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Abstract—It has been argued by Thom and Palm [1] that
sparsely–connected neural networks (SCNs) show improved per-
formance over fully–connected networks (FCNs). Super–regular
networks (SRNs) are neural networks composed of a set of
stacked sparse layers of (ε, δ)–super–regular pairs, and randomly
permuted node order. Using the Blow–up Lemma, we prove
that as a result of the individual super–regularity of each pair
of layers, SRNs guarantee a number of properties that make
them suitable replacements for FCNs for many tasks. These
guarantees include edge uniformity across all large–enough sub-
sets, minimum node in– and out–degree, input–output sensitivity,
and the ability to embed pre–trained constructs. Indeed, SRNs
have the capacity to act like FCNs, and eliminate the need for
costly regularization schemes like Dropout. We show that SRNs
perform similarly to X–Nets via readily reproducible experiments,
and offer far greater guarantees and control over network
structure. Index Terms—sparse neural networks, graph theory,
super–regularity, expander graphs, X–Nets

I. INTRODUCTION

Deep neural networks (DNNs) are widely applied in a broad
range of fields including healthcare [2], environmental sciences
[3], and computer vision (CV) and machine learning tasks
including object detection, classification, segmentation, and
pattern recognition [4]. While DNNs have widespread general
applicability to a large swath of problems, large fully connected
DNNs are prone to over-training and are computationally
expensive [5].

Thom and Palm argue that sparsely–connected neural net-
works (SCNs) show improved performance over FCNs [1],
and as discussed by [6], FCNs require more space and time
resources than required by SCNs to produce only slightly
more accurate results, if at all. However, the intractability of
neural network edge assignment has pushed deep learning
toward using stochastic methods for learning acceptable sparse
edge assignments. Dropout is one example of a randomized
and costly regularization method that has been popularized
to combat the overfitting problem introduced by using more
edges than necessary.

Super–regular networks (SRNs) offer a viable construction
for sparsely–connected neural networks with near uniform
density across all large–enough subsets of nodes. This is
partly due to the guarantee that the sparsity of such subsets
is bounded. Ideally, SRNs will satisfy the Blow–up Lemma
[7] property, which states that bipartite graphs satisfying
the (ε, δ)–super–regularity conditions behave like complete

bipartite graphs subject to practically realizable constraints.
As far as the deep learning community is concerned, this
means that SRNs have the capacity to approximate fully–
connected networks, despite employing significantly fewer
edges. In addition, SRNs’ pseudo-deterministic edge generation
provides greater control over network architecture, while the
randomized node permutation ensures proper mixing while
retaining the super–regular properties imposed by deterministic
edge assignment.

An SRN is a set of stacked bipartite graphs, each of which is
an (ε, δ)–balanced matrix of variable size. Each (ε, δ)–balanced
matrix stands for an (ε, δ)–super–regular pair, which itself is
a pairwise disjoint bipartite graph. In the case of an (ε, δ)–
balanced matrix, the rows and columns serve as the left and
right parts of the bipartite graph described by the super–regular
pair. Consecutive pairs of left and right parts of pairwise disjoint
bipartite graphs together form a neural network composed of
sequential but independent pseudo super–regular pairs. This
architecture results in a controllably sparse neural network with
the potential to act as an FCN.

Our contributions are: 1) we introduce the notion of ε– and
(ε, δ)–balanced matrices; 2) we establish a relationship between
ε–balanced matrices and ε–regular pairs, and between (ε, δ)–
balanced matrices and (ε, δ)–super–regular pairs; 3) we present
a deterministic way to construct SRNs, subject to randomly
permuted node ordering; 4) we show that SRNs produce
comparable results to a family of related sparse networks
known as X–Nets, while offering greater guarantees about, and
much more control over network architecture.

The remainder of the paper is structured as follows. Section II
identifies recent related work to this one. Section III gives an
overview of ε–regularity and (ε, δ)–super–regularity. Then it
defines ε–balanced and (ε, δ)–balanced matrices, and proves
their respective equivalence with ε–regular and (ε, δ)–super–
regular pairs. Finally, it defines super–regular networks, and
illustrates their advantages over X–Nets [6]. Section IV
describes a deterministic construction of SRNs, and section V
presents an empirical evaluation of SRNs as compared to X–
Nets and FCNs. Section VII is a discussion of the performance,
merits, and current shortcomings of SRNs, and section VIII
gives an overview of the material presented and suggests
directions for future work.
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II. RELATED WORK

Srivastava et al. introduced Gaussian dropout, a regulariza-
tion technique to minimize overfitting via co–adaptation. It has
proven useful in increasing DNN performance in a variety of
fields including computational biology, computational vision,
and speech recognition [5]. While Gaussian dropout forces the
network to learn a sparse representation [5], Molchanov et al.
showed that sparse variational dropout creates a sparse network
by zeroing out frequently dropped weights [8]. Via the MNIST
dataset, Thom and Palm showed that sparse connectivity has
the potential to boost classification performance [1].

Guo et al. show that sparse, nonlinear DNNs are consistently
more adversarially robust than their FCN counterparts, but that
“over–pruned” networks are more susceptible to adversarial
attacks like DeepFool [9], [10]. Wen et al. learn a sparse,
more efficient network structure, by removing less important
filters and channels as part of their optimization [11]. Similarly,
Tartaglione et al. use a regularization term to gradually
prune away parameters that have little impact on the output,
resulting in very sparse but accurate networks [12]. Zhu et al.
used a “decorrelation” regularization term along with group
LASSO regularization to learn a sparse CNN with decorrelated
convolution filters [13]. Sun et al. used iterative, per–layer
training to create sparse CNNs for facial recognition [14].

Prabhu et al. tie extremal graph theory into deep learning,
in their presentation of X–Nets [6], which showed comparable
performance to FCNs. X–Nets are sparse neural networks
constructed from a set of randomly generated, stacked bipartite
expander graphs. While input–output sensitivity is guaranteed
due to the random edge assignment, this approach cannot
guarantee a minimum node degree, which creates the potential
for isolated subgraphs. Komlos et al. discuss the importance
of Szemerédi’s Regularity Lemma and associated Blow–up
Lemma as it applies to embedding bounded degree subgraphs
[15], however do not present a deterministic construction of
(ε, δ)–super–regular pairs. Kalantari et al. analyze the time
complexity of balancing a matrix [16], but do not extend their
analysis to matrices balanced within some ε parameter.

This work ties these concepts together by presenting a deter-
ministic and tunable construction of sparse neural networks—in
the form of SRNs—via a pseudo–deterministic construction
of (ε, δ)–super–regular pairs, and by necessity introduces the
notion of ε– and (ε, δ)– balanced matrices. As a result, all
expander networks (X–Nets) that are also SRNs have properties
that X–Nets alone cannot guarantee.

III. SUPER–REGULAR NETWORKS: THEORY

In this section, we first describe some helpful notation,
including ε–regularity and an ε–balanced matrix, followed by
the definition of (ε, δ)–super–regularity and an (ε, δ)–balanced
matrix. After extending the definition of an (ε, δ)–balanced
matrix to non–square matrices, we introduce X–Nets and briefly
contextualize them with respect to super–regular pairs. Finally,
we discuss the advantages of SRNs over X–Nets.

The edge density between two vertex sets A and B, as presented
by Komlos et al. [7] is

d(A,B) =
e(A,B)

|A||B|
, (1)

where e(A,B) represents the number of edges between sets
A and B. Throughout out this manuscript, G always refers
to a bipartite graph, while A and B denote the left and right
pairwise disjoint subsets (“parts”) of G, respectively.

A. Regularity and Balanced Matrices

As discussed in [7], given a bipartite graph G on vertex set
A∪B, the pair (A,B) is ε–regular if and only if for any subset
pair (X,Y ), with X ⊂ A and Y ⊂ B, that satisfy |X| > ε|A|
and |Y | > ε|B| we have

|d(X,Y )− d(A,B)| < ε. (2)

This means that for subsets X and Y larger than εm, the
difference in edge density between subsets X and Y and
the entire graph will be very small (less than ε). The practical
implication is that an ε–regular graph, G, will be nearly uniform,
and that all (large–enough) subsets of G behave almost exactly
like G as a whole.

For computational purposes, we present ε–regular pairs as a
matrix. An n× n matrix with non-negative values is balanced
if the sum of values in row i and column i are equivalent [16].
The definition of an ε–balanced matrix follows naturally.

Definition 1. Let Q be an m × m matrix, where M =
{1 . . .m}. Then the set of rows of Q is denoted by A = QM ,
and the set of columns is denoted B = QM . The density of
Q, d(Q) is given by eq. (3). We obtain ε′ by substituting d(Q)
for d(A,B) in eq. (2), as shown in eq. (4). Q is ε–balanced
if for every pair (X,Y ) where X ⊂ A, and Y ⊂ B, with
|X| > ε|A| and |Y | > ε|B|, that satisfy eq. (2), ε′ ≤ ε from
eq. (4).

d(A,B) = d(Q) =
1
TQ1

|A||B|
, (3)

ε′ = |d(X,Y )− d(Q)| . (4)

Proposition 1. If an m×m matrix, Q, is ε–balanced, then a
bipartite ε–regular pair, G = (A,B), may be constructed from
it by creating a 2m× 2m adjacency matrix, D, such that

D =

[
∅ Q
Q′ ∅

]
(5)

where M = {1 . . .m}, A = QM (rows) and B = QM

(columns).

Proof. By definition, QN and QN are disjoint subsets of G.
Select subsets X ⊂ A = QN and Y ⊂ B = QN . Then
∀(X,Y ) satisfying |X| > ε|A| and |Y | > ε|B|, eq. (2) must
also be satisfied. If eq. (2) were not satisfied, ε′ from eq. (4)
would be greater than ε, and Q could not be ε–balanced. Since
|X| > ε|A|, |Y | > ε|B| and eq. (2) are all satisfied, (A,B)
must be an ε–regular pair.



Again, from [7], for a graph G to be (ε, δ)–super–regular, in
addition to satisfying the conditions for ε–regularity, all (X,Y )
pairs satisfying |X| > ε|A| and |Y | > ε|B|, must also satisfy

e(X,Y ) > δ|X||Y |, (6)

and

∀ a ∈ A, b ∈ B, deg(a) > δ|B| & deg(b) > δ|A|. (7)

The condition described by eq. (6) ensures the edge density
between X and Y is greater than δ, while the condition
described by eq. (7) requires all vertices in G to have a
minimum degree, bound by δ. When |A| = |B| = |G|

2 , δ
puts the same minimum bound on all of G’s vertices. Again,
for computational purposes, we present a related property for
(ε, δ)–super–regular pairs. The definition of an (ε, δ)–balanced
matrix follows from an ε–balanced matrix.

Definition 2. Let Q be an m×m ε–balanced matrix, where
M = {1 . . .m}. Then the set of rows of Q is denoted by
A = QM , and the set of columns is denoted B = QM . Then
Q is (ε, δ)–balanced if for every (X,Y ) pair such that X ⊂ A
and Y ⊂ B, with |X| > ε|A| and |Y | > ε|B|, that satisfy
eq. (2), eqs. (6) and (7) are also satisfied.

Proposition 2. If an m × m matrix, Q, is (ε, δ)–balanced,
then a bipartite (ε,δ)–super–regular pair, G = (A,B), may be
constructed from it by creating a 2m× 2m adjacency matrix,
D, as per eq. (5).

Proof. Again, by definition, QM and QM are disjoint subsets
of G. Select subsets X ⊂ A = QM and Y ⊂ B = QM . Then
∀(X,Y ) satisfying |X| > ε|A| and |Y | > ε|B|, eqs. (2), (6)
and (7) must also be satisfied. If this were not the case, Q
could not be (ε, δ)–balanced. Since eqs. (2), (6) and (7) are all
satisfied, (A,B) must be an (ε, δ)–super–regular pair.

B. Non–Square (ε, δ)–Balanced Matrices

Without loss of generality we show that the result of column–
wise concatenation, denoted by ccat(Q1, Q2), of two (ε, δ)–
balanced matrices, is an (ε, δ)–balanced matrix, provided that
Q1 and Q2 have at least one dimension in common, are
concatenated along that dimension, and have the same density.

Proposition 3. The result of column–wise concatenation of
two (ε, δ)–balanced matrices U and v, with dimensions (n×m)
and V (n× r) respectively, is an [n× (m+ r)] (ε, δ)–balanced
matrix if and only if d(U) = d(V ), and deg(U) = deg(V ).

Proof. Let T = ccat(U, V ). Using eq. (3), let d(Au, Bu) =
d(U), d(Av, Bv) = D(V ), and d(At, Bt) = D(T ). Further,
let Xu ⊂ Au, Yu ⊂ Bu, Xv ⊂ Av, Yv ⊂ Bv, for all subsets
that independently satisfy |X| > ε|A| and |Y | > ε|B|. Since

d(T ) =
1
TT1

n(m+ r)
=

1

2
(d(U) + d(V )) , (8)

and

εu > |d(Xu, Yu)− d(U)|, (9)
εv > |d(Xv, Yv)− d(V )|, (10)

we have

εt ≥ max(εu, εv) > max(|d(Xu, Yu)−d(T )|, |d(Xv, Yv)−d(T )|).
(11)

This shows that the matrix resulting from the column–wise
concatenation of two (ε, δ)–balanced matrices will only satisfy
eq. (2) if they retain the same ε, which requires d(T ) = d(U) =
d(V ). With respect to eqs. (6) and (7), if min(deg(Au)) 6=
min(deg(Av))) or min(deg(Bu)) 6= min(deg(Bv))), then δt
is chosen by eq. (14),

δt,B |Bt| = δt|Bu +Bv| = min(δu, δv)|Bu +Bv|, (12)
δt,A|At| = min(δu, δv)|At|, (13)

δt = min(δt,B , δt,A). (14)

This new δt satisfies eqs. (6) and (7) for T , and δt = δu = δv
if U and V have the same ratio of deg(A) : deg(B) (in–degree
to out–degree).

C. X–Nets and (ε, δ)–Super–Regularity of Expander Graphs
X–Nets are sets of stacked, randomly created bipartite

expander graphs. A bipartite graph, G such that part a ∈ A
has H neighbors in B, and spectral gap γ ≤ 1− |λ2|

H is said
to be an expander graph [6].

Using some notation from [7], assume each layer of a deep
expander network (X–Net) is the product of “blowing–up” a
graph with the following structure, G = L1 → L2 → · · ·Lr,
where each vertex set, Li represents a layer of the network
(from 1 to r). Assume |Li| = n ∀i ∈ 1..r, and V = ∪Li.
Further, assume that edges are uniformly randomly assigned
between all successive pairs of sets (layers) such that each pair
fulfills the below requirements:
R1: |S| > ε|L1| and |N(S)| > ε|L2|
R2: |d(S,N(S))− d(L1, L2)| < ε
R3: deg(l1) ≥ δ|L2| ∀l1 ∈ L1, and deg(l2) ≥ δ|L1| ∀l2 ∈ L2

The layers of some X–Nets may be modeled via (ε, δ)–super–
regular pairs (precise conditions will be discussed later), and
the ones that cannot are too sparse, and R2 cannot be satisfied.
If R1 and R2 are both satisfied, the pair is ε–regular. If R3

is also fulfilled, then the pair is (ε, δ)–super–regular. If all
successive Li pairs satisfy all three above requirements, there
exists an embedding of the X–Net into some super–regular
network, P . This is a result of Theorem 1 from [7], which
states that if a graph may be embedded into the fully–connected
“blown–up” structure of some graph, F, if can also be embedded
into a sparse version of F where the edges have been replaced
such that each pair of vertex sets satisfies the conditions for
super–regularity.

In order to use (ε, δ)–nets (SRNs) instead of X–Nets, (ε, δ)
ranges must be found that bound the number of layers required
to guarantee every output is sensitive to every input.



This can be done by choosing parameters that ensure P
meets the criteria for an expander network. R1 states that
ε < |S|

n . R2 states the density of any subset (greater than some
size), must not differ from the density of the two layers in
question by more than ε. The minimum density between S
and N(S), d(S,N(S)) is

d =
Dmin|S|
|S||N(S)|

, (15)

where Dmin is the minimum degree of any vertex in L1 or L2

(multiplying this by the size of S gives the minimum number
of edges between S and N(S)). The minimum density between
L1 and L2 is:

d =
Dmin(n)

n2
.

Then, R2 becomes:

Dmin

∣∣∣∣ 1

|N(S)|
− 1

n

∣∣∣∣ < ε <
|S|
n

<
1

2
(16)

If we set |S| = 1, the condition remains satisfied for a single
starting vertex (input).

D. Advantages of SRNs over X-Nets

First, SRNs put lower bounds on X–Net sparsity. Equa-
tion (16) describes the relationship between the minimum
size of S (in L1) and its the neighborhood in L2, N(S), the
minimum degree of the graph, size of each partition, and ε.
Effectively, it says that when expanders become too sparse,
they no longer satisfy the conditions of super-regularity. Along
with R3, this shows that all bipartite expander graphs greater
than a given density may be expressed as (ε, δ)-super-regular
pairs.

Because we must be able to satisfy this condition with a
|S| = 1, and Dmin = D for a D − regular expander,∣∣∣∣ D

|N(S)|
− D

n

∣∣∣∣ < 1

n
, (17)

which is equivalent to

∣∣∣∣d(S,N(S))− D

n

∣∣∣∣ ≤ ε ≤ (1− γ)
√
|S||N(S)|

|S||N(S)|
. (18)

This means that expander graphs force ε ≤ (1−γ)
√
|S||N(S)|

|S||N(S)| ,
while (ε, δ)-pairs further restrict the density differential between
vertex set pairs S, and N(S) to ε < 1

n , while maintaining
the expansion property. Second, SRNs guarantee minimum
degree, and therefore connectivity. R3 above enables us to
guarantee that no vertex will have a degree less than some
predefined constant, δn. Because the layers are constructed
as pairs of bipartite graphs we can be sure that every vertex
of every layer has a minimum of δ(n) in– and out–edges.
This is a powerful property to be able to both guarantee and
systematically modulate at will, that X–Nets cannot offer. X–
Nets cannot offer this because there is only the guarantee that
from layer n to n+1, every node will have D edges, however
the only guarantee made about minimum vertex degree from

A2{1,2} : A2{1,3} :

Fig. 1. Significance of edge addition pattern.

A0: A1:
A2:

A3:

A4:

Fig. 2. The construction of the first four base matrices. Edges are added in
sets of m during the initial construction (this can be modulated in the final
stages to achieve a desired target density, dt). The order of edge construction
is: first (black), second (blue), third (purple), fourth (green). A white box
means there is no edge present.

n + 1 to n is the minimum density guarantee in eq. (18).
This means that no guarantee can be made about the specific
connectivity of a particular node in a particular layer with
X–Nets, however (ε, δ)–nets do offer a connectivity guarantee.

IV. DETERMINISTIC CONSTRUCTION OF SUPER–REGULAR
NETWORKS

In order to deterministically construct super–regular net-
works, we create layers of (ε, δ)–balanced matrices. To do
this, we define an algebra using matrices. Full multiples of the
base of the matrix system are denoted An, n ≥ 0; similar to
the ones, tens, and hundreds positions in the decimal number
system. Partial multiples of the system are denoted An,s, where
the set s = {1, 2, 3, 4} and each digit respectively specifies the
first, second, third, and fourth full diagonals in the associated
matrix. A full diagonal is the same length as the main diagonal
of a matrix (m, for an m ×m square matrix), but may not
start at (0, 0), and may have one or more breaks. However, it
must always assign exactly one edge to each pair of vertices.
Further, An = An,s=[1..4]. The symbol A denotes a matrix
composed of one or more An,s matrices.

The fundamental unit of the matrix system is the 1×1 matrix
defined by A0. The first compositional unit is A1, and may be
constructed using between one and four A0 units. The second
compositional unit is A2, and so on. A2 may be composed of
between one and four A1 units, or between one and eight A0

units. In fact, every Ak matrix is composed of some power
of two multiple of A0. The pattern that edges are added to
subgraphs is an essential aspect to this system, and allows



maintaining an (ε, δ)–balanced matrix. Exactly m edges are
added at a time, with the following ordering for Ak, k ≥ 2 (A0

and A1 follow a similar but shorter approach). Equation (19)
shows the pattern used to generate a particular size matrix:

An,s =


I0 if 1 ∈ s else 0n,n +

In/4 if 2 ∈ s else 0n,n +

In/2 if 3 ∈ s else 0n,n +

I3n/4 if 4 ∈ s else 0n,n

, (19)

where the I subscript indicates the starting row in the first
column to begin the diagonal, which wraps around at the top
of the matrix if necessary to become a full diagonal.

Figure 1 shows why this pattern is necessary. Essentially,
it minimizes the probability of selecting an empty set for a
given set size. For example, filling only the first two diagonals
of A2 produces a bipartite graph with d = .5, and guarantees
at least one edge in a selected subset of size 2 on each side.
However, a matrix of the same size, but with the first and third
diagonals filled instead, permits the selection of an empty set
(if the odd rows and even columns are selected, or vice versa).
Both matrices examined in this case are balanced, though the
former has a tighter ε–balance than the latter. This property
scales with the size of the submatrix, assuming the sizes of the
selected sets scale as well. By building matrices according to
the aforementioned diagonal ordering, we can deterministically
create (ε–δ)–balanced matrices. Figure 2 shows the construction
of the first five submatrices, along with the pattern used to add
edges.

A. Addition

Any A(k−q),∀0 ≤ q ≤ k may be added to Ak, from 0 to
4(k−q) times. Each Ak implicilty describes how any A(k−q)
may be added to it. Adding two matrices requres a bijection,
β : Ar 7→ Ak, where r = (k − q), such that each index in Ar
has exactly one distinct corresponding submatrix of size 2(k−q)

in Ak, for all submatrices of size 2(k−q) in Ak that contain a
“true” diagonal. Then, compute A = β(Aq)∪Ak, which copies
Aq into every previously non–empty submatrix.

For example, to add A41,2 + A31,2 , define β : A1 7→ A41,2 ,
and A = β(A31,2)∪A41,2 . This operation is illustrated in fig. 3:

Essentially, we create a grid of size |Aq|, and add copies of
Ar in the locations that Ak has a “true” diagonal already in
each respective submatrix. Submatrices, similarly to individual
edges, are added to the primary matrix according to the edge
ordering constraint (shown in fig. 2). In fact, A0 is both a
submatrix and an edge, and could be added to any Ak,∀k in
exactly the manner described above. If Ak has 4 (denoted Ak4 )
full diagonals (diagonals of total length m) worth of edges,
adding A(k−1)4 to it four times will increase the density by a
factor of 4m. This is because two of the diagonals that A(k−1)4
would add, have already been added by the completion of Ak4 .
As a result, we have the ability to modulate A’s density by
± m
m2 .

A:

A31,2

=

A41,2

+

Fig. 3. Simple addition via a submatrix bijection.

Using this process, we are able to deterministically build
a number of bipartite (ε, δ)–super–regular pairs. However, in
the context of multiple stacked layers of super–regular pairs,
this edge assignment process structurally limits information
mixing from one layer to the next. In order to mitigate this,
we randomly permute the node ordering after edge assignment.
This ensures each (ε, δ)–super–regular pair continues to satisfy
all required properties, while also ensuring uniform mixing as
discussed by [6].

V. EXPERIMENTS

In order to demonstrate that our construction of (ε, δ)–super–
regular pairs, and thereby SRNs is practical, we compared
the performance of SRNs and X–Nets using four different
CNN architectures. We modified the codebase used by [6]
(implemented with PyTorch), and ran experiments using the
CIFAR-10 dataset. The architectures tested were VGG–16
with batch normalization, DenseNet (k = 8), MobileNet, and
ResNet50. The original codebase used sparse bipartite linear
and 2D convolutional expander graph layers with randomly
assigned edges in place of many fully–connected layers (but not
all). Our modifications replaced all bipartite expander graph
layers with (ε, δ)–super–regular layers of the same density,
with deterministically assigned edges whose nodes where then
randomly permuted in order to guarantee uniform mixing. Each
architecture was tested ten different times using (ε, δ)–super–
regular layers and expander layers. We used a batch size of
128 with stochastic gradient descent.

VI. RESULTS

Table I shows the average best top-1 precision scores over all
ten trials after 100 epochs for each architecture we tested. The
rightmost column shows the absolute value of the difference
between the X–Net and SRN implementations. In terms of the



TABLE I
AVERAGE BEST TOP–1 PRECISION SCORES FOR EACH ARCHITECTURE

AFTER TRAINING 100 EPOCHS ON THE CIFAR–10 (BATCH SIZE = 128)

Architecture SRN X–Net |SRN - X–Net|

VGG-16 BN 85.66% 86.17% 0.51%
MobileNet 74.46% 74.87% 0.41%
DenseNet 75.43% 75.74% 0.31%
ResNet50 76.22 % 76.78 % 0.56%

(a)

(b)

Fig. 4. (a) Training loss vs. epoch for the four architectures tested. For each
architecture, the green lines are each of the 10 trials using the SRN, while
the black lines are each of the 10 trials using the X–Net. (b) Validation top–1
precision vs. epoch for the four architectures tested, showing 10 trials for
each network. Architectures are (i) VGG-16 with batch normalization; (ii)
MobileNet; (iii) DenseNet; and (iv) ResNet50

averages, the X–Net implementation slightly outperformed the
SRN.

Figures 4a and 4b show the training loss and validation set
top–1 precision scores for each of the 10 trials of each network
type for both the X–Net and SRN implementations, for each
of the 100 epochs. The green lines display SRN trials, while

the black lines show the X–Net trials.

VII. DISCUSSION

We expected to see SRNs outperform X–Nets specifically
because of the subgraph uniformity guaranteed by (ε, δ)–super–
regular pairs. However, we found that SRNs consistently
performed comparably (nearly as well as) X–Nets, as shown
by figs. 4a and 4b. The VGG architecture is an interesting
outlier, where the X–Net seemed to consistently outperform
the SRN.

As discussed in section III-D, SRNs put a lower bound
on X–Net subgraph sparsity. A consequence of this is that
the potential to have an uneven distribution of in–edges to a
given node decreases. This may be a primary driver of the
slight observed decrease in overall performance of SRNs as
compared to X–Nets. Essentially, due to non–uniformities in
the data, SRNs lose the advantage that X–Nets have of being
able to relatively over– and under–utilize certain nodes or paths.
Minimal differences in the average best top–1 precision over
the 100 training epochs across all architectures tested support
this conclusion, as shown in table I, as do the tightly clustered
and interwoven loss and precision plots in figs. 4a and 4b.
In all cases, the densities of the (ε, δ)–super–regular layers
that replaced the expander layers were identical; so it is likely
that the discrepancy is a product of the differences in edge
distribution.

However, there are two primary algorithmic advantages of
SRNs over X–Nets. First, (ε, δ)–super–regular pairs guarantee
the ability to embed predetermined paths into a network, as a
result of the connectivity. Second, because the edges of SRNs
are deterministically constructed, SRNs have the potential to
be carefully augmented or tuned. As deep learning research
continues to evolve, this characteristic has the potential to
become increasingly important.

VIII. CONCLUSIONS AND FUTURE WORK

We introduced ε– and (ε, δ)–balanced matrices, established
a relationship between ε–balanced matrices and ε–regular
pairs, and between (ε, δ)–balanced matrices and (ε, δ)–super–
regular pairs. We presented a method to construct pseudo–
deterministic SRNs, and showed that SRNs produce comparable
results to X–Nets. Further, we discussed the advantages that
SRNs have over X–Nets. Specifically, SRNs promise greater
network connectivity and uniformity. This means SRNs are
inherently more tunable than X–Nets. Furthermore, due to their
comparable performance to X–Nets and additional properties,
our results suggest that SRNs are suitable replacements for
FCNs. Further work is necessary to verify this.

Future work requires us to understand why, despite identical
layer densities, X–Nets seemed to slightly outperform SRNs
in terms of training loss and validation precision. Another
direction to take future work is to extend the notion of
transfer learning to embed multiple unrelated pre-trained sparse
networks into a slightly larger SRN, and begin training for a
more complex task using the newly embedded SRN as a starting
point. Additionally, it would be helpful to experimentally



determine the impact that increasing sparsity has on the
performance differential between SRNs and X–Nets. Finally,
a fully deterministic construction of (ε, δ)–super–regular pairs
may facilitate engineering specific network architectures. One
possible way to approach this is via a deterministic node
permutation.
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