphical structure, but both structures may be used to provide insight into the function of
neural networks. Fix a feedforward neural network architecture with L layers. LetGI = (V,E, φ) be
the network’s graphical representation induced by input I. Here V is the set of nodes in the network
including input, hidden, and output nodes, E is the set of edges between nodes, and φ : E → R is a
function assigning weights to edges. GI is a multipartite graph where each node in a given layer may
share an edge only with the previous and next layers’ nodes. In other words, V = V0tV1t· · ·tVL−1
where u ∈ Vk, v ∈ Vl, and (u, v) ∈ E only if k = l − 1. Define hl ∈ R|Vl| to be the activation
values for each node in layer l. Define hlu to be the u’th entry in vector hl. Let Wl be the weight
matrix connecting the node set Vl to Vl+1. This weight matrix is either the true weight matrix if layer
l is fully-connected, or if l is a convolutional layer, the unrolled filter matrix described below. Let the
entry in Wl corresponding to the v’th row and u’th column be denoted by wlu→v. Again, we will
drop this layer superscript unless otherwise necessary. With this information, we define the edge
weighting for edge (u, v) ∈ E via

φ(u, v) = |wu→vhu|
where u ∈ Vl, v ∈ Vl+1. For notational simplicity, we will drop the layer l superscript when the
layer is obvious. We use the absolute value of the hidden activation times the corresponding weight
parameter to align the ordering of simplices in the filtration with the corresponding relationship to
network semantics where (high activation or high suppression) are more important to classification
decisions, whereas activation values close to 0 are negligible in their semantic role.
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Figure 1: An illustration of neural network filtration and persistent subgraph reconstruction.

The filtration of GI is defined via filtration on φ. We have N = |E| values of φ which can be
ordered by ≥ such that max

E
φ = ω0 ≥ ω1 · · · ≥ ωN = min

E
φ ≥ 0. The associated filtration on GI ,

∅ ⊂ GI0 ⊂ GI1 ⊂ · · · ⊂ GIN = GI is defined by adding the corresponding edge (1-simplex) and
vertices (0-simplices) of each ωi into the graph. In other words, GI0 is the graph consisting of only the
highest weight edge (the 1-simplex given by max

E
φ) along with the vertices (0-simplices) connected

by that edge, GI1 is the (potentially disconnected) graph consisting of the previously described edge
and vertices along with the edge and vertices associated to ω1.

The intuition for constructing the input-induced graph from a neural network is as follows. For each
fully-connected layer, we connect each hidden node of layer l to each hidden node in layer l + 1
with an edge. The weight of this edge is the activation value of the hidden node multiplied by the
corresponding element in weight matrix Wl. The graphical construction for convolutional layers is
similar but requires slightly more preprocessing. For each incoming channel, unroll the convolution
operation into a (sparse) matrix multiplication operation. This multiplication operation operation then
induces a graphical representation like in the fully-connected case. Because this operation is sparse,
most of the edges have weight 0, indicating a stride of the filter whose preimage did not include that
neuron. This sparsity can be easily filtered out as it does not affect the persistence calculation. Max
pooling layers are constructed similarly, but the value passed from the node in the image of the filter
is the maximum of the activations in the preimage.

2.1 Persistent Subgraphs

With a filtration on GI , we can compute its persistent homology. We say a homology class α is
born at GIi if it is not in the image of the map induced by the inclusion GIi−1 ⊂ GIi . If α is born
at GIi , it dies entering GIj if the image of the map induced by GIi−1 ⊂ GIj−1 does not contain the
image of α but the image of the map induced by GIi−1 ⊂ GIj does. We call j − i the lifetime or
persistence of the topological feature generated by α. The filtration on GI induces the sequence of
homology groups 0 = Hp(∅)→ Hp(G

I
0 )→ Hp(G

I
1 )→ · · · → Hp(G

I
N ) = Hp(G

I). The lifetime
of a feature born at level i in the filtration and dying at level j in the filtration is precisely the rank
of the persistent homology group Hi,j

p (GI). For each dimension p, these persistent topological
features can be represented as vectors in the half-plane via a persistence diagram (Figure 2) where
more persistent features are located farther off the diagonal, while features that may be considered
topological noise are associated to points near or along the diagonal.

We are interested in zero-dimensional (p = 0) topological information within this paper. Higher-
dimensional topological features like holes and voids can be analyzed using a similar formulation,
but the interpretation of these features with respect to neural network classification performance is
less clear. By contrast, zero-dimensional topological features in this network space correspond to
connected components, with the homology sequence describing how various components are created
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and merged with larger structures across various weight scales within the filtration. As shown below,
these connected components capture important semantic information within the feature space of the
neural network.

Each α homology feature represents an equivalence class of some non-boundary cycle, so we can only
pick a representative subgraph for a particular persistent connected component. However, because
each of a typical neural network’s (non-zero) weights are unique, we are nearly guaranteed that each
equivalence class will contain only one element, namely the generator itself. In fact, a trained network
that reliably contains non-trivial equivalence classes would only be optimal in a domain with high
symmetry in input space. With stochastic weight updates and random initialization, the probability of
encountering such a network is extremely low. In such a case, the persistent subgraphs corresponding
to these generators can still be captured through the representative, but information on the number of
connected components represented by this symmetric feature in input space is lost.

With identification of the nodes and edges associated with each simplex in the filtration, we can
reconstruct the subgraphs within the neural network that represent these persistent topological features.
Let AI = {α1, α2, . . . αn} be the set of 0-cycle generators for H0(GI). Each αi is a simplicial
complex that may be represented as some subgraph of GI . Equivalently, and under a slight abuse of
notation, αi = (Vi, Ei, φ|Ei

) where Vi ⊂ V,Ei ⊂ E.

3 Topology of Neural Network Activations

A critical reason for introducing the notion of induced network topology is that it allows one to
view a network’s response to a particular input at across multiple resolutions while retaining the
nonlinearities of the network. Persistent homology gives access to a (po)set of graded subgraphs,
related by an inclusion relationship, which make up the network’s activation response to a particular
input. As opposed to picking an activation threshold and viewing the network of activations above this
threshold, persistence allows one to interrogate the network across such thresholds while retaining
information about how sub-networks at lower activation values are related to the structures that
emerge at higher thresholds. This discrepancy is important for the analysis of deep neural networks
wherein the range of activation values may be large but task-specific information may be distributed
throughout a subgraph of lesser-valued activations whose combined effect leads to changes in the
output class. The filtration of neural networks provided by persistent homology contains structure
which is intimately related to the semantics of the classification task. The generators are linked to
input features and the inclusion relationship over the generators induces a inclusion relationship over
sets of features in the input space. The lifetime of these generators provides a measure of globality
of subgraphs and, by extension, a measure of the globality of representations within the network.
The specific structure of the generators in terms of their location in the larger network provides
insight into the role of the generators in the output decision of the network. We discuss in this section
how this persistence structure provides a unique and powerful viewpoint through which to analyze
the representations learned by deep networks and find clarity in the potential causes of adversarial
vulnerability in these models.

Persistent homology gives access to a set of graded activation subgraphs (the generators) distributed
across the network architecture. Following this understanding, we can associate some meaning–
via the semantics of the input space–to the generators AI . Each generator αi corresponds to a
feature within the input represented by the network. More precisely, recall from Section 2.1 that the
filtration on GI induces a sequence of (0-dimensional) homology groups 0 = H0(∅)→ H0(GI0 )→
H0(GI1 )→ · · · → H0(GIN ) = H0(GI). This induces the following relationship

0 // H0(GI0 )

��

// H0(GI1 )

��

// · · · // H0(GIN−1)

��

// H0(GIN )

0 // I0 // I1 // · · · // IN−1 // IN

for some filtration of the input ∅ ⊂ I0 ⊂ I1 ⊂ · · · ⊂ IN = I. The chain of homology groups
(the inclusion of the generators) corresponds to an inclusion relationship for features in the input
such that a lower-lifetime homology group dying via inclusion in a longer-lived group implies the
subgraph representing the union of these two generators contains the input information from both.
For example, a generator in the first layer of the network may represent the edge connecting a pixel
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Figure 2: Left: L∞ distance between unaltered images and their adversarial counterparts for C&W L2

versus Wasserstein distance of their induced persistence diagrams within the CFF-Sigmoid network.
Right: Trajectory of the persistence diagrams as MNIST images are transformed into adversaries.

within an input image to a weight within a convolutional filter. However, the inclusion of this edge
into a generator with edges from other locations of the input as well as nodes in the next layer gives
rise to a generator which captures the semantics within (spatially) disparate regions of the input along
with information of how these features are combined by the network. This diagrammatic relationship
mapping the filtration of the network to its semantic content provides a powerful abstraction for
reasoning about the behavior of neural networks. Through proper characterization of the relationship
between generators and their representation in input space, one can associate features of the input
to their representational subgraphs within the network and begin reasoning about the robustness
and versatility of these features in either network or input space. Crucially, the existence of a map
between network structure and an input provides a way to compare representations across networks
by analyzing the filtration induced on the input.

The generators also come equipped with a natural measure of globality through their lifetime. This
structure can also be used for interpretation of network activations. Under this measure, an infinitely-
lived generator represents a global descriptor of its constituent generators. For a well-trained network,
we expect this generator to contain the correct class’s neuron as a node in the subgraph it represents,
as the activations flowing to this node should be the highest of all nodes in the final layer. In Section
6.2 we find that a network may have more than one infinitely-lived generator. One may interpret
this behavior as the network suppressing representations from other classes to arrive at a proper
classification decision. However, it is unclear whether this behavior is always suppressive, in which
case this behavior is indicative of the network carrying information deeper into layers than would
otherwise be necessary for proper task performance given that input. The lifetime of the generators
provides extra information for comparing the relative importance of two representations within a
network and provides a measure to compute similarity between two persistence structures across
scales.

To compute similarity in the space of persistent subgraphs, we use a hamming-like distance augmented
by edge weights and lifetime of the generator within which that edge is located. That is, given the
function l(α) = d(α)− b(α) mapping a generator α in the persistence diagram to its lifetime where
d and b output positive real values, let the vector o(AI)AI ⋃

AJ be the one-hot-encoded vector for
the set AI of all edges across all graphs of AI and AJ for two inputs I,J . This vector will have
a 1 for every edge in the generators of AI and a 0 everywhere the generators of AJ have an edge
that is not in AI . For two of these vectors o(AI)AI ⋃

AJ and o(AJ )AI ⋃
AJ , we can calculate their

hamming distance to arrive at a notion of the difference between two induced subgraph structures
of the same network. However, this measure throws away the hierarchical information returned by
persistent homology. We can instead compute the lifetime-weighted distance between two induced
subgraphs structures by replacing the 1’s with the lifetime l(α) of the generator within which that
edge is contained multiplied by the edge weight.
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Table 1: Classficiation accuracy for the Subgraph SVM classifier and the base accuracy of the neural
network (Network Accuracy). Recovery Accuracy is the Subgraph SVM’s accuracy in predicting the
true class of an adversarial input to a network. Subgraph SVM accuracy is reported as the average of
10-fold cross-validations, and Recovery Accuracy is computed over 2000 adversarial examples. Top:
MNIST. Bottom: Fashion MNIST.

Network Subgraph SVM Accuracy Network Accuracy Recovery Accuracy

CCFF-Relu 89.3% 97.6% 70.3%
CCFF-Sigmoid 89.1% 88.8% 83.4%

CCFF-Relu 89.3% 90.0% 80.3%
CCFF-Sigmoid 80.0% 80.2% 73.3%

4 Experiments

We implement the ideas provided in the previous sections using three neural network architectures of
reasonable size and three datasets. These experiments highlight peculiarities in the representations
learned by deep networks and suggest routes for improving their robustness and generalization
capabilities.

We trained three architectures, two on MNIST and Fashion MNIST, and one on the CIFAR10 dataset.
The FashionMNIST and MNIST networks are both four layers, two convolutional followed by two
fully-connected layers, but differ in their activation function. We refer to the network with ReLU
activation as CCFF-Relu and the network with sigmoid activations as CCFF-Sigmoid. The CIFAR10
network is an AlexNet [11] variant. See the supplementary materials for more information on network
architectures.

4.1 Adversaries

For each network and dataset combination, we create a set of adversaries based off of the test set of
each dataset. We create adversaries through two different methods. The first is the L2 version of the
Carlini Wagner adversaries described in [1] which we refer to as C&W L2. The other adversarial
generation algorithm is the Projected Gradient Descent Attack as described in [13] with ε = 0.001
and step size 0.01 which we refer to as PGD.

4.2 Subgraph Classification

To show that homology reliably extracts activation subgraphs of the network that represent pathways
of task-relevant information from input to output layer, we train a simple SVM using the lifetime-
weighted distance as kernel over the persistent subgraph structure and show that a classifier based
on this activation structure alone can achieve excellent classification performance (Table 1). We
also find that, given an adversarial input, this simple model can overwhelmingly recover the correct
class of the input, implying the persistent structure of the network largely preserves the semantic
content of the original image, despite misclassification by the network. We can see from Figure 2 that
even when restricted to only information within the persistence diagram (number of generators and
their lifetimes), persistent homology still captures information about the input through the network
activation graph. We see even for the more sophisticated C&W L2 attack a nearly linear relationship
between L∞ distance in image space and Wasserstein distance between persistence diagrams for most
adversaries, implying that persistent homology is able to capture information about the input space
from the activation graph, even when the network itself misclassifies the input. These results imply
that the underlying class information from the input is still recoverable from the network at a global
scale, but local deviations in the network induced by adversarial perturbations cause misclassification.

4.3 Nearest Neighbors

For a well-trained neural network f with training data properly sampling the input distribution, we
expect the generators {AI | f(I) = c} induced by inputs predicted by the network to be of class
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Figure 3: Similarity in input space (top) and persistent subgraph space (bottom) for FashionMNIST
(left), MNIST (center), and CIFAR10 (right).

c to be related in their hierarchy derived from the inclusion structure in the generators. In other
words, we expect the subgraph structure induced by inputs of the same class to be similar, sharing
representation structures. We investigate this relationship by computing the nearest neighbors in input
space and comparing them to the nearest neighbors terms of their induced persistent subgraphs using
the lifetime-weighted distance over the subgraphs and their lifetimes.

We see from Figure 3 that the subgraph similarity structure largely reflects the similarity structure in
image space. Cross-class similarity also shows up within the subgraph similarity structures, implying
the existence of representations that are shared across classes. This sharing is desirable, implying
the network is learning general representations that can suit the representation of multiple classes
before being incorporated into more complex representations in later layers. However, it is unclear
whether this representational overlap learned by the networks is optimal. For example, we see that the
network representations of the MNIST class 1 are mostly distinct with respect to the representations
for all other classes. This could be a sign that the representations learned for this class are too specific
to that class and the network’s generalization performance would benefit from building this class
from representations learned for other classes or vice versa. In general, although we see a structural
relationship between similarity in input space and similarity in activation space, the similarities in
representation space are not as cohesive within classes as in input space, potentially implying a subtle
kind of overfitting within the network where the subgraph representations learned are too specific to
regions of input space that could otherwise be spanned by a more general set of representations for a
given class.

4.4 Adversarial Perturbations

If a network were creating general representations that properly and robustly partitioned input space,
we would expect adversarial perturbations to target the representational structures of the target class,
inducing persistent subgraphs associated to the semantics of the target class. However, we find that
adversarial examples do not target networks in this way, and that their perturbations are not associated
with the representations of any particular class (Supplementary Materials). Instead, adversarial
perturbations act in such a way to enact downstream effects in the network via the subgraph structure
induced by the underlying semantics of the image. In other words, adversarial examples target
changes in the input that will flow with the subgraph structure of the input image but cause changes
in later layers and, crucially, the output layer. This unique perspective for effects of adversarial
examples fits with the previous hypotheses on the subject. In [7], the authors note that direction is an
important determinant of where adversarial examples may be found in image space starting from
a given input. From Figure 4, we see that direction is important, in that an arbitrary movement in
input space lead to different subgraph structures (in terms of number of edges and generators) as do
adversarial movements of equal magnitude. This movement is in the direction of a class boundary,
but given that adversarial examples do not activate representational structures of the target class,
this implies the decision boundaries of the network are sponge-like, improperly generalizing to all
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CCFF-Relu CCFF-Sigmoid AlexNet

Figure 4: Perturbation effects on subgraph structure for each model. Top Row: Lifetime-weighted
similarity to unaltered image for each adversarial example and a random perturbation of equal
magnitude. Second Row: Histogram of top row’s similarity information. Third Row: Distribution of
the number of generators produced from persistent homology on each type of input. Bottom Row:
Distribution of number of edges contained within the generated subgraph structure for each type of
input.

regions slightly off of the image manifold. We also note from Figure 4 that the global structure of the
persistent subgraphs are more detectable as dataset and network complexity increase.

From the perspective of representations embodied within the subgraph structure, it is unclear how
adversarial vulnerability may be remedied under current feedforward architectures. There exist ways
to push these representations to more robustly span off-manifold regions of the input space, e.g.
adversarial training [22], but perfect coverage looks to be infeasible [19]. The experiments above
imply that a network properly resistant to adversarial examples would need to be capable of activating
representations related to the task-specific semantics of the input while simultaneously suppressing
auxiliary activations irrelevant to the task. It appears that feedforward networks are in need of a
global regularizer that promotes better invariance to local changes in representational structure.
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5 Conclusion

The nonlinearities and expansive parameter spaces of deep networks lead to difficulties in the
analysis of their learned representations activated by the input. We introduced in this paper a method
for computing persistent homology over the graphical activation structure of neural networks and
discussed the theoretical benefits of such a topological perspective. We find this graded filtration
of subnetworks is effective in capturing local-to-global shape characteristics of the network and
can provide insight into some peculiarities of deep network functionality, including the existence of
adversarial examples.
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6 Appendix

6.1 Persistent Homology

Persistent homology provides a method for computing topological features of a space across arbitrarily
many resolutions of the space. The topological features that persist across multiple spatial scales may
be interpreted as being “true” topological features of the space under study. The decomposition, or
filtration, of the space corresponds to a choice of metric between points in the space. In the discrete
setting, the space is typically represented by a simplicial complex with the filtration describing how
the space is constructed based on the chosen metric.

6.1.1 Simplicial Homology

Let K be a simplicial complex. Under Z2 coefficients, a p-chain is a subset of p-simplices of K. The
set of p-chains, together with addition, forms a free abelian group Cp called the p-th chain group
of K. The boundary ∂p(σ) of a k-simplex σ is the set of its (p − 1)-faces, and that of a p-chain is
the addition of the boundaries of its simplices. The boundary operator defines a homomorphism
∂p : Cp → Cp−1.

Define a p-cycle to be a p-chain with empty boundary and a p-boundary to be a p-chain in the image
of ∂p+1. The collection of p-cycles and p-boundaries are called the p-th cycle group Zp = ker ∂p
and the p-th boundary group Bp = im ∂p+1, respectively. Both are subgroups of Cp. The p-th
homology group is the quotient group Hp(K) = Zp/Bp. Elements of Hp are the homology classes
α+Bp = {α+ b | b ∈ Bp} for p-cycles α. We refer to α as the generating cycle of the homology
class [α] = α+Bp. Two p-cycles α and γ are homologous if [α] = [γ], that is, α+ γ ∈ Bp is the
boundary of some (p+ 1)-chain.

The rank of Hp is called the p-th Betti number of K, denoted by βp. A basis of Hp is a minimal set
of homology classes that generates Hp. A set of p-cycles A = {α1, α2, . . . , αn} generates Hp, if
the set of generators {[αi]} forms a basis for Hp where |A| = βp.

6.1.2 Persistent Homology

Let K be a simplicial complex. A filtration is a nested sequence of subcomplexes ∅ = K0 ⊂
K1 ⊂ · · · ⊂ Kn = K. In other words, the filtration is a description of how we want to construct
K by adding arbitrary-sized chunks at a time. With persistent homology, we are interested in the
topological evolution of K as it is deconstructed, which is expressed by the corresponding sequence
of homology groups. Since Ki ⊂ Ki−1, the inclusion of each subcomplex into the larger complex
induces a homomorphism between homology groups, fp : Hp(Ki−1) → Hp(Ki). The nested
sequences of complexes shown above thus corresponds to a sequence of homology groups connected
by homomorphisms, 0 = Hp(K0) → Hp(K1) → · · · → Hp(Kn) = Hp(K). There exists this
sequence of homology groups for each dimension p. The filtration defines a partial ordering on the
simplices with σ ⊂ Ki −Ki−1 preceding τ ⊂ Kj −Kj−1 if i < j. This extends to a total ordering
for appropriate choice for how simplices are ordered for each Ki −Ki−1. The rank of im fp is the
number of p-dimensional homology classes that are born at or before Ki and are still alive at Kj .
We can encode each h ∈ im fp as a point in the half plane where the x-axis encodes the level in
the filtration i where h first has a preimage in Hp(Ki), and the y-axis encodes the earliest level in
the filtration j where the image of h in Hp(Kj) is trivial. This half-plane representation is called a
persistence diagram, denoted Dgm(fp).

For two functions fp and gp, we can compare their persistence diagrams using the Wasserstein
distance which is defined as the q-th root of the infimum, over all matchings between the points, of
the sum of q-th powers of the distance between matchings:

Wq(Dgm(fp),Dgm(gp) = inf
ν

 ∑
u∈Dgm(fp)

‖u− ν(u)‖q∞

 1
q

where q is a positive, real number. In the limit for q going to infinity, we get the bottleneck distance
which is the length of the longest edge in the best matching. Persistence diagrams are stable with
respect to the bottleneck distance [2].
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6.2 Experiments

We implement the ideas provided in the previous sections using three neural network architectures of
reasonable size and three datasets. These experiments highlight peculiarities in the representations
learned by deep networks and suggest routes for improving their robustness and generalization
capabilities.

6.2.1 Architectures

We trained three architectures, two on MNIST and Fashion MNIST, and one on the CIFAR10 dataset.
All networks were trained for 20 epochs using stochastic gradient descent with learning rate 0.01.
The first architecture, CCFF-Relu, is a four layer network consisting of two convolutional layers with
three 5x5 filters, three 3x3 filters, and ReLU activations followed by two fully-connected layers of
size 1452x256 and 256x10 also with ReLU activations. The second architecture is identical to the
previous but substitutes sigmoid for ReLU activations. We refer to this network as the CFF-Sigmoid
network. The final network is an AlexNet [11] variant with zero padding on all kernels and strides
appropriately augmented to match this difference.

6.2.2 Subgraph Classification

We perform two classification tasks. For the first, we investigate the extent to which these subgraphs
represent class-specific information encoded by the network activation structure. For this, we segment
U into training and test sets Utrain and Utest, and compute the associated vectorization Xtrain. We then
vectorize the test set according to the edges corresponding to the dimensions of Xtrain, resulting in
matrix Xtest. For each dataset, architecture, and adversarial generation method, we train an SVM to
predict the class of each input represented byXtest. The mean accuracy across 10-fold cross-validation
is reported in the main paper.

Fix a network architecture, dataset, and adversary generation method. Let U be the set of unaltered
images and A the set of adversarial images. Also define U = {SI | I ∈ U} as the set of persistent
subgraphs computed from each unaltered image. Let Λ = {SI | I ∈ A} be the persistent subgraphs
for each adversarial image. Define Utrain ⊂ U as a training subset of unaltered induced subgraphs.
Let N = |Utrain| be the size of the training set. Each training set image has a corresponding class
label representing the true class of the input image. We also create a simple one-hot edge occupancy
vectorization for the entire training set Utrain, where each unique edge in Utrain is represented by a
dimension in the vectorization, and induced subgraphs SItrain ∈ Utrain have value 1 along a dimension
if they contain that edge. Let

D =

∣∣∣∣∣ ⋃
E∈Utrain

E

∣∣∣∣∣

Figure 5: PCA projection of vectorized persistent subgraphs for CCFF-Sigmoid network on MNIST
(left) and CCFF-Relu network on Fashion MNIST (Right). Points are colored according to their
true class, and misclassified points are plotted as x’s. It is clear these subgraphs represent relevant
semantic information about the input given the separation of dissimilar objects (0’s and 1’s) and
clustering of like objects (Sandals, Sneakers, Ankle boots).
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be the size of this vectorization. The result is a matrix Xtrain ∈ ZN×D2 . Example PCA projections of
this matrix are shown in Figure 5.

We train a simple one-versus-one Support Vector Machine (SVM) [3] with the lifetime-weighted
kernel. Using this classifier, we perform two classification tasks. For the first, we investigate
the extent to which these subgraphs represent class-specific information encoded by the network
activation structure. For this, we segment U into training and test sets Utrain and Utest, and compute the
associated kernelization Xtrain. We then kernelize the test set according to the edges corresponding
to the dimensions of Xtrain, resulting in matrix Xtest. For each dataset, architecture, and adversarial
generation method, we train an SVM to predict the class of each input represented by Xtest.

For the second classification task, we are interested in the extent to which the network activation
structure is able to retain information about adversarial inputs, despite misclassification. We take
Utrain = U and take A to be the test set. We again kernelize the subgraphs through the training edge
set. For each dataset and adversary method, we train an SVM to predict the class of the input based
only off of the persistent subgraph information. The accuracy of the original network on U , the
accuracy of the SVM in recovering the true class from an adversarial input (Recovery Accuracy) is
reported in the main paper. All networks have Network Accuracy of 0% on their adversary test set A.

Note that, in all subgraph classification experiments, we do not do hyperparameter tuning of any sort.
This simplistic model setup was chosen as a proof of concept in the recognition of input semantics
via network subgraph structure. It is expect that much better results could be achieved with a more
sophisticated modeling technique and proper parameter tuning.

6.2.3 Adversarial Perturbations

We compute the adversarial perturbations via Euclidean distance in input space and compute the
associated random perturbation by adding Gaussian noise to the underlying image until the norm of
the noise equals the norm of the adversarial perturbation. We then compute the induced persistent
graph structure for each image, its randomly perturbed image, and its adversarial image and display
the some of the structural differences in the main figure. We find that the majority of adversarial
examples induce more edges within the subgraph structure than their unaltered counterpart (100% for
CCFF-Relu, 89% for CCFF-ReLU, 80% for AlexNet). We compute for each network and dataset
the set differences between the edge sets of the unaltered subgraph structure and the adversarial
subgraph structure, leaving us with the persistent edges that are induced by the adversarial image
but not the unaltered image. We then compare this set of edges to the induced subgraphs all other
unaltered subgraphs. If the adversarial examples were targeting the semantics of their target classes,
we would expect the set difference (the added edges) would be found within the persistent subgraphs
induced by the unaltered images of that class. Figure 6 shows this similarity structure. The rows of
the similarity matrix are ordered by the predicted class while the columns are ordered by target class
of the adversary. We would expect block structure to emerge if the added edges were found in the
persistent subgraphs of the target class as induced by an unaltered image.
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Figure 6: Edge set difference similarity structures for AlexNet on CIFAR10 (top), CCFF-Relu (middle
row), and CCFF-Sigmoid (bottom row). The left column is MNIST and the right column is Fashion
MNIST.
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