Erschienerin: 18thIEEE InternationalConferenceéOn MachineLearningAnd Applications(ICMLA).
- Piscataway. IEEE,2019.- S.1800-1805- ISBN978-1-72814-551-8
https://dx.doi.org/10.1109/ICMLA.2019.00291

Widened Learning of Index Tracking Portfolios

Iuliia Gavriushina, Oliver Sampson, Michael R. Berthold, Winfried Pohlmeier, Christian Borgelt
University of Konstanz, Germany
{iuliia.gavriushina; oliver.sampson; michael.berthold; winfried.pohlmeier; christian.borgelt} @uni-konstanz.de

Abstract—Index investing has an advantage over active invest-
ment strategies, because less frequent trades results in lower
expenses, yielding higher long-term returns. Index tracking is
a popular investment strategy that attempts to find a portfolio
replicating the performance of a collection of investment vehicles.
This paper considers index tracking from the perspective of
solution space exploration. Three search space heuristics in
combination with three portfolio tracking error methods are
compared in order to select a tracking portfolio with returns
that mimic a benchmark index. Experimental results conducted
on real-world datasets show that Widening, a metaheuristic using
diverse parallel search paths, finds superior solutions than those
found by the reference heuristics. Presented here are the first
results using Widening on time-series data.

Index Terms—Widening, FinTech, algorithmic trading, ma-
chine learning, time-series, heuristic search, parallelism, diversity,
index tracking, tracking portfolio

I. INTRODUCTION

Wise investing is the key to building wealth. In the long-
term, inflation can significantly degrade the value of cash
savings, whereas investing in securities has the potential for
higher returns. Index investing (passive investing) is a well-
known investment approach that can outperform active port-
folio strategies. Automating investment decisions (algorithmic
trading) for decreasing investment costs is a popular research
area in FinTech. Several studies show that many investors
fail to outperform the market in the long-term, where a
significant part of the loss is often related to the high fees
associated with active trading [1f]. According to the efficient-
market hypothesis, a stock’s price fully reflect all information
available to the market [2]. Any new information about the
market is rapidly incorporated into the stock’s price. Therefore,
to beat the market, an investor must obtain superior and/or
faster information. Stock index tracking is a very popular
strategy for those investors, who instead of trying to beat the
market, aim to match the market’s returns. The main advantage
of index investing is lower expenses due to less frequent
trading when compared to active investment strategies.

An index is a basket of securities which represents a whole
market or submarket. Because it is not possible to buy an
index itself directly, to “invest in an index,” one needs to
approximate its performance. There are two approaches to
track an index: physical and synthetic replication. The first
is realized by direct investment in the assets and aims to
mimic the performance of the target index by holding all (full
replication) or a representative sample (sample replication)
of the underlying securities making up the index. Instead
of physically holding the equities in the constituents of the

benchmark, synthetic replication relies on derivatives which
are linked to those equities.

When using an index replication approach, it is crucial that
the reward is high enough to mitigate the investing risks.
Sample replication is characterized by being both sufficiently
transparent and sufficiently flexible. In contrast to syntetic
replication, sample replication does not involve counterparty
risk. Furthermore, it reduces expenses, because in contrast to
full replication, the tracking portfolio does not require holding
every asset in the index. Sample replication can be used if the
index does not have an investable structure, the assets in the
index are illiquid, or the number of assets is high.

Given an investment target I, this work explores ways of
selecting a tracking portfolio, P, of assets with returns that
mimic those of I. We consider index tracking from the per-
spective of a common solution space exploration problem in
machine learning, where the aim is to find a model (a tracking
portfolio) which accurately represents a set of observed data
(the valuation of an index over time) in order to predict its
future performance. The goal is to find a minimum number of
index constituents that can replicate a stock market index as
closely as possible.

The number of possible solutions is prohibitively large for
an index of even modest size. Various search heuristics can be
used to limit the size of the search space, and portfolio tracking
error methods can be used to score the models. WIDENING
is an inherently parallel metaheuristic for use with greedy
heuristics that uses diversity between solution paths followed
by parallel workers. This results in regions of a solution space
being explored that otherwise may not have been explored
with the greedy heuristic alone, potentially finding superior
solutions [3]].

In this paper we demonstrate for the first time the use
of WIDENING on time-series data. We evaluate three search
space heuristics (HILL-CLIMBING INDEX TRACKING, TOP-k
INDEX TRACKING, and TOP-k WIDENED INDEX TRACKING)
and show that using parallel resources and diversity yields
better tracking portfolios.

II. RELATED WORK

To find a tracking portfolio using sample replication, two
problems must be solved simultaneously: selecting a subset
of assets from the index and calculating their optimal corre-
sponding investment weights. The selection of assets for the
tracking portfolio is NP-hard [4]]. When an exhaustive search
is computationally intractable, heuristics are used to limit the
search space, by sacrificing optimality for operationality. The
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most straightforward local search algorithm, which has been
used for the index-tracking problem, is HILL-CLIMBING [5].
It is a greedy evaluation heuristic which selects the best index
member in each round until a certain criterion is met. Often
a greedy search does not produce an optimal solution, but
nevertheless, a greedy heuristic may yield locally optimal
solutions that approximate a global optimal solution in a
reasonable time [6]].

To track an index, the search heuristics are used in combina-
tion with different tracking error methods that find investment
weights w, |w| = |P], for the assets in portfolio P, where
the calculation of the weights is a multivariate optimization
problem of size | P|. There are a lot of tracking measures that
are used in the objective function of portfolio optimization
methods for the index replication. The most popular are
tracking error variance (TEV), mean squared error (MSE), and
mean absolute error (MAE). MAE is more robust to outliers
than MSE but significantly more computationally complex.
Additionally, MSE is characterized by faster convergence, is
continuously differentiable and, therefore, allows for gradient-
based methods [7].

In the literature various methods are found to restrict the
overall search space, such as limiting the size of the track-
ing portfolio (cardinality constraint) and specifying the asset
classes (class constraint), but there is no specific algorithm
best-suited for finding a tracking portfolio [1]], [S].

III. SAMPLE REPLICATION HEURISTICS

Given an index I with constituent assets I;, 7 € {1,...,|I|},
the set of all possible portfolios irrespective of the correspond-
ing weights is © = P(I) \ (), where P(I) is the powerset of
I. According to the sample replication, a tracking portfolio
P C I with constituent assets P;, where j € {1,...,|P|}.

A. HILL-CLIMBING INDEX TRACKING

HILL-CLIMBING is a type of breadth-first search, which
can be presented as an iterative application of a refinement
operator, 7(-), and a selection operator, s(-).

Definition 1. A refinement operator, r(-), generates a set of
tracking portfolios (called refinements) by adding one asset
from I\ P to P [3]].

P = r(P) (1)

where P C O is a set of unique portfolios from ©.

Definition 2. A selection operator, s(-), chooses the best
tracking portfolio P from a set of portfolios P [3]:

P = 5(P) = s(r(P)) 2)

At each iteration, a refinement operator returns a new set of
tracking portfolios. Using a tracking quality measure, we score
all of the new refinements, and select the best portfolio Pep
with the selection operator s(-). The scoring function used in
this work is the mean squared error (MSE). The number of
potential refinements decreases with each iteration, because
the number of remaining assets decreases. The stop criterion

for HILL-CLIMBING INDEX TRACKING is when the addition
of a new asset no longer improves the MSE or all of the assets
in I have been added to P.

B. Tor-k INDEX TRACKING

The drawback to the HILL-CLIMBING algorithm is the
likelihood of becoming stuck at a local optimum of poor
quality. TOP-k search is a common heuristic for use with
prohibitively large search spaces that impoves on the results
of HILL-CLIMBING [9]. It evaluates all models refined at
a particular iteration, and keeps k, the search width, of the
best performing models for further refinement. The rest of the
models are discarded and no longer explored. TOP-k search
iteratively explores k solution paths in parallel. The larger the
search width k, the more likely it is to find a better solution.

Similar to the HILL-CLIMBING algorithm, TOP-k£ INDEX
TRACKING can be presented using the refine-and-select pro-
cess. The difference is that after a model is refined, the
selection operator, s(-), is modified to choose the best k
portfolios at each step until a stopping criterion met:

P’ = 57op-1(P) = s7op—t({r(P1),...,7(Pp))})  (3)

where P = {Py,..., P,}. ToP-k INDEX TRACKING stops
when either none of the k£ models improves or all of the assets
from I are included in one of the k portfolios.

TopP-k search is not optimal; there is no guarantee that it
will find the best solution. The choice of k best solutions at
each iteration based on the quality measure does not ensure
exploration of different regions of the search space. In contrast,
it is likely that we are exploring only closely related variations
of the locally best model [9].

C. Sets of Diverse Portfolios

The general problem of selecting diverse subset of elements
from a larger set, where some distance between each pair of
points is maximized known as the p-dispersion problem [10].
Diversity is an important issue in bio- and chem-informatics
and has been studied regarding protein and molecular similar-
ity in [11]. In data mining the effect of diversity on the parallel
exploration of the solution space was studied in [12]-[16].

There are several diversity measures commonly used
in the p-dispersion problem. The most straightforward is
p-dispersion-sum. Sampson and Berthold in [12], [[13]] sug-
gest using p-dispersion-min-sum because it shows a tendency
towards a more representative subset. In this paper we explore
both diversity measures for the index tracking.

Definition 3. Given a set of porifolios, P, the p-dispersion-
sum problem is defined as the selection of the set P with
|P| < |P| items by maximizing the sum of all pairwise dis-
tances d(P;, P;) with P;, P; € P [[11]:

|P| i—1

P = argmaxz Z
|P|=k

d(P;, Pj) “4)
i=1 j=1

The p-dispersion-sum measure provides a subset whose
elements located maximally far away from each other and



are concentrated at the edges of the data space. In contrast,
p-dispersion-min-sum provides a subset with the largest sum
of minimum distances between each pair of elements in the
set, resulting in an even distribution of selected points over
the whole space, e.g. in a better coverage of the space.

Definition 4. Given a set of portfolios, P, the p-dispersion-
min-sum problem is defined as selection of the set P with
|P| < |P| items by maximizing the sum of minimal distances
d(P;, P;) with P;, P; € P [11]:

R |P|

P =argmax E min
2 1< <|P) idts
|P|=k j=1 <G<|Pli#d

d(P;,P;) )

Finding a distance metric d(P;, P;) which is able to de-

scribe portfolios’ dissimilarity is not commonly found in the

literature, where the main focus is diversification within a port-

folio. Goetzmann and Kumar in [17]] use the sum of squared

portfolio weights (SSPW) to measure the diversification of
retail investors:

|P| |P| 1 |P|
= _0) = T2 o 2
SSPW(P) = Z(WJ Q) = Z(WJ |I|) N;W]‘ (6)

Jj=1 Jj=1

where w; is the weight of security P; with j € {1,...,|P|},
wj # 0, and Q = \%I is the normalized weight assigned to
each security in the index.

To track an index, Focardi and Fabozzi in [18]] suggest using
Euclidean distances between stock price series as a basis for
hierarchical clustering to obtain a diversified portfolio. With
the same aim, several studies consider the Pearson distance
between stock prices [18], [19].

In preliminary experiments, we evaluated different portfolio
characteristics such as SSPW, portfolio variation, Sharpe ratio,
highest/lowest portfolio returns with several distance measures
such as Pearson and Euclidean distances. The experiments
using SSPW with the Euclidean distance (see (7)) lead the
best results and are presented in this paper.

de, (SSPW (P;), SSPW (Py)) =
\/ (SSPW (P;) — SSPW (P;))?

(7

D. TopP-k WIDENED INDEX TRACKING

The iterative refine-and-select process of the TOP-k
WIDENED INDEX TRACKING modifies TOP-k INDEX
TRACKING by including a diversity measure, §, when refining
models: ,

P = STop—k(r(s(P)) (8)

The diversity measure J describes differences between the
resulting refined models and the selection operator s74,—(+)
chooses the k best portfolios at each step until a stopping
criterion met. This ensures exploration of different regions
of the solution space. In this paper we compare both p-
dispersion-sum (see Definition and p-dispersion-min-sum
(see Definition E]) for use as the diversity measure in rs(-).

IV. PORTFOLIO TRACKING ERROR METHODS

Evaluating portfolio models at each step in the refine-and-
select process requires an appropriate scoring method, where
the optimal weights for a portfolio are calculated to minimize
the tracking error relative to the target index. Denote the return
of an asset I; € I with i € {1,...,|I|} during a trading period
t € {1,....,T} by n:(I;). Then the return of an asset I; during
a studied time interval is n(I;) = [ (L;),...,nr(1;)]". Let
P; € P with j € {1,...,|P|} be a component asset of P
with n(P;) = [ (P),...,nr(P;)]". A portfolio’s return is
n(P) = 3, wm(P).

Portfolio P reproduces the performance of the benchmark
index I if the portfolio return n(P) follows the return of the
index n(I) at every unit time period closely. Let tracking error
TE(I, P) =n(I) —n(P) = n(I) - 11, wn(P). To find
the optimal investing weights, w*, for P, the general opti-
mization method for the index tracking problem is formulated
as the minimization of a tracking quality measure based on
the tracking error T'E [20]:

w* = argmin(f(TE))

P 9)

ij =1
j=1

where Z‘j}ll w; = 1 is a typical constraint which implies that
all of the available budget must be invested, and f(TE) is a
tracking quality measure.

A. Tracking-Error Variance Minimization

One of the most popular tracking quality measures is the
tracking error variance (TEV) [5], [21]:

TEV =Var(TE) = 03 + 07 — 203 83p, (10)

where crf; is the portfolio variance, O'% is the index variance,
and fp = Z’;:l Bjw; = BTw is the portfolio beta, which
measures portfolio volatility relative to the index.

With TEV the goal is to find optimal investment weights,
w?*, of the portfolio, P that minimizes the variance of the dif-
ference between 7(P) and n(I). Because the index variance
0% is independent of portfolio positions:

w* = argmin(TEV) = argmin(w ' Sw — 2078 w) an

where Z‘jlll w; = 1 and X is the variance-covariance matrix
of the assets’ returns.

When trying to obtain a precise solution with specific
characteristics, one can impose a variety of constraints on the
portfolio optimization formulations. The Mean Constrained
TEV method (TEMV) allows to specify the target expected
returns of the portfolio [21]:

w* = argmin(TEV) = argmin(w ' Zw — 2078 w)
w w (12)
,UJTW =To



TABLE I: Out-of-sample statistics for the tested datasets. The search width for TOP-k INDEX TRACKING and TOP-k WIDENED
INDEX TRACKING is k = 5. The smallest average MSE between the index and portfolio returns for each heuristic appears in
bold. Underlined text shows the minimum average number of assets included in the best tracking portfolio.

Method | HILL-CLIMBING Top-k . _TOP-k WIDENING ___
Index p-dispersion-sum p-dispersion-min-sum
Model | |[P| MSE x10* | |[P| MSE x10* | |P] MSE x10* | |P|  MSE x10*
STOXX50 TEV 25.27 0.0168 | 28.36 0.0193 | 44.73 0.0045 | 44.91 0.0055
(1] = 50) MSE 25.36 0.0161 | 29.55 0.0135 | 44.64 0.0045 | 47.45 0.0032
TEMV | 22.55 0.0662 | 27.09 0.0198 | 42.00 0.0092 | 35.36 0.0570
NASDAQ TEV 23.91 0.0483 | 30.36 0.0282 | 65.18 0.0070 | 55.64 0.0112
(1] = 101) MSE 26.18 0.0487 | 29.36 0.0292 | 51.27 0.0108 | 50.55 0.0116
TEMV | 28.91 0.0387 | 30.73 0.0390 | 49.27 0.0230 | 52.64 0.0206
S&P500 TEV 33.27 0.0813 | 35.64 0.0673 | 61.00 0.0132 | 57.20 0.0154
(1] = 495) MSE 31.82 0.0763 | 37.17 0.0616 | 59.60 0.0124 | 53.80 0.0174
TEMV | 28.91 0.0958 | 37.55 0.0689 | 56.00 0.0175 | 51.60 0.0207
where Zllel w; =1, p' s a vector of the expected returns The presented algorithms are implemented in

of the assets with g = [p1,...,up)] ", and 7 is a desirable
expected return specified by the investor, which in this work

is equal to the index mean return.

B. Mean Squared Error Minimization

Although TEV is commonly used as a tracking measure,
it has a disadvantage: if the difference between portfolio and
index returns is constant over time, Var(T E) = 0, there could
be still a deviation from the index. Therefore, another popular
tracking-error-based measure, mean squared error (MSE), is
often used instead:

T

MSE = o >0~ (P)* =

T

1

7O (TE)*  (13)
t=1

In this case the portfolio tracking error method has the

following representation [4]:

w* = argmin(MSE) = argmin(w ' Hw — 2q " w) (14)
w w

where lep:‘l wj = 1, H is the matrix with H;; =

T . T
7 2o Me(Py)ne(P;), and g with q; = 7 37,y me(Py)me ()
for j,i € {1,...,|P|}.

V. EXPERIMENTAL RESULTS

In this work we evaluate three search heuristics (HILL-
CLIMBING INDEX TRACKING, TOP-k INDEX TRACKING, and
Topr-k WIDENED INDEX TRACKING) in combination with
three tracking-error-based methods (minimization of TEV,
TEMYV, and MSE).

Index Area n n*
STOXX50 | Eurozone | 50 50
NASDAQ | USA 103 | 101
S&P500 USA 505 | 495

TABLE II: Summary of the replicated indices. The number of
index constituents n is taken based on 31.01.2018. n* denotes
the number of index constituents after data preprocessing.

KNIME v3.5 [22] and tested on real-world market indices of
different sizes (see [Table II). Daily returns are obtained for
01.01.15-31.01.18 from Thomson Reuters Datastream[l] The
stocks with missing historical data from the beginning of the
testing periods are excluded. The one-period daily returns (or
simple returns) for the index I and each component of the
index I; are calculated:

77*(1-) _ 77t+1(I) _TIt(I) 77*([) _ 77t+1(Ii) _Wt(Iz)

! ne(I) R re(1i)
15)

Evaluation of the datasets is configured to mimic real-
world quarterly reviews by creating a test partition of the
data (H = 60) of approximately three months’ trading days.
Correspondingly, the training partition is set to be 440 to create
a (T' = 500) total train/test. Additionally a rolling window
of step size (h = 20) is used to verify reproducability.

A. Heuristics’ Comparison

The experimental results show that both Top-k and
Topr-k WIDENING provides better index replication than that
of the reference heuristic HILL-CLIMBING (see [lTable I).
Adding diversity to the set of parallel search paths allows
broader exploration of the solution space and finds a better so-
lution for each tracking-error-based method. TOP-k WIDENED
INDEX TRACKING with width & = 5 provides a tracking
portfolio with the smallest MSE. However, the number of
assets in the portfolio increases. In contrast to the results
of [12]), we found no discernible difference between the p-
dispersion-sum and p-dispersion-min-sum; this may be due to
the multiobjective optimization nature of the problem. The use
of TEV and MSE methods shows very similar results for each
heuristic, whereas minimization of TEMV demonstrates the
worst performance among suggested tracking error methods.

When replicating the STOXX50 index, TOP-k INDEX
TRACKING with width k& = 5 used with TEV minimization
method was not able to find a better tracking portfolio than
that obtained by HILL-CLIMBING. Additionally, for this index,
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Fig. 2: Replication of the STOXX50 with ToP-k WIDENING using p-dispersion-min-sum measure.

ToP-k WIDENED INDEX TRACKING used with TEMV mini-
mization method and p-dispersion-min-sum measure provides
worse results than that obtained by TOP-k INDEX TRACKING.
Therefore, with the example of STOXX50, we demonstrate
that increasing the number of parallel resources provides better
index replication.

B. The Effect of Width

Fig. [T]and Fig. 2] show that a larger search width & in TOP-k
INDEX TRACKING and TOP-k WIDENED INDEX TRACKING
allows finding a portfolio with the smaller tracking error.
However, the number of assets in the tracking portfolio has
general tendency to increase with the wider search. This may
be a result of a lack of any restrictions on tracking error
convergence, i.e., we aimed to get the smallest possible error.

For the TOP-k WIDENED INDEX TRACKING with the width
k = 15 the number of assets for the TEV and MSE methods
decreases, whereas the difference between an index and port-
folio returns increases insignificantly. This shows that broader
search allows ToP-k WIDENED INDEX TRACKING not only
finding a tracking portfolio with the smaller tracking error

than that obtained by the other two methods, but also finding
a smaller number of assets for the portfolio.

VI. CONCLUSION AND FUTURE WORK

This paper explores methods of heuristically choosing an
index tracking portfolio. We demonstrate that WIDENING,
which was used in this work with time series for index tracking
for the first time, when applied to a greedy algorithm is able to
find superior solutions than that algorithm would have found
alone.

The experimental results show that it is possible to find
a smaller set of assets which is able to mimic the index
performance within some error range. Presented here are
indices of sizes 50 to 500. Other source indices of even larger
sizes (e.g., Russell 3000 or Wilshire 5000) could be used, but
would require significantly larger computing resources.

We show that the use of parallel resources for the index
replication allows finding better tracking portfolios than the
most straightforward HILL-CLIMBING algorithm. Adding di-
versity to the parallel search paths explores otherwise unex-
plored regions of the solution space and improves the results



obtained by a greedy search heuristic. Future work includes
finding a better diversity measure which is able to provide
wider exploration of the portfolio solution space. One could
use different portfolio optimization models and different port-
folio measurements which may yield better results. The same
portfolio could be evaluated with different sets of investment
weights resulting in a diverging distances and correspondingly
affecting the diversity measures. Additionally, it would be
interesting to find out how non-traditional metrics, such as
the number of women on corporate boards used as a distance
metric or as a component of a composite measurement [23]],
can represent out-of-channel asset performance.

Increasing the width of a search explores more of the
solution space and finds a better solution. However, we can
expect that at some point wider exploration of the solutions
space will show diminishing returns. As shown by these
experiments, increasing the width of a search often increases
the number of assets in the portfolio while only marginally
reducing the tracking error. Future work should specifically
explore the Pareto front for this multi-objective optimization
problem and explore the number of parallel paths after which
no further improvement in performance is seen.

In this work we constructed a tracking portfolio from the
set of index constituents. However, different combination are
possible. One can use a subset of the index components or
choose completely arbitrary set of assets. Future work could
explore whether it is still possible to replicate an index.
Furthermore, future work can explore whether it is possible to
track different types of indices, such as those of commodities.

This paper focuses on the tracking portfolio construction
i.e., on single-stage index tracking, and demonstrates pos-
itive results with the metaheuristic, WIDENING. The other
important part of the index replication problem is portfolio
rebalancing that allows incorporating transaction costs asso-
ciated with trading (embedded after the creation phase) and
requires development of a rebalancing strategy. The weights
of the securities in indices change over time. Because indices
are not static, index providers make a regular check of the
index components, which takes place at fixed time intervals
determined in the index rules. If any changes are made to the
index, for example, when it is rebalanced or reconstituted,
a tracking portfolio has to adjust its holdings accordingly.
The influence of transaction costs on portfolio performance
in practice can be significant. If the transaction costs are not
considered during rebalancing, the performance of the portfo-
lio could be poor [24]]. One can analyze the difference between
the index and portfolio returns over time and make portfolio
rebalancing when it is reasonable. Future work should include
developing a rebalancing strategy and embedding it in TOP-k
and ToP-k WIDENING for the multiperiod index tracking.

This first demonstration of WIDENING on time-series data
can also be extended to other time-series optimization prob-
lems, including other portfolio management optimization ob-
jectives, e.g., instead of matching returns, maximizing returns,
minimizing risk, or multi-objective optimization problems
matching individual investors’ profiles could be addressed.
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