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Abstract—Evaluating, explaining, and visualizing high-level
concepts in generative models, such as variational autoencoders
(VAEs), is challenging in part due to a lack of known prediction
classes that are required to generate saliency maps in supervised
learning. While saliency maps may help identify relevant
features (e.g., pixels) in the input for classification tasks of
deep neural networks, similar frameworks are understudied in
unsupervised learning. Therefore, we introduce a new method
of obtaining saliency maps for latent representations of known
or novel high-level concepts, often called concept vectors in
generative models. Concept scores, analogous to class scores
in classification tasks, are defined as dot products between
concept vectors and encoded input data, which can be readily
used to compute the gradients. The resulting concept saliency
maps are shown to highlight input features deemed important
for high-level concepts. Our method is applied to the VAE’s
latent space of CelebA dataset in which known attributes such
as “smiles” and “hats” are used to elucidate relevant facial
features. Furthermore, our application to spatial transcriptomic
(ST) data of a mouse olfactory bulb demonstrates the potential
of latent representations of morphological layers and molecular
features in advancing our understanding of complex biological
systems. By extending the popular method of saliency maps
to generative models, the proposed concept saliency maps
help improve interpretability of latent variable models in deep
learning.

Codes to reproduce and to implement concept saliency maps:
https://github.com/lenbrocki/concept-saliency-maps

Index Terms—saliency maps, concept vectors, variational au-
toenconder, unsupervised learning, spatial transcriptomics

I. INTRODUCTION

A rapidly increasing amount of unlabeled data, such as
images and molecular data, has prompted a rise of deep
generative models, that can be trained without human supervi-
sion. By using a vast amount of unlabeled data, unsupervised
learning models such as variational autoencoders (VAEs) [1],
[2] extract low-dimensional latent spaces that compactly en-
code high-dimensional input data and potentially reveal hidden
relationships. While deep generative models are capable of
generating new images [3]–[5] and enable manipulation of
image-specific attributes [6], [7], it remains a grand challenge
to achieve intelligible understanding of their behavior [8]–[10].

This study was partially supported by Narodowe Centrum Nauki grant no.
2016/23/D/ST6/03613. The GPU used for this research was donated by the
NVIDIA Corporation.

We are interested in understanding and interpreting the latent
representations of high-level concepts in generative models.
Using VAEs, we propose to evaluate the importance of input
features with respect to concept vectors and provide a new
method of obtaining concept saliency maps. This essentially
extends the popular method of saliency maps in classification
tasks to unsupervised learning.

In predicting known classes using convolutional neural
networks (CNNs), saliency maps have been introduced as a
natural approach to make models interpretable [11]–[13]. A
saliency map visualizes relative importances of the input pixels
with respect to the classes that the neural network has been
designed and trained on. It gives an insight into the behavior
of the model that leads to a certain prediction. Saliency maps
are obtained by calculating the gradient of the class score
Sclass with respect to the input pixels pij , where Sclass is
usually taken to be the activation of the neuron in the output
layer encoding the class of interest. They attempt to answer
the question: “Which pixels were decisive for this particular
classification made by the model?” The originally proposed
method of obtaining the gradients may give noisy saliency
maps, which prompted a number of improvements and variants
on the calculation and backpropagation of the gradients [14]–
[16]. This work aims to generalize the method of saliency
maps to be applicable in generative models, particularly in
deep latent variable models such as variational autoencoders
(VAEs). VAEs are among the most popular approaches in
unsupervised learning of complex distributions [1], [2]. They
have been demonstrated to be capable of generating compli-
cated imagery such as handwritten digits [1], [3], faces [4],
[5], and others. Furthermore, it has been shown that VAEs
learn a meaningful latent representation which allows the
manipulation of attributes through traversal in latent space [6],
[7].

To achieve applicability to VAE and other generative mod-
els, which naturally lack known classes, we propose to use
concept vectors to compute concept scores Sconcept, which can
be understood as a replacement for Sclass (Fig. 1). A concept
vector is a latent representation of a high-level concept, which
could be known attributes [6], [17], cluster memberships [18],
or others. Such a concept vector has been demonstrated to be
capable of manipulating an image by adding a certain attribute,
as is demonstrated in Fig. 2 [6], [17]. Once a generative model
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Fig. 1. An overview of the proposed method of obtaining concept
saliency maps. Top: In a classification task, the activation of the
output neuron encoding the class of interest serves as class score
Sclass to obtain saliency maps. Bottom: A deep generative model,
such as VAE encodes input xi in the latent space and reconstructs
the input from zi. The concept score Sconcept is defined as the dot
product of the latent representation of the input image zi and the
concept vector zc, where Xc is the set of images expressing a certain
concept.

is trained on some dataset X = {xi}Ni=1, a concept vector zc is
readily obtained by averaging over the latent representations of
samples containing an attribute of interest and subtracting the
average of samples which do not. The concept score Sconcept
is then obtained by measuring the similarity of the latent
representation of an input image zi = qφ(xi) and the concept
vector corresponding to that attribute zc, where qφ(xi) is the
encoder of the VAE.

Our proposed method obtains input-specific saliency maps
for generative models by weighing the input pixels by rel-
evance with respect to this concept vector. In other words,
we answer the question: “Which parts of a given image are
particularly relevant for this concept?”. This concept saliency
map is obtained by calculating the dot product between the
latent representation of a certain image and the concept vector,
although a different method to calculate the concept score
may be useful in other domains. The concept score Sconcept
is motivated by the intuition that two vectors with a high dot
product are more aligned, and thus more similar, than ones
with a low dot product. Therefore, it can be seen as analogous
to a neuron in the prediction vector of a classifier.

In this sense our proposed method is a generalization of
saliency maps to generative models and is not limited to a
classifier’s possible predictions. The user is free to utilize

Fig. 2. An example of meaningful concept vectors. Known attributes
‘smile’ is used to construct a concept vector using a VAE of the
CelebA data. Adding this smile concept vector to a latent represen-
tation of a given picture changes the facial features associated with
a smile while leaving other features mostly unchanged.

known attributes or construct novel concepts based on the data.
Utility of the concept saliency maps are demonstrated through
application to a large-scale face image database, CelebA [19]
and spatial transcriptomic (ST) data of a mouse olfactory bulb
[20].

II. RELATED WORK

A. Concept vectors

Generative models, such as VAE, often operate on the
assumption that there is a meaningful low-dimensional latent
space, meaningful in the sense that it encodes high-level
concepts. Identifying, estimating, and disentangling such latent
space has become important due to their potential to explain
how unsupervised learning works [6], [9], [17], [21]. Sampling
from latent space may allow us to reconstruct a meaningful
output and to approximate visual analogies [21]. In [6], a
latent representation of a certain attribute, such as a smile, is
obtained and added to an arbitrary image which was referred
to as visual attribute vectors (e.g., Fig. 2). They noticed a
strong correlation among certain attributes such as “heavy
makeup” and “wearing lipstick”. Reference [17] attempted to
decouple correlated attributes when a correlation stems from
a sampling bias. Note that in [17], the dot product of a latent
representation of an image with a concept vector was used
to build an effective binary classifier, which motivated our
definition of the concept score Sconcept.

High-level concepts in latent space can be further discovered
in semi- or unsupervised manner. Reference [22] uses a limited
reference database of images with attributes to cluster and
annotate a set of unlabeled input images. By coupling a CNN
with a set of data-dependent binary attributes, [18] seeks to
automatically discover image attributes. Internal states of a
deep neural network may be interpreted in terms of high-
level concepts, which [9] called concept activation vector.
This enables one to determine how important a certain internal
concept, such as stripes, is for the prediction of a class, for
example zebra. We are interested in both known and unknown
attributes which may be learned from the input data. The
novelty of our approach is twofold: firstly, the applicability
to latent variable models leveraging low-dimensional latent
space and secondly, the usage of the dot products obtained
from concept vectors to create saliency maps.



B. Saliency maps

In supervised learning there exist many methods to attribute
the prediction of a network to its input features. Saliency
maps are defined as the gradient of the class score Sclass
with respect to the input pixels pij [11]–[13]. Despite early
successes, direct calculation of the gradients often leads to
noisy saliency maps without clearly focused regions. Sev-
eral propositions have been made to improve them, such as
Guided Backropagation (GuidedBP) [14], Rectified Gradient
(RectGrad) [23] and SmoothGrad [15]. The first two methods
modify the back-propagation of the gradient through the
Rectified Linear Activation Unit (ReLU) f(x) = max(x, 0),
for a detailed description see sec. III-B. SmoothGrad seeks
to denoise the saliency map of a given image by sampling
similar images by adding noise and averaging over the saliency
of the sampled images. Integrated Gradients [16] computes
interpolations between a given image and a baseline image
and integrates the saliency maps of these interpolated images
which essentially alleviates the sensitivity to the saturation of
the input pixels. Other methods such as Layer-wise Relevance
Propagation (LRP) [24], [25] and DeepLift [26] are relevance
score based techniques, which means that they propagate
back the relevance score(which is equal to Sclass in the final
layer) via the activations of the previous layers without using
gradients.

Our work essentially extends this family of methods to
embrace unsupervised learning in which the class score is no
longer available. We propose to extract the latent layer of VAE
and related generative models and feed the dot products as the
class score into any of the aforementioned methods.

III. METHOD

In the context of supervised classifiers, conventional ap-
proaches to obtaining saliency maps calculate the gradient of
the output neuron encoding the class of interest, i.e. the class
score Sclass, with respect to the input pixels pij . The gradient
tells us which inputs need to be changed the least to have the
biggest influence on the class score, essentially identifying the
most significant inputs. To find the input pixels which are most
significant in maximizing the class score one can simply clip
all negative gradients. In unsupervised models we do not have
a prediction vector to choose our class score from but instead
a low dimensional latent space which reflects the input data
and it is a priori not clear how to construct a saliency map
from it.

Recent developments of variational Bayesian approaches
resulted in variational autoencoder (VAE) [1], [2] and related
methods that estimate meaningful latent spaces. Briefly, the
general architecture of VAE consists of the encoder and the
decoder, both of which consist of multiple layers of neural
networks. The encoder, which typically performs drastic di-
mension reduction, compresses the observed data (the input)
into the latent variables, while the decoder reconstructs the
observed data from the latent variables (Fig. 1). The input data
X = {xi}Ni=1 are generated by some latent variables z with a
prior distribution pθ(z). Then, X is realized from a conditional

distribution pθ(x|z), where θ and z are unknown. We attempt
to do inference in this model such that given X, find z, by
calculating the posterior density pθ(z|x) = pθ(x|z)pθ(z)

pθ(x) , which
is intractable since we would have to integrate over all latent
variables pθ(x) =

∫
dz pθ(x|z)pθ(z)dz.

VAE circumvents this challenge by fitting an approximate
inference model qφ(z|x) which is an approximation to the
true distribution pθ(z|x). An iterative learning process jointly
learns the parameters θ and φ. The probabilistic encoder
qφ(z|x) and decoder pθ(x|z) are constructed of neural networks
with L layers. In images and other spatial data, convolutional
neural networks are often used to take advantage of spatiality
[27], [28]. To train the network, weights are adjusted through
gradient descents to minimize a pre-specified loss function.

A. Extracting concept saliency maps

The latent space is thought to encode high-level concepts,
such as facial attributes or morphological structures. Many
of unsupervised learning techniques aim to disentangle this
latent space, extract useful latent representations of high-level
concepts, and present how they are manifested in the observed
(input) data. Larsen [6] and others have shown that we can find
directions, or concept vectors, in latent space, which encode a
certain attribute. Instead of a class score, for generative models
we propose to use the dot product of zi = qφ(xi) and a certain
concept vector zc. We refer to this dot product between zi and
zc as concept score.

Our method to obtain saliency maps from concept vectors
is summarized in the following algorithm.

Algorithm 1. Concept Saliency Maps
1) Train VAE on the observed data X = {xi}Ni=1

2) Obtain the set of latent representations Z = {zi}ni=1 by
applying the encoder qφ on X

3) Identify the data attribute of interest (e.g. ‘smiling’) and
denote those samples with the data attribute of interest
by Z+ and without it by Z−

4) Obtain concept vectors zc as follows, where n+ and n−

refer to the number of samples with and without a certain
attribute

zc =
1

n+

∑
Z+ − 1

n−

∑
Z− (1)

5) Obtain the concept score Sconcept by calculating the dot
product between zc and zi = qφ(xi)

Sconcept = zc · zi (2)

6) Calculate the gradient of the concept score with respect
to input pixels pij to generate saliency map Mij

Mij =
∂Sconcept

∂pij
(3)

When the computationally intensive Step 1 of training VAE
is previously completed, the trained model can be used to
compute the concept scores of interest. A concept can be
defined by annotations of the dataset or be user defined. In



the latter case the user can choose a subset of images that
represent a certain concept and obtain a concept vector by
averaging as is explained in Step 4. Another way is to cluster
the data, possibly in latent space, and use cluster membership
as concept or, as is exemplified in Sec. IV-B, a concept can
be formed by highly correlated samples. It is data dependent
which method is most suitable.

While we have focused on the dot product in the Step 5, it
is possible to adapt modifications and improvements to how
the concept score is derived. Dependent on data types and
analysis goals, one may explore cosine similarity coefficients,
Lp norms and others and assess how well the input data with
and without certain attributes are separated. The last step of
computing the gradients, which is an active area of research,
is explained in detail below.

Our method can readily be used to explore and visualize
the latent space in pre-trained VAE models, as long as one is
able to extract the latent representation of the input samples.

B. Calculating the gradients

There are different methods of calculating the gradients
which are used to obtain saliency maps. They differ in how
they handle the backpropagation of the gradient through the
rectified linear activation unit (ReLU), which is used through-
out in our neural networks and is defined as f(x) = max(x, 0).
Suppose we have a L-layer densely connected network and
denote the input of neuron i in layer l as xil and the weight
between neurons as wij . By larger n we denote “deeper”
layers, such that n = 0 is the input layer and l = L the
output layer. The output layer in a classification task would
contain the class score, whereas in the generative models, we
use the proposed concept score. The gradient Ril is defined as
Ril =

∂Sconcept

∂xil
and tells us how the class score or the concept

score changes with respect to xil , where xil could for example
be the values of the input pixels. Using the chain rule one finds
the following relation for the backpropagation of gradients:

Rkl =
∑
j

wkj1(x
k
l > 0) ·Rjl+1 , (4)

where 1 is the indicator function. The activation maps created
using this backpropagation are known to be very noisy and
therefore improved methods have been proposed. Guided
Backpropagation [14] further demands that the gradients of
the higher layer have to be positive in order to be propagated:

Rkl =
∑
j

wkj1(x
k
l ·R

j
l+1 > 0) ·Rjl+1 , (5)

and this additional guiding of the gradient leads to sharper
activation maps. Recently, Rectified Gradient [23] has been
proposed as yet another method to calculate gradients. It
introduces an external parameter τ which acts as a threshold
for gradients to be backpropagated:

Rkl =
∑
j

wkj1(x
k
l ·R

j
l+1 > τ) ·Rjl+1 . (6)

Our proposed framework also works with methods of com-
puting the gradients since it only replaces Sclass with Sconcept
leaving anything else untouched. In the following applications,
we present both Guided Backpropagation and Rectified Gra-
dient which have their own advantages and disadvantages.

IV. RESULTS

We apply the proposed method of concept saliency maps
to two datasets: a large-scale face database with attributes,
CelebA, [19] and a spatial transcriptomic (ST) dataset of a
mouse olfactory bulb [20]. In the well-known CelebA, there
exist annotations of facial features which can be used to
visualize and evaluate. We demonstrate how known attributes
such as smiles and glasses can be used to generate concept
saliency maps. Spatial transcriptomics (ST) is a novel tech-
nique to measure gene expression profiles of a sample while
maintaining spatial information. We use this spatial map of
gene expression values located in a grid to demonstrate how
to create saliency maps with limited prior knowledge about
the input samples.

A. CelebFaces Attributes Dataset (CelebA)

CelebA is a large database of face images with known
attributes [19], consisting of 202593 images and 40 binary
annotations of facial attributes for each image. The images
have been aligned, scaled and cropped to 128×128 pixels us-
ing the landmark annotations that come with the dataset [19].
We used a VAE with convolutional layers, ReLu activation

Fig. 3. Saliency maps for selected facial attributes in the CelebA
database. Concept vectors and concept scores are built from known
attributes. For the example images with the highest concept scores,
Guided Backpropagation [14] (second row) and Rectified Gradient
[23] (third row) are used to obtain concept saliency maps. For the
last column, artificial blue squares have been inserted into a subset
of 10000 pictures and the VAE has been re-trained with this subset
as part of the training data. The bottom row shows histograms of the
dot products with coloring and axes as in Fig. 4.



Fig. 4. Impact of dark features on saliency maps. On the left, the
histograms of the dot products of the concept vector for black (top)
and blue (bottom) squares show that in both cases the distributions
are well separated. However, the saliency map on the top fails to
highlight the square, the attribute of our interest. This suggests that
this failure can be attributed to the calculation of the gradients and not
the concept score. The checkerboard pattern [30] seen in the bottom
map appears due to the strides in the convolutional layers. Orange
bars correspond to images with a square and blue ones without.

and batch normalization, down- and upsampling is done using
strides and the dimension of the latent layer is 400. For the
full architecture please refer to Tab. I. The network has been
trained for 50 epochs using the Adam optimizer [29] with
learning rate set to 0.001.

The saliency maps shown in Fig. 3 were obtained by
employing the algorithm in section III-A using 2000 images
for each attribute for averaging, where the annotations of the
CelebA dataset for facial attributes such as “smiling” or “wear-
ing hat” have been used. The saliency maps often match with
the intuition that we have, they highlight eyebrows, the hat
and the blue square clearly. For the smiling concept GuidedBP
focuses rather on the mouth and chin region whereas RectGrad
on teeth and cheeks. It is apparent that RectGrad produces
cleaner maps than GuidedBP which is due to the additional
threshold introduced. This threshold prevents RectGrad from
performing a partial image recovery, which is the case for
GuidedBP, as has recently been proven in [31].

However, note that not all attributes are created equal. First,
there are continuous attributes – e.g., “rosy cheeks” or “oval
face” – that are very challenging even for humans to agree
upon. Second, some attributes – e.g., “attractive” or “young”
– are highly subjective and do not necessary have common
visual features. Third, there are correlated attributes – e.g.,
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Fig. 5. Visualization of spatial transcriptomics (ST) of a mouse
olfactory bulb. ST provides gene expression profiles of a tissue
section that are spatially resolved. The microscopic image [20] of
the tissue section superimposed with the gene expression profile of
Penk. Colors represent normalized gene counts.

“heavy makeup” and “wearing lipstick” – whose underlying
latent representations are intertwined. We have focused on
attributes that are seemingly separated and well-represented.
Fourth, we found that attributes that are inherently dark often
are not visualized in saliency maps. For example, the eye-
glasses are problematic because, although the correct region
of the face is highlighted, the glasses themselves remain dark
(Fig. 3). This problem is connected to the calculation of the
gradients which fails for very dark regions of the images.
Reversely, bright regions tend to be overrepresented in the
saliency maps as can be seen in the “wearing hat” example,
where the teeth and parts of the racket are also highlighted.

To further demonstrate that this is an effect due to the calcu-
lation of the gradients and not connected to the calculation of
the concept score we have inserted also black squares into the
pictures and calculated the dot products of the concept vector
for blue and black square with the latent vectors of 20000
images in each case, where half of the images contained either
a blue or black square and the remaining ones did not. Plotting
the histograms shows that in both cases the dot product is
significantly higher if a square is present but the saliency map
fails to highlight the black square as the dominant feature
(Fig. 4). In both cases the face almost vanishes, but in the
black square case only the edges are partly highlighted.

B. Spatial Transcriptomics (ST) of an Olfactory Bulb

We are interested in understanding how high level concepts,
such as morphological structures, are manifested on spatial
gene expressions, which are measured by fixating and staining
a sliced tissue sample. Particularly, the ST data of a mouse
olfactory bulb contains genome-wide gene expressions from
a sliced tissue section of a mouse olfactory bulb [20]. When
positioned on a microchip, there are 267 spots in a grid that
measure expression activities of up to 16573 genes within that



TABLE I
ARCHITECTURE OF VAE FOR CELEBA

Encoder Output size Decoder Output size

Input image 128× 128× 3 400 fully-connected (latent layer) 400
5× 5 64 conv., stride 2, BN, ReLu 64× 64× 64 1024 · 4 · 4 fully-connected, BN, ReLu 16384
5× 5 128 conv., stride 2, BN, ReLu 32× 32× 128 5× 5 512 conv., stride 2, BN, ReLu 8× 8× 512
5× 5 256 conv., stride 2, BN, ReLu 16× 16× 256 5× 5 256 conv., stride 2, BN, ReLu 16× 16× 256
5× 5 512 conv., stride 2, BN, ReLu 8× 8× 512 5× 5 128 conv., stride 2, BN, ReLu 32× 32× 128
5× 5 1024 conv., stride 2, BN, ReLu 4× 4× 1024 5× 5 64 conv., stride 2, BN, ReLu 64× 64× 64
512 fully-connected, BN, ReLu 512 5× 5 3 conv., stride 2, BN, ReLu 128× 128× 3
400 fully-connected (latent layer) 400

locality. Each of 16573 genes is treated as a sample with 267
features, which are the counts of RNAs at the different spots
in the tissue.

To provide a context for gene expression data in a spatially
resolved tissue, a microscopic image of the tissue obtained by
Hematoxylin-and-eosin staining has been superimposed with
the normalized counts for the gene Penk (Fig. 5). Clearly, Penk
– which is a proenkephalin gene playing a role in signaling
receptor binding, response to stimulus, and cell projection
– is most highly expressed in the inner part of the tissue
section known as the granular cell layer. We are interested
in investigating the spatial expression of genes with known
and unknown relations to morphological structures.

To prepare the data for VAE, the gene counts have been
arranged in 32 × 32 matrices and normalized for each gene
separately (see middle row in Fig. 6). The VAE architecture
used for this ST dataset is similar to the one used in CelebA,
but with fewer layers and filters; for a detailed description see
Tab. II.

In contrast to CelebA, this ST data do not come with
conventional attributes that could be used to form concept
vectors. Nonetheless, the advantage and motivation of ST
is that gene expression profiles at different locations in a
tissue section are crucial for complex molecular systems. How
are genes expressed differentially across a tissue section?
Reference [20] has shown that some genes present clear spatial
organizations such as Penk, Doc2g and Kctd12. These genes
are specifically over-expressed in certain regions – Penk in the
granular cell layer (GCL), Doc2g in the glomerular layer (GL)
and Kctd12 in the outer layer (see Fig. 2(b) in [20]). Therefore,
we use these known genes to identify concept vectors for
3 morphological layers. Particularly, we calculated Pearson
correlations in the latent space between these three genes and
all other genes. Concept vectors related to these morphological
layers were approximated by averaging over 50 genes with the
highest correlation statistics (Fig. 6).

We applied the proposed methods using these concept
vectors to available genes in the ST data. In Fig. 6 (bottom
row) the saliency maps for the genes Itm2b, Syt7 and Apoe
with respect to the concept vectors in the top row are shown.
It appears that the saliency maps indeed highlight the spots of
the gene count matrices which match with the corresponding
morphological layers. For instance, the saliency map for Itm2b
focuses on the granular cell layer (inner parts) and lets the

Decoded Concept Vectors

Granular Cell Layer        
(Penk like)

Glomerular Layer      
(Doc2g like)

Outer Layer
(Kctd12 like)

Saliency Maps

Itm2b Syt7 Apoe

Gene Counts

Fig. 6. Concept vectors and saliency maps related to morphological
layers in ST data. Top row: the decoded concept vectors for three
morphological layers (derived from Penk, Doc2g and Kctd12) are
shown in 32 × 32 matrices. Middle row: Gene count matrices for
Itm2b, Syt7 and Apoe. Bottom row: Saliency maps for for Itm2b,
Syt7 and Apoe with respect to the concept vectors on the top row. A
color bar as in Fig. 5.

glomerular and olfactory nerve layer (outer layers) almost
vanish.

V. CONCLUSION AND FUTURE WORK

Unsupervised deep learning is becoming more critical as
we are accumulating a greater amount of unlabeled data.
One of the main goals of unsupervised learning is to extract
meaningful and useful latent representations of known and
novel concepts. To this end, we have developed a method
of calculating concept scores and obtaining concept saliency
maps which help identifying important regions or features in
input data. Briefly, the concept score is defined as the dot



TABLE II
ARCHITECTURE OF VAE FOR SPATIAL TRANSCRIPTOMICS DATASET

Encoder Output size Decoder Output size

Input image 32× 32× 1 20 fully-connected (latent layer) 20
4× 4 16 conv., stride 2, BN, ReLu 16× 16× 16 1024 fully-connected, BN, ReLu 1024
4× 4 32 conv., stride 2, BN, ReLu 8× 8× 32 4× 4 32 conv., stride 2, BN, ReLu 8× 8× 32
4× 4 64 conv., stride 2, BN, ReLu 4× 4× 64 4× 4 16 conv., stride 2, BN, ReLu 16× 16× 16
256 fully-connected, BN, ReLu 512 4× 4 1 conv., stride 2, BN, ReLu 32× 32× 1
20 fully-connected (latent layer) 400

product between the latent representation of an input and a
concept vector. This proposed concept score can be understood
to be analogous to the activation of a neuron in the prediction
vector of a classifier, and our method therefore generalizes the
technique for obtaining saliency maps to generative models.

The effectiveness of our method is demonstrated by utilizing
the CelebA dataset. When using known attributes, the concept
scores are shown to effectively distinguish samples with and
without a certain attribute and the concept saliency maps
highlight relevant facial features. However, we have observed
and investigated how very dark regions in an image tend not
to be highlighted, even though they are crucial to the concept.
It has been demonstrated that this is an effect due to the
calculation of the gradients and not connected to the proposed
concept score. Therefore, it would be interesting to further
investigate how darkness impacts saliency maps and develop
an improved gradient method or normalization technique that
would not be biased.

We have further presented a novel application of proposed
methods to spatial transcriptomics (ST) of a mouse olfac-
tory bulb [20]. Concept vectors have been formed by using
genes which are highly correlated to three well-known genes
whose spatial expression profiles are known to coincide with
certain morphological layers. Concept vectors for different
morphological layers have been obtained from genes with
high correlation statistics relative to genes with known spatial
expressions. Finally, the concept saliency maps highlight the
regions in the spatial gene expressions which most strongly
overlap with the morphological layers.

We plan to further develop the proposed methods using ST
datasets in order to better understand how deep generative
models could be used to disentangle the latent space of
spatial gene expression. It would be instructive to explore
functional annotations and other high-level concepts that are
not directly related to morphology. These annotations may be
used to reveal spatial characteristics for certain functions and
saliency maps visualize the contribution of genes to these
concepts. Furthermore, it would be interesting to explore
other ST datasets, many of them related to cancer and other
medical applications. Lastly, it will become more important to
combine ST with RNA-sequencing and molecular experiments
to validate the computational results.

Finally, saliency maps, which have primarily been used for
interpretation of machine learning models, have the potential
to become more useful and popular as an essential tool for

exploratory data analysis. High-level concepts hidden in latent
space of VAE and other generative models may be discovered
through dimension reduction and clustering and saliency maps
can be used to reveal the significant features. In particular,
it would be important to extend this set of unsupervised
deep learning approaches to non-image data for molecular and
biomedical applications.
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[20] P. L. Ståhl, F. Salmén, S. Vickovic, A. Lundmark, J. F. Navarro,
J. Magnusson, S. Giacomello, M. Asp, J. O. Westholm, M. Huss et al.,
“Visualization and analysis of gene expression in tissue sections by
spatial transcriptomics,” Science, vol. 353, no. 6294, pp. 78–82, 2016.

[21] S. E. Reed, Y. Zhang, Y. Zhang, and H. Lee, “Deep visual analogy-
making,” in Advances in neural information processing systems, 2015,
pp. 1252–1260.

[22] S. Hong, J. Choi, J. Feyereisl, B. Han, and L. S. Davis, “Joint image
clustering and labeling by matrix factorization,” IEEE transactions on
pattern analysis and machine intelligence, vol. 38, no. 7, pp. 1411–1424,
2015.

[23] B. Kim, J. Seo, S. Jeon, J. Koo, J. Choe, and T. Jeon, “Why are
saliency maps noisy? cause of and solution to noisy saliency maps,”
arXiv preprint arXiv:1902.04893, 2019.

[24] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek, “On pixel-wise explanations for non-linear classifier deci-
sions by layer-wise relevance propagation,” PloS one, vol. 10, no. 7, p.
e0130140, 2015.

[25] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Müller,
“Evaluating the visualization of what a deep neural network has learned,”
IEEE transactions on neural networks and learning systems, vol. 28,
no. 11, pp. 2660–2673, 2016.

[26] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” in Proceedings of
the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, 2017, pp. 3145–3153.

[27] K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological Cybernetics, vol. 36, no. 4, pp. 193–202, apr 1980.

[28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[30] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard
artifacts,” Distill, 2016. [Online]. Available: http://distill.pub/2016/
deconv-checkerboard

[31] W. Nie, Y. Zhang, and A. Patel, “A theoretical explanation for perplex-
ing behaviors of backpropagation-based visualizations,” arXiv preprint
arXiv:1805.07039, 2018.

http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard

	I Introduction
	II Related Work
	II-A Concept vectors
	II-B Saliency maps

	III Method
	III-A Extracting concept saliency maps
	III-B Calculating the gradients

	IV Results
	IV-A CelebFaces Attributes Dataset (CelebA)
	IV-B Spatial Transcriptomics (ST) of an Olfactory Bulb

	V Conclusion and Future Work
	References

