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Abstract—Segmentation of tumors in brain MRI images is
a challenging task, where most recent methods demand large
volumes of data with pixel-level annotations, which are generally
costly to obtain. In contrast, image-level annotations, where only
the presence of lesion is marked, are generally cheap, generated in
far larger volumes compared to pixel-level labels, and contain less
labeling noise. In the context of brain tumor segmentation, both
pixel-level and image-level annotations are commonly available;
thus, a natural question arises whether a segmentation procedure
could take advantage of both. In the present work we: 1) propose
a learning-based framework that allows simultaneous usage of
both pixel- and image-level annotations in MRI images to learn
a segmentation model for brain tumor; 2) study the influence of
comparative amounts of pixel- and image-level annotations on the
quality of brain tumor segmentation; 3) compare our approach
to the traditional fully-supervised approach and show that the
performance of our method in terms of segmentation quality may
be competitive.

Index Terms—MRI, Brain, Oncology/tumor, Image segmenta-
tion, Supervised learning, Weakly-supervised learning

I. INTRODUCTION

Gliomas represent approximately 30% of all brain and
central nervous system tumors and 80% of all malignant
brain tumors [1]. Glioblastoma, a grade IV glioma, is the
most common and most aggressive primary brain tumor. It
comprises 15% of all intracranial neoplasms and 60-75% of
astrocytic tumors [2]. Glioblastoma has the lowest 5-Year
Relative Survival Rate compared to the other types of brain
tumor: it varies from 19% to 5% for different age groups [3].
Once a glioma becomes symptomatic, patients’ chance of
recovery drops drastically. That’s why early detection becomes
crucial in the case of gliomas [4]. Computer-assisted diag-
nosis (CAD) methods should reduce the cost and accelerate
the process of lesion detection and segmentation. Recently
this problem has been widely studied, particularly thanks
to BRATS challenges [5], [6], and their provided data sets.

Despite that, the necessity of acquisition of large representative
data sets rests unchanged. Pixel-wise delineation of lesions is
a costly task demanding significant resources. In this work, we
propose a method that allows reducing the number of needed
images with pixel-wise labels.

The article has the following structure. In Section II we
describe related works. Data and pre-processing are considered
in Section III. We provide methods description in Section IV.
Resuts are given in Section V and conclusions are in Section
VI.

II. RELATED WORK

Medical imagery segmentation task comprises several dif-
ferent problem statements depending on the type of the avail-
able in every particular case annotation of the training dataset.
Here we introduce main options and give examples of works
representing each of them.

A. Fully-Supervised Learning

The most natural and informative way to represent a lesion
in a 2D image is to give it’s precise contour. In the discrete
case where images have a finite dimension and contain pixels,
each pixel can be classified as belonging to the lesion or not. If
this information is available for the whole dataset, this kind of
annotation is called pixel-wise annotations or full annotation.
In the particular case of brain MRI images, the challenge of
BRATS uses this type of annotation. The winning solution [7]
of BRATS-2018 uses encoder-decoder architecture with added
variational autoencoder regularization.

B. Weakly-Supervised Learning

When the full annotation is unavailable we may still extract
some useful information for segmentation from what is called
weak annotations. For example, bounding box annotation [8]
is a type of weakly supervised annotation. More commonly the
image-level annotations are used (presence/absence of lesions



for example). Multiple Instance Learning (MIL) method [9]
has recently gained much attention [10] and has become
one of classical approaches to train segmentation with weak
supervision [11]. MIL can be generalized [12] in the sense
that it also introduces geometrical constraints on pixel map.
Another way to incorporate geometric properties of lesions is
based on CNN detector (i.e. binary classification) architectures
[13], [14].

The MIL method consists of four principal aspects:
• A feature map M ∈ [0, 1]m×n is somehow obtained

from the initial image (e.g. with the techniques of CNN);
these values are interpreted as probabilities of presence
of lesion in a particular pixel of the feature map;

• A positive value K ∈ N is chosen. Often some knowledge
of the problem structure (e.g. average size of lesions in
pixels of feature map) may be useful for this choice;

• Values of feature mapM are sorted in descending order:
a1 ≥ a2 ≥ · · · ≥ amn;

• A specific loss function to optimize is constructed in the
following way: if the whole image is classified positively
(contains lesion), it is the sum of pixel-wise log-losses
over the pixels of the feature map M where first K
pixels (i.e. corresponding to a1 to aK) are considered
positively classified (so 1 is used as true value in the
corresponding log-loss) and resting mn − K pixels are
considered negatively classified (so 0 is used as true value
in the corresponding log-loss). If the whole image is
classified negatively (contains no lesion) all log-losses
are calculated with respect to the true value of 0.

In the present work m = 4, n = 3, so the feature map M
contains 4× 3 = 12 pixels and K = 4. The details of choice
of parameter K as well as a more formal description of the
MIL method will be provided in the section IV.

C. Semi-Supervised Learning

If fully annotated images are still available but their amount
is relatively small with respect to the size of training dataset,
we could attempt to extract some additional information (for
example for prediction of size of the target region) from the
part of the dataset not containing annotations [15]. This type
of learning is called semi-supervised.

The whole dataset could also be weakly annotated along
with provided full annotation for some instances. There is an
attempt to solve this problem with GANs [16]. We will use a
more straightforward way by introducing an architecture that
allows to use the fully supervised learning with MIL method
training.

III. DATA AND PREPROCESSING

We work with the data of the BRATS-2018 competition
[17], which contains MRI images for 285 patients diagnosed
with glioma. For each patient, several series of slices represent
different projections and contrast of MRI scanning. Each slice
is annotated with a per-pixel segmentation mask. Although
BRATS-2018 contains segmentation masks for various tumor
parts, we target the problem of whole tumor segmentation

only. In this work, the post-contrast T1-weighted scan (T1Gd)
images were used. We preprocess the selected slices as fol-
lows:

1) we omit near-boundary slices that contain few bright
pixels;

2) we align each series by most-right, -left, -upper, and -
down achieved borders to reduce the area of background
pixels;

3) we resize each series to 170x140 resolution.
The number of images per patient varies between 98 and 123,
with an average of 110. The percentage of images containing
lesions varies from 18% to 90%, with an average of 56%.
Overall, there are 31350 images, where 15761 contain lesions.

We introduce three groups of images, according to the
minimal lesion percentage area: “> 1%”, “ > 5%”, “> 10%”
limiting lesions (only for “positive” images, i.e. containing
lesions) make up at least respectively 1%, 5% or 10% of the
total brain cross-section area of the image, so that the number
of “positive” images in the groups sums up to respectively
13806, 9804 and 5636 correspondingly. In addition to selected
“positive” images, all “negative” images (i.e. images not
containing lesions) are also included into each of these groups.

IV. METHODS

A. Architecture Description

Our architecture is inspired from [13] and based on ResNet-
50 [18] network (Keras Applications implementation). We take
feature maps M1 ∈ R1024×11×9, M2 ∈ R512×22×18, M3 ∈
R256×44×36 of layers “res4f branch2c”, “res3d branch2c” and
“res2c branch2c” of ResNet-50 respectively and sum them up
correspondingly with trainable weights W 1 ∈ R1024×1,W 2 ∈
R512×1,W 3 ∈ R256×1 step-wise. At each step i a map Ai

is defined as a sum of the output of the upsampled (by a
factor of 2 in both axes) output Ai−1 of the previous step and
a weighted summation of feature maps corresponding to this
step. We also apply valid max-pooling with filter size 10× 10
and stride 10 to the output A3 of the last step and introduce
Ã3. This technique allows to extract more abstract features
from deeper layers along with less abstract features from less
deep ones. Formally the architecture (Fig. 1) can be written
as follows:

A1 :=

1024∑
i=1

W 1
i M

1
i,·,· ∈ R11×9,

A2 :=

512∑
i=1

W 2
i M

2
i,·,· + UpSampling(2, 2)[A1] ∈ R22×18,

A3 := σ

(
256∑
i=1

W 3
i M

3
i,·,· + UpSampling(2, 2)[A2]

)
∈ [0, 1]44×36,

Ã3 :=MaxPool(10× 10, stride = 10)[A3] ∈ [0, 1]4×3,



where σ(·) is a sigmoid function.

Fig. 1. The architecture structure is organized in three steps. Each step consists
of: 1) Weighted integration; 2) Upsampling. The output of each step is added
to the output of the following step.

B. Method Description

In what follows, we call learning with pixel-level annota-
tions fully-supervised (FS) and its corresponding annotations
full, while learning with image-level annotations is called
weak-supervised (WS), and its respective annotations weak.

As shown in the Fig. 2, our method consists of two auxiliary
steps and two main steps. The auxiliary steps are:

• Pretraining on ImageNet: we initialize the underlying
ResNet-50 weights with weights pretrained on ImageNet
dataset;

• Binary classification pretraining step: using only weak
supervision, we may pretrain the original ResNet-50 on
the classification task using the architecture shown in the
Fig. 3. This step could familiarize our network with the
features of the new dataset and facilitate the training on
the main steps. More details on this pretraining are given
in Section V-A;

Here we describe the two main steps.
1) Fully Supervised Learning Step: Fully supervised seg-

mentation is traditionally learned with Dice index:

Dice index(P, T ) :=
2
∑

i,j PijTij + 1∑
i,j P

2
i,j +

∑
i,j T

2
i,j + 1

,

where P is the pixel map prediction (Pi,j ∈ [0, 1]), T is a
ground truth binary pixel map (Ti,j ∈ {0, 1}). We define also
Dice loss function:

Dice loss(P, T ) := 1− Dice index(P, T )

Fig. 2. Approach steps

Fig. 3. Classification architecture

In our case: P ≡ A3, so we train our segmentation on
44 × 36 feature maps, downsampled from the original shape
of 170× 140 introduced in Section III.

Fully supervised step will be performed on a possibly small
datasets using data augmentation (rotations, translations). The
dependency of the final result on the size of those datasets
will be studied in Section V-C.

2) Weakly Supervised Learning Step: The weakly super-
vised learning step is based on the Multiple-Instance learning
(MIL) [9] and performed on Ã3 as shown in the Fig. 1.
Let (a1, a2, . . . , a12) := sort[(Ã3

i,j)16i64,16j63] — sort in
descending order. Let In define nth(1 6 n 6 N ) training
image, yn ∈ {0, 1} — it’s label (absence/presence of lesion),
Iin — the part of In on which ai depends, and θ — trainable
parameters of the architecture including W 1,W 2 and W 3. So
we define:

p(y = 1|Iin, θ) := ai, p(y = 0|Iin, θ) := 1− ai.

The MIL method is performed on Ã3 which consists of
4 × 3 = 12 pixels. Prior to training parameter K ∈ N is
chosen. If a particular image contains lesions (i.e. a global
label y = 1 is attributed to it), a label of 1 is used as a “true”
values to exactly K top valued pixels. Other 12−K pixels are
attributed with a “true” value of 0. In the case when y = 0,



all 12 pixels of Ã3 are attributed with a “true” value of 0. The
defined “true” value of each pixel is next used to calculate a
sum of binary cross-entropy losses of different pixels. Here
we describe the MIL loss formally:

L := − 1

12×N

N∑
n=1

 K∑
j=1

log(p(yn|Ijn, θ))+

+

12∑
j=K+1

log(p(y = 0|Ijn, θ))


In addition to L we consider a l2-regularization (λ = 5e−6)
term over the kernel (not biases) parameters of ResNet-50. We
conducted a series of 5-fold cross validation experiments for
different values of parameter K and we chose the values of
K = 4 as the optimal value in terms of Dice loss.

C. Training Details

The learning was conducted in the following way:
• Binary classification step is trained with Early Stopping

3 epochs (i.e. we stop training when no improvement of
validation loss is observed during 3 consecutive epochs);

• Fully supervised learning step is trained with Early
Stopping 15 epochs; then we restore best weights and
launch a new convergence with 10 times smaller learning
rate and with Early Stopping 5 epochs;

• Weakly supervised learning step is trained with Early
Stopping 2 epochs and a tolerance value of 0.01; If there
is no improvement from the very beginning we restart
training with a 10 times smaller learning rate;

We used Adam optimizer [19] for training. In binary clas-
sification step we used αbin := 5× 10−5. Learning rates αfs

and αws were selected empirically based on observations of
the convergence behaviour as a function of the number Nfs

of images used for the fully supervised learning step using the
following heuristic:

αfs =
5× 10−2

Nfs
, αws =

5× 10−3

N2
fs

.

The performance of FS step significantly depends on the
choice of αfs. One may observe in Fig.7, 8, 9 that the
behaviour of the FS curve (distance between curves) varies
between different datasets, whereas the WS step behaves more
robustly. For the reversed order (WS step followed by FS step)
of training (discussed in Section V-B) we used αfs := 5×10−6
and

αws :=
5× 10−6

Nfs
.

For the most of experiments 5-fold cross validation was
applied. At each cross validation step 228 patients were used
for training and other 57 for testing. For WS step both training
and test sets were balanced so that they contain doubled
number of positively (negatively) diagnosed images. For FS

step a certain number Nfs of WS were taken with their pixel-
wise segmentation as well as exactly Nfs images diagnosed
negatively. For the rest of the present work this will be noted
as “number of images, ×2” or “Nfs(+Nfs)”.

V. RESULTS

A. Binary Classification Pretraining Performance

As one can see in Fig. 4, the binary classification pretraining
provides faster convergence at the fully supervised learning
step and leads to better results.

Moreover (see Fig. 5) the binary classification pretraining is
crucial for convergence of weakly supervised step when steps
are reversed (WS step precedes FS step).

Fig. 4. Learning curves with binary classification pretraining and without

Fig. 5. Learning curves for weakly supervised learning step when WS step
precedes FS step

B. Order Of Steps

We compare performance of the two main steps both in
cases with binary classification pretraining of ResNet-50 and
without (for the ”10%” dataset, 500(+500) setup). In Fig. 6
and Table I one can observe that the order chosen above is
indeed optimal as well as the binary classification pretraining
step utilization. Learning curves for the reversed case (i.e. MIL



step is trained before FS step) are shown in Fig. 5 and Fig. 6.
With binary classification pretraining step FS step converges
much faster and without the WS step does not converge at all.

TABLE I
STEPS ORDER COMPARISON

Order of steps Classification pretraing Dice loss, step 1 Dice loss, step 2
FS → MIL YES 0.15± 0.02 0.14± 0.02
FS → MIL NO 0.20± 0.04 0.17± 0.02
MIL → FS YES 0.47± 0.19 0.15± 0.03
MIL → FS NO 0.84± 0.03 0.19± 0.03

Fig. 6. Learning curves for fully supervised learning step when FS step
follows WS step

C. Principal Results

We report main results of this work. Firstly, we compare
the straight order (i.e. MIL after FS) algorithm results for
different sizes of pixel-wisely labeled sets used at the FS
step (see Fig. 7, 8, 9). We remind that we are using balanced
training datasets for the FS step and it’s size is twice the size
of corresponding pixel-wise labelled set containing tumor (the
second half corresponds to clear images not containing tumor).

Secondly, we compare our method (500(250 + 250) fully
annotated images) to purely fully supervised approach (see
Table II). The results are provided for “≥ 1%, “≥ 5% and
“≥ 10% datasets and for the 80% (training)/20% (test) splits
for the purely fully supervised approach.

Our approach allows to reduce the number of pixel-
wisely segmented images containing tumor up to 150-250,
still providing competitive quality of segmentation. Moreover,
it demonstrates robustness with respect to a possible non-
optimality of chosen learning rate values for different data
sets.

The obtained quality of segmentation is not uniform over
different datasets. Adding slices with smaller tumor cross
section area makes the problem more difficult.

We also report the visual analysis results of comparison
of two steps of our approach: FS and FT. Among 100
randomly selected validation set images we found 22 cases
of improvement of the whole tumor segmentation quality after

the fine tuning (FT) step compared to the preceding FS step, 3
cases showed changes in the opposite direction and for other
cases the quality seems to be the same. Some examples of
segmentation errors corrected between steps are shown in Fig.
10.

Fig. 7. Results for fully supervised learning step (red) and fine tuning MIL
step (blue) on dataset ”10%” with 95%-confidence intervals;

Fig. 8. Results for fully supervised learning step (red) and fine tuning MIL
step (blue) on dataset ”5%” with 95%-confidence intervals;

Fig. 9. Results for fully supervised learning step (red) and fine tuning MIL
step (blue) on dataset ”1%” with 95%-confidence intervals;



TABLE II
OUR METHOD (FS+MIL) FOR 250 FULLY ANNOTATED IMAGES(+250
WITHOUT LESIONS) COMPARED TO THE PURELY FULLY SUPERVISED

APPROACH ON THE WHOLE DATASET

Dataset FS+MIL, 5-fold CV Fully supervised, 80%/20%
> 1% 0.24± 0.01 0.2099
> 5% 0.2± 0.03 0.1629
> 10% 0.15± 0.04 0.1077

Fig. 10. Examples of errors of FS step corrected by MIL step. First row:
original images with ground truth original segmentation (red contour) where
available; Second row: segmentation (blue) with downsampled ground truth
contour (red) after FS step; Trird row: segmentation (blue) with downsampled
ground truth contour (red) after MIL step;

VI. CONCLUSION

We proposed a framework that allows to use both weak
and pixel-wise annotations to learn segmentation. We also
demonstrated that our method may reduce the need of costly
fully annotated images by using the weakly annotated ones.

As a possible direction for further research we view alternat-
ing between fully- and weakly- supervised steps during train-
ing, which should provide a gradual increase in segmentation
quality. Another possible direction could be an improvement
the MIL feature map acquisition method (instead of the used
MaxPooling technique).

We can also use a special boundary loss from [20] and
a fusion of multi-fidelity data [21] to increase semantic
segmentation accuracy; sparse convolutions from [22] to in-
crease computational efficiency. Another possibility is to apply
bayesian generative models from [23] and latent convolutional
manifolds from [24] for transfer learning of semantic segmen-
tation tasks.

A challenging task would be to test the developed capabil-
ities on other types of image data, e.g. from remote sensing
applications [25], [26].

The study was supported by the Russian Science Foundation
under Grant 19-41-04109.
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