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Abstract—Neural networks have been notorious for being
computational expensive. This is mainly because neural networks
are often over-parametrized and most likely have redundant
nodes or layers as they are getting deeper and wider. Their
demand for hardware resources prohibits their extensive use in
embedded devices and puts restrictions on tasks like real time
image classification or object detection. In this work, we propose a
network agnostic model compression method infused with a novel
dynamical clustering approach to reduce the computational cost
and memory footprint of deep neural networks. We evaluated our
new compression method on five different state-of-the-art image
classification and object detection networks. In classification
networks, we pruned about 95% of network parameters. In
advanced detection networks such as YOLOVvV3, our proposed
compression method managed to reduce the model parameters
up to 59.70% which yielded 110 x less memory without sacrificing
much in accuracy.

I. INTRODUCTION

Deep learning has shown remarkable performance in various
application areas [I]-[3]. An intriguing application of deep
learning is within the field of autonomous driving, where
neural networks are used in scene segmentation [4], object
detection [5] and route planning [6]. Although neural networks
are considered mature and reliable, they have the distinct dis-
advantage of being computationally expensive to train and use.
In computationally resource constrained environments such
as embedded systems for autonomous vehicles, it becomes
paramount to optimize the networks with respect to both
memory and inference time. Thus, in domains where achieving
high levels of accuracy is vital (e.g. due to safety reasons) and
where resources are limited, methodologies to make neural
networks more compact and efficient are essential.

In order to leverage the use of state-of-the-art network
architectures and computationally expensive techniques such
as residual blocks or convolutional layers within resource con-
strained embedded systems, it is important that investigations
are conducted into how network architectures can be made
more efficient through the reduction of parameters that have
negative or no impact towards useful predictions. Furthermore,
increasing computational efficiency results in a more energy-
efficient neural network (as fewer computations have to be
done to achieve state-of-the-art results) and a more memory-
efficient neural network by reducing requirements on storage.
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Therefore, reduction in inference time can enable usage of, for
instance, advanced image classification and object detection
network architectures in “real-time”. In addition, reduction
in memory footprint can enable the deployment of network
architectures to resource-constrained embedded environments
where disk space or RAM is limited.

In this work, we introduce a generic model compression
method that is network agnostic (i.e. not dependent on a
specific neural network architecture) and has minimal impacts
on accuracy, while reducing the inference time and mem-
ory footprint of a network. Our proposed method has two
stages: pruning and quantization. In the pruning phase, low-
importance parameters are first removed and then the network
is retrained for a small number of epochs. This first stage is
repeated until reaching a threshold accuracy drop. The follow-
ing quantization stage rather projects network parameters into
forms that enable more computationally efficient arithmetic by,
for instance, migrating from float to integer representation.
These two consecutive compression operations reduce the
number of required computations while also lowering the
memory footprint of deep networks.

We experimentally evaluated our model compression
method on different image classification (using MNIST [7]]
and Cifar-10 [8]] datasets as well as ResNet50 [9] model)
and object detection tasks (using YOLOv3 [10] and Faster-
RCNN [11] networks). In classification networks, we reached
up to 95% pruning of network parameters. In relatively more
complicated detection networks, we managed to reduce the
number of model parameters up to 59.70% without sacrificing
much in accuracy. With our proposed method, we achieved
up to 182x and 110x memory compressions (i.e. reduction
rates in memory required for network parameters) for the
classification and detection networks, respectively.

Our main contributions in this work are as follows:

e We applied model pruning to object detection neural
network architectures. To the best of our knowledge,
pruning methodologies have not been applied to object
detection networks. We showed that our proposed pruning
method is capable of removing low-importance param-
eters for object detection while maintaining reasonable
performance.

« We extended the model compression methodology de-
scribed by Han et. al. in [12] with a dynamic method
which yields better clustering of network weights during
the process of k-means quantization. We experimentally
showed that using a dynamic method of clustering which
determines the number of clusters required per layer in a



deterministic fashion is capable of reducing the accuracy
drop that is caused by k-means quantization.

II. RELATED WORK

Model compression refers to the techniques that reduce the
inference time and the memory footprint of a deep network.
Such compression methods generally leverage the use of
network pruning and quantization.

A. Pruning

Network pruning involves reducing the number of parame-
ters of a network (e.g. weights) through their removal based
on a criterion or threshold. There exist several proven methods
of ranking network parameters based on a variety of different
criterion, from generating thresholds based on the distribution
of the weights [[12] to more sophisticated parameter ranking
techniques such as using Taylor Expansion to approximate the
importance of a parameter [13].

Molchanov et. al. [[13] compared magnitude-based pruning
criterion in [12] against a novel criterion derived by using a
first order Taylor polynomial to approximate the change that
removing a parameter will have on the network cost function.
The greater the impact, the more important a parameter is
predicted to be. In their results, the Taylor Expansion criterion
outperformed the magnitude based pruning on AlexNet trained
on the ImageNet dataset.

Zhuang et. al. [[14] pruned convolutional layers by using
the scaling factor learned by Batch Normalization layers for
channels to estimate their importance, of which a specified
percentage of those channels are pruned. A greedy pruning
algorithm was defined in [15] to remove a channel based on
its impact on the activation values of the next layer (i.e. the one
with the smallest impact is pruned). This method performed
better than using Taylor Expansion (in terms of accuracy) to
determine the importance of a network parameter on the VGG-
16 network architecture.

In [[16], See et. al. investigated the use of three different
model pruning techniques, with the goal of reducing the
number of weights of neural machine translation architectures:
class-distribution, class-uniform and class-blind. They define
the concept of a “weight class”, subsets of all of the weights of
the model. Essentially, these weight classes can be considered
as the weights per layer, i.e. the input weights of a given layer
would all be the same weight class.

Class-distribution pruning, as employed in [12], defines a
threshold value based on the standard deviation of the given
weight class, controlled by a scaling hyperparameter. All
weights with a magnitude lower than the threshold value are
removed from the network, reducing memory and inference
time. Furthermore, the class-uniform method of pruning re-
moves the same percentage of weights from each of the weight
classes, such that the total number of parameters pruned is
equal to the number of parameters pruned per weight class.
Finally, class-blind pruning does not consider weight class at
all; instead, all of the weights across the network are ordered
by magnitude and the bottom percentage, as controlled by

a hyperparameter, are pruned (e.g. the bottom 20% of the
weights for a network).

See et. al. [16] found the class-blind method to be the
most effective in regards to the percentage pruned versus the
accuracy of the pruned model. Class-blind pruning drops off
the least in regards to accuracy, with class-distribution and
class-uniform pruning both dropping at a sharper rate after
around 30% of parameters pruned. The intuition here being
that as the class-blind method compares the weights globally,
it is more biased towards removing low magnitude weights
than class-distribution or class-unfirom weights, which will
prune a significant proportion of all weight classes regardless
of their overall magnitude.

A common practise after pruning is to fine-tune the remain-
ing weights by retraining the network to improve accuracy.
Pruning has often acted as a form of regularization by actu-
ally increasing the accuracy of the model as shown in [16]]
where consecutive retraining and pruning of the network are
performed until the accuracy begins to decrease. This strategy
enables the network to retain as few weights as possible.

B. Quantization

Quantization refers to the act of reducing the memory
required to represent a network parameter [17]. Existing
quantization techniques in the literature fall into two large
categories: deterministic and stochastic quantizations. Deter-
ministic quantization involves mapping a network parameter to
a value such that the parameters occupy less space. Stochastic
quantization models network parameters as discrete distribu-
tions and samples from them.

Rounding is an example of a deterministic quantization
technique. A parameter is mapped directly to a quantized pa-
rameter that occupies less space, typically at a lower precision.
For example, rounding a weight down from float64 to float32
can be seen as a form of deterministic quantization. There is
a loss in accuracy of the model depending on how severe the
rounding operation is. Furthermore, rounding can also destroy
the training by reducing the precision of the gradients (i.e.
flattening them). Therefore, many deterministic quantization
algorithms keep track of the original weight value during
training, and subsequently re-quantizing.

The work in [[18]] introduced a rounding-based quantization
by quantizing weights into binarized weights of values:+1
(for positive weights) or -1 (for negative weights). Even
with such an extreme rounding strategy they were able to
outperform bespoke baseline classifiers on CIFAR-10, MNIST
and several other datasets. Polino et. al. [19]] proposed an
alternative rounding quantization technique that employs a
scaling function to map a range of arbitrary values. This
method reduced network memory footprint by up to an order
of magnitude before seeing a significant drop in accuracy.

Vector quantization is another deterministic method. It
involves clustering weights using traditional clustering tech-
niques (e.g. k-means) and using the centroids as the weight
values. By mapping all the weights to a respective centroid,
the total amount of weight values to be stored is reduced, as



a low-bit index to the centroid can be used instead. In [12],
the authors used k-means clustering on a per-layer basis to
generate centroids for the weights. During training, gradients
were aggregated per centroid and simply summed and added to
the centroid. This enabled the centroid to benefit from training
without destroying the accuracy for the entire model.

In stochastic quantization, network parameters such as
weights or gradients are rather modeled as discrete distri-
butions, and instead sampled from a distribution. One such
example of this is when the parameters of these distributions
are typically inferred through the use of learning algorithms
such as the Expectation Back-propagation algorithm [20].
Furthermore, the use of stochastic quantization also adds a
regularization effect to the model. Finally, only the distribution
and its parameters have to be stored thus reducing the memory
occupied by representing the parameters.

This is referred to as probabilistic quantization and can be
highly efficient as shown in [20]] where the authors leveraged
mean-field approximation and the Central Limit Theorem to
approximate the posterior distribution of the network weights
(an intractable problem). Their results showed that the Ex-
pectation Back-propagation algorithm outperformed standard
back-propagation.However, such techniques are not applicable
to all network architectures, such as recurrent neural networks.

III. METHOD

Fig. |1| depicts the pipeline of our proposed method which
starts with iterative class-blind pruning (shown in red dashed
box) and then continues with the k-means quantization of
network parameters (green dashed box).

A. Pruning

In this stage, we initially assign a percentage of parameters
to be pruned. This value was then employed to derive a prune
threshold which specifies the boundary value for parameters to
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Fig. 1. Our proposed two-stage network compression method.

TABLE I
MAP OF YOLOV3 oN COCO2014 WITH AND WITHOUT OUR PROPOSED
DYNAMIC K-MEANS QUANTIZATION

Initial | Quantized with | Quantized with our
k=32 clusters dynamic k-means clustering
0.5890 | 0.4400 0.5010

be pruned. Practically, any network weight with a magnitude
below this threshold was pruned. Next, the model was pruned
using the threshold value, re-trained using a small number of
epochs (between three and five) and set of weights producing
the highest accuracy between the epochs were maintained.
Finally, the network was validated using a test data set. If the
accuracy was seen to have dropped beyond that of the specified
accuracy threshold, the pruning was ceased and the model
was saved. However, if the accuracy threshold had not been
reached, the prune percentage was incremented by a small
amount to continue removing more network weights.

B. Quantization

After pruning, network parameters were quantized by using
k-means quantization. Unlike the original k-means quantiza-
tion method proposed in [12], we dynamically compute the
number of clusters supplied to the k-means algorithm while
sorting the weights of a given layer. When the number of
clusters were too low, especially for networks with a large
number of weights such as YOLOv3, there was a significant
decrease in the accuracy of the network. However when the
number of clusters were too high, the quantization algorithm
was almost unusable due to the huge amount of memory
needed. Therefore, we introduce a new deterministic equation
to dynamically scale the number of clusters based on the
number of parameters within a given layer, as formulated in
Eq. (I).

Let C and N denote the number of clusters and parameters
per set of clusters respectively. Then for each layer [ with P
number of parameters, the number of clusters c is given by

P
o = Lvﬂ «C . (1)

Unlike the static quantization method, such as the one
introduced in [[12] where 32 clusters where generated for every
layer, our proposed dynamic clustering depends only on the
number of parameters in each layer. This way, the quantized
layer will be closer to the original distribution of the weights,
which is particular beneficial since the parameter number in
the later layers of a deep network is large.

The impacts of the use of this dynamic method of clus-
tering can directly be seen in Table [ By using a greater
number of clusters (e.g. 32 clusters) for larger layers, the
decrease in mean Average Precision (mAP) on YOLOvV3 on
the COCO2014 dataset was minimized, i.e. the mAP dropped
to 0.5010 instead of 0.4400 from 0.5890.

Unlike the quantization method in [12], we also map the
cluster centroid back over the clustered weights instead of
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Fig. 2. K-means Weight Quantization on MNIST Classifier

utilizing a code-book. Code-books are mainly employed to
map the weights of clusters to a low-bit identifier to be
later used for a lookup to the quantized weight value. The
main advantage coming with our naive mapping approach
is the speed increment in the process of searching for the
corresponding weights in the code-book.

The effects of k-means quantization after pruning on an
early layer of the MNIST Classifier architecture is visualized
in Fig. 2] The data points represent individual weight values
grouped by cluster and each data point was colored with its re-
spective cluster. As expected, there was large cluster of values
with a magnitude of zero, due to the sparsification caused by
pruning. The clusters were spaced equidistantly between the
minimum and maximum magnitude of the available weights.
This enabled weights with extreme magnitudes to not be pulled
into the nearest cluster, which could potentially cause a large
change in the value. The centroid for each weight cluster was
mapped back over the weight to simulate the effects of k-
means quantization.

IV. EXPERIMENTS

For an experimental evaluation, we applied our proposed
compression method to several state-of-the-art neural network
architectures within the domains of image classification and
object detection problems, with the aim to optimize the in-
ference time and memory footprint of networks with different
depth and width. For the classification task, we used MNIST
[7] and Cifar-10 [8] datasets and ResNet50 [9] model, whereas
more complex networks such as YOLOv3 [10] and Faster-
RCNN [11] were employed for the object detection task.
Large-scale, public and open datasets were chosen for eval-
uation using open-source implementations of popular neural
network architectures. For all the assessed architectures, pre-
published pre-trained weights were used as a baseline. All
implementations of our proposed compression method were
done in PyTorch and CUDA and are publicly available [ﬂ

Uhttps://github.com/AhrazA/modelcompression-2019

A. MNIST Classifier

The first architecture used for evaluation was a classifier for
the MNIST dataset [7]]. It consisted of a convolutional layer
with one input channel, 20 output channels and a 5x5 kernel.
The next layer was another convolutional layer with 20 input
channels, 50 output channels and a 5x5 kernel. Subsequently
there were two fully connected layers with 800 input channels
and 500 output channels, and finally with 500 input channels
and 10 output channels. All of the layers used ReLU activation
function and max pooling was applied after each layer. After
the final layer a softmax function was applied to obtain the
class probabilities.

B. Cifar Classifier

Unlike the previous shallow MNIST classifier, we con-
structed a deeper classifier for the Cifar-10 [8]] images dataset.
This deep network consisted of two parts: feature extractor and
classifier. The feature extractor stage had three consecutive
convolutional blocks which included batch normalization and
dropout before downsampling with max pooling. The classifier
part was a fully-convolutional block with basic residual net-
work units. It is worth nothing that dropout should be in place
after batch normalization, otherwise, as noted in [21], it can
cause a shift in the weight distribution and thus minimizing
the effect of batch normalization during training.

C. ResNet50

Residual Networks [9] were implemented for the Stanford
Dogbreeds dataset, which is a subset of Imagenet [22] data
focusing on dogs, to classify 120 classes of dogs. Residual
Networks were made consisting of blocks that use skip con-
nections to transfer the input information after to the last layer
of the block. Also batch normalization was applied after each
convolution in order to help converging to the optimal solution
by solving the internal covariate shift. More specifically the
network to be used was ResNet50.

D. YOLOv3

We further employed a state-of-the-art object detection
network architecture YOLOv3 [10] which has been shown
to have astonishing performance in object detection problems
regarding the inference time. It is a one-stage detector where
the fully convolutional network predicts the bounding boxes
and class probability of those boxes in one pass.

The network is made up of 75 convolutional layers with no
fully connected layers. In addition the architecture is inspired
by Residual Networks (ResNet) and from Encoder-Decoder
models such as Feature Pyramid Networks (FPN) [23]]. The
encoder, which is responsible for down-sampling and feature
extraction, has a stride of two to be used instead of max-
pooling layers. Subsequently an FPN is used to maintain the
details that are lost during the encoding part of the network by
applying element-wise summation to the corresponding layers
of the decoder, while ResNet adds skip connections within the
residual blocks that allow the network to be influenced from
previous layers in order to generate better features.
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E. Faster-RCNN

Another state-of-the-art object detection algorithm is a two-
stage detector Faster-RCNN [11]. The network takes the last
feature map of a convolutional layer and by using an operation
called Regional Proposal Networks (RPNs), it separates what
is likely background and what likely an object. The areas
that are candidates containing an object are called Regions
of Interest (Rol) and are the ones that are used to detect the
objects through further processing by the detection network.

Faster-RCNN is composed of three different neural net-
works; (1) The Feature Network which is responsible for
constructing the features and is usually a ResNet, (2) The
RPN that is usually a plain three layered convolutional network
which detects the regions on the last feature map with a high
probability of containing an object and generates a number
of bounding boxes for them called Rol and (3) the Detection
Network, that is usually made up of four Fully Connected
layers which take those Rols produced by the RPN and
generate the final class and bounding box.

V. RESULTS

Table [lI] shows the performances of five different model
architectures, three image classifiers and two object detectors
described in section at different stages of our model
compression pipeline depicted in Fig. [} The column named
Initial presents the accuracy or mAP of the architecture using
pre-trained weights before our model compression pipeline
is applied. The Pruned column indicates the accuracy or
mAP after the pruning step of our pipeline. The Pruned &
Quantized column presents the final accuracy or mAP after
the entire model compression procedure has been applied. The
very last column, called Percentage Pruned, indicates the total
percentage of the network parameters that were removed.

Furthermore, presented in Table [III| are the predicted mem-
ory requirements for each tested network at different stages.
All network parameters are assumed to be float32 tensors
occupying four bytes. For the results presented at the Pruned
step, all the weights that have been removed from the model
are excluded. For the Pruned & Quantized step, the compres-
sion ratio for the parameters remaining is calculated using Eq.
that was initially introduced in [12]]. Per layer, given k
clusters, logs(k) bits are required to encode the indices for
the references to the cluster centroids. Given n weights, with
each connection being represented by b bits and given that only
k full precision weight values will be stored, the compression
rate r is given by:

TABLE 11
MODEL COMPRESSION RESULTS
Architecture (metric) Initial | Pruned | Pruned & | Percentage
Quantized Pruned
MNIST Classifier (accuracy) 0.990 0.993 0.993 95.00
CIFARIO Classifier (accuracy) | 0.917 0.899 0.898 95.00
ResNet50 Classifier (accuracy) 0.834 0.825 0.747 45.00
YOLOV3 Detector (mAP) 0.589 0.537 0.530 59.70
FasterRCNN Detector (mAP) 0.677 0.662 0.612 52.30

TABLE III
PREDICTED MEMORY REDUCTION RESULTS

Memory required for
network parameters (bytes)

. . Pruned & | Compress
Architecture Initial Pruned Quantized Rate
MNIST Classifier 1724320 88420 9478 182x
CIFARI10 Classifier 23412032 15239888 2390274 9.8x
ResNet50 Classifier 95228552 63072340 1584860 60 %
YOLOV3 Detector 247586164 99036300 2239175 110x
FasterRCNN Detector | 190270652 | 140390612 6472874 29 %

nb
2

"= nlogs (k) + kb

Using this compression ratio, the number of bytes occupied
by the quantized model was estimated.

Both the image classification and object detection archi-
tectures were pruned and quantized using the aforementioned
compression pipeline (see Fig. [I). As indicated in Table [[I
after these pruning and quantization steps we reach up to 182x
compression rate for the MNIST classifier and 110X for the
YOLOV3 detector.

Presented in the following subsections are the percentage
of parameters (weights) pruned and the accuracy after the
retraining step had completed. As a baseline, we used the
layer-wise pruning from [12] and compared with our class-
blind pruning method for each network below.

A. MNIST Classifier

The dataset used for training and evaluation was the MNIST
dataset, a popular hand-writing classification dataset [7]]. As
shown in Fig. [3] the MNIST classifier architecture exhibited
very little improvement in accuracy through pruning. With
our class-blind method, the MNIST classifier actually began
to increase in accuracy, all the way up to 95% of parameters
pruned, whereas this is the case only up to 40% for baseline
layer-wise pruning (see the blue curve in Fig. [3). With our
pruning method, the final difference between the initial accu-
racy of the trained-from-scratch model and the pruned model
at 95% pruning was about 4-0.003, indicating a highly over-
parameterized model. Furthermore, the increase in accuracy
could be attributed to the additional training conducted on the
sparse model, or could be a symptom of over-fitting to the
training data.

Note that, at a 95% prune rate, layer-wise pruning accuracy
drops below 0.1, therefore, the plot in Fig. [3]is shown only up
to 90% pruning rate. Also, at a 100% prune rate the accuracy
of our class-blind method drops to 0.1, as expected since there
are ten classes to predict. This indicates that the model was
not making any meaningful predictions at the 100% prune rate.
Therefore, the result at 100% prune percentage was omitted
from Fig. [3| Furthermore, after quantizing even at 95% pruning
there was essentially no loss in accuracy, as seen in Table
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B. CIFAR Classifier

The dataset used for training and evaluation was the CI-
FARI0 dataset consisting of 10 classes [8]. The CIFAR
classifier experienced minor drop in performance when being
pruned as shown in Fig. [ There is also a slight initial increase
in accuracy which remains until approximately 85% of the
parameters have been pruned. Once again, this indicates a
highly over-parameterized model of which the ideal network
architecture can be much sparser. Finally, the CIFAR classifier
had an accuracy drop of approximately 0.018 (i.e. 1.8%) at
a pruning percentage of 95% (see Table [[I). However, the
accuracy drop in the layer-wise method started much earlier
(about pruning percentage of 65%) and continued dramatically
afterwards. Note that due to the very same reason mentioned
in the previous section, the plot in Fig. ] is shown up to 90%.

The subsequent quantization step in our method introduced
a small additional accuracy loss of 0.001 (see Table [[I). At
100% pruning the accuracy falls to 0.1, which indicates that
the model is not making any meaningful predictions. Therefore
the result at 100% pruning was again omitted from Fig. 4]

C. ResNet50

As shown in red curve in Fig. [5] we managed to prune
45% of ResNet50 model parameters while having a small
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accuracy drop from 0.834 to 0.825 (see also Table [I). Unlike
our method, the baseline layer-wise pruning, i.e. blue curve in
Fig. B] caused an accuracy drop at earlier phase (around 15%)
and had about 0.76 accuracy value at pruning percentage of
45%. This is a clear indication of the success of our proposed
class-blind pruning over the baseline method.

Our final quantization stage introduced an additional drop
and therefore the final accuracy value was 0.747 (see Table [[).

D. YOLOv3

The dataset used for training and evaluation was the
COCO2014 dataset [24], a popular dataset for object detection.
Having applied the prune pipeline to YOLOv3, as shown in
Fig. [6l with a prune threshold of 0.05, the model was pruned
up to 59.70% sparsity before the threshold was reached. The
initial 5% pruned caused the steepest decline in the mAP,
indicating the potential loss of important weights with low
magnitudes. However, subsequent pruning iterations led to
small increases in accuracy before a slow decline until the
59.70% mark. The large number of parameters pruned with
a relatively small impact on the mAP indicates that YOLOv3
is overparameterised and sparsification can lead to a faster,
smaller model. Furthermore, it is worth noting that after every
pruning iteration the model was retrained for three epochs. It is
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Fig. 6. YOLOV3 Detector Pruning Results



possible that significantly increasing the number of retraining
epochs might minimize the drop in mAP. Note that, unlike the
previous models, our proposed method exhibited a comparable
behaviour with the baseline method as depicted in Fig. [6]

When undergoing the full compression pipeline, a prune
percentage of 59.70% (see Table [lI) was applied as it had the
best weights for the given compression run. Subsequently, the
quantization of the network resulted in a minimal decrease
(0.7%) in the mAP of the model. The overall loss in mAP
through our entire model compression pipeline was 0.059 as
indicated in Table [

E. FasterRCNN

The dataset used for training and evaluation was the
VOC2007 dataset [25[], another popular dataset for object
detection. Within the FasterRCNN architecture only the base
(detector) of the network was pruned, which represents ap-
proximately 52.70% of the entire network weights. Fig.
indicates the percentage of parameters of only the base of the
network. Unlike YOLOV3, after pruning FasterRCNN there
was much less drop (0.015 mAP) in accuracy. In fact, the
iterative pruning methodology pruned the detector parameters
up to 100% before the initially specified prune thresholds
(0.05) were reached. This indicates that the detector is heavily
over-parameterised, with the network having a drop in mAP
of 0.025 at 95% parameters pruned (see Fig. [7). The peak
mAP reached was at 15% parameters pruned with an increase
in mAP of approximately 0.02. As the prune percentage was
incremented units of 5%, it is entirely possible that a finer
interval could result in an even higher accuracy. At a pruning
percentage of 100% the mAP dropped to 0.1, which indicates
that the model is not making any meaningful predictions as
expected. Therefore, the result at 100% pruning was omitted
from Fig. Unlike our proposed method, the layer-wise
pruning caused a significant drop after 80% pruning rate.

The subsequent quantization resulted in an overall decrease
in mAP of 0.065 (see Table [[). Consequently, the prune
percentage of 52.30% was applied as it resulted in the highest
mAP during the compression run, and the quantization step
caused the largest decrease in mAP.
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VI. DISCUSSION

In this study, we have shown how class blind pruning and
quantization can reduce the size of the model. The main
idea was to find the parameters over the whole model that
have minimal impact and set them to zero, thus reducing the
computational cost. Class blind pruning that is applied on
the whole model was chosen instead of layer-wise pruning
used in [12] due to the fact that network tends to over
parameterize in the deep layers. Thus by using class-blind
pruning, it is possible to maintain the early parameters which
are important for the construction of the high level features
while removing the ones which are not contributing much into
the final predictions. All our experimental results confirmed
that class-blind pruning results in less drop in accuracy in
contrast to layer-wise pruning.

Model Compression in the two object detection architec-
tures chosen proved to be very promising, with the detector of
the FasterRCNN being almost entirely prunable with minimal
impact to accuracy. Furthermore, YOLOvV3 was pruned to quite
a significant extent with very little drop in mAP, with up to
50% of its parameters pruned while maintaining not breaking
the threshold of 0.05 mAP. This indicates that the use of our
model compression method in advanced architectures, such as
these deep object detectors, can enable execution on resource
constrained environments in real-time scenarios.

The percentage of the weights that were pruned were
depending largely on the model, the dataset and the task that
network was performing. Object Detectors despite the fact that
they have vastly more parameters than classifiers, arrived at a
lower pruning percentage. Even for Faster-RCNN which was
using ResNetl01 as a backbone that contains 44.5 million
parameters and was trained on a realatively easy dataset as
VOC2007, the percentage of pruned weights was lower than
all the classifiers.

The use of pruning and quantization can be seen as manag-
ing a tradeoff between performance and accuracy; the greedier
the pruning (i.e. high prune percentages) and quantization
strategies applied (i.e. quantization into fewer clusters or lower
bits) the greater the loss in performance at the expense of
reduced computation. The application of such methodologies
should attempt to address the usage context of the generated
network before settling on how much the models should be
compressed.

Class-blind pruning often caused a performance increase
at different percentages when a model is vastly overparam-
etarized. This regularization effect is likely due to the re-
moval of low-importance weights that simply interfere with
network predictions, however often the percentage of parame-
ters pruned were very high when the performance increase
manifested. A similar effect has been shown with targeted
dropout [26]] where dropout is applied on the lower absolute
values of the layers. This regularization effect, i.e. increase
in the prediction accuracy after pruning, has been observed
in Faster-RCNN. However that is not the case with YOLOv3
where an initial drop occurs. We believe that the main reason



why this accuracy increase does not occur in YOLOV3 is
the fact that it was trained on MS-COCO which is a rather
difficult dataset with more classes than VOC2007 and more
objects with similar features to each other. Consequently, as
our experimental findings suggest, the regularization theory as
stated by Han et. al. [[12] appears to hold true even for high-
complexity models such as FasterRCNN.

Han et. al. demonstrated in [[12]] that the sparsification (i.e.
pruning) of weight matrices leads directly to lower inference
times. This is because fewer floating point operations have
to be conducted and fewer gradients having to be computed
due to fewer weights being involved with inference. However,
due to limitations with PyTorch and CUDA regarding the use
of sparse matrices, we were unable to directly collect the
inference time improvements as a result of pruning. However
it still holds true that, for example, pruning 50% of network
parameters will lead to a proportionate 50% drop in inference
time for forward and backward propagation, as shown in [[12].
As an extension of this work, we are planning to employ
an alternative framework, such as TensorFlow where sparse
matrices are available, in order to solidify this claim.

For the Quantization choosing k-means as a method of
clustering was implemented to run on the GPU since, applying
k-means over millions of parameters was not efficient. The
identity in Eq. was utilized in order to create a dynamic
clustering that was dependant on the number of parameters
for each layer. While the weights were clustered significantly
there was not a significant drop in the accuracy. However at
least a small drop in the accuracy is to be naturally expected
by using quantization which is more to the fact that it requires
clustering, than lowering the precision of the weights.

VII. CONCLUSION

We presented a model compression method to reduce the
inference time and memory footprint of advanced deep neural
networks. We showed the application of our method on
different image classification and object detection models.

We presented various experimental findings showing the
predicted memory footprint impacts of k-means quantization
on the network architectures that the pruning pipeline was
applied to. Our findings on reduction of memory footprint are
very much aligned with the results in Han et. al. in [12] which
concretely showed the memory footprint impacts that k-means
quantization can have.

We note that reduction of inference time was supported by
the findings presented in [[12], showing that sparsification of
weights matrices can speed up inference time (and provide
more energy efficient networks) by the reduction in floating
point operations that are to be conducted in a forward or
backward pass. While the investigation presented in this study
was unable to obtain concrete inference time measurements
due to lack of capabilities of software tools, it was shown that
the inference time speedups are theoretically possible.
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