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Abstract—In this article, we evaluate the ability of Hierar-
chical Temporal Memories (HTM) to process values coming
from sensor chains. We present a study on the impact of the
HTM parameterization on its ability to predict input values
and its robustness to sensor faults. The HTM is evaluated on
simulated multivariate time series comprising several causal
relations between variables. The results show the ability of
HTM to predict future values of multivariate time series and
to be robust to sensor faults. We then present which parameters
most impact HTM prediction performance and its robustness
to faults.
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I. INTRODUCTION

Machine learning algorithms have been extensively used

to predict future values of data coming from sensor chains

[10]. Robustness to faults is a critical issue in order to

apply these algorithms to real world applications [10]. In

these cases, data coming from one or several sensors may

be abnormal. Several types of sensor faults exist [10] [1].

We will treat here the case of one or several missing

sensor values. In this case, the machine learning algorithm

should rely on the values of other sensors to infer the right

values of faulty sensors. Several approaches have applied

Bayesian networks to the automatic sensor fault detection

and their recovery [10] in the case of sensor networks.

These approaches divide the process into two steps. First,

a fault detection algorithm is used to detect potential faults

in the inputs, second, the values of the other sensors are

used to guess the normal value of the sensor. For sensor

fault recovery, these approaches mostly rely on hand-crafted

rules to recover sensor faults [10]. Using a machine learn-

ing algorithm could avoid this specification by automati-

cally learn to adapt to faults by exploiting the values of

the other sensors. Hierarchical Temporal Memories (HTM)

could solve this problem. Indeed, the unsupervised nature of

HTM makes it able to automatically discover relationships

between variables. Moreover, compared to batch learning

models, the online nature of the HTM learning algorithm

makes it able to continuously learn the relationship between

variables without needing to train it again.

These two characteristics can be useful in a lot of situations

where a long-term adaptation to the environment is needed

while still being able to be robust to sensor faults, such

as the case of unmanned aerial vehicles which need to

explore different kinds of environment [7]. However, HTM

also contains numerous parameters for which very little is

known, because very few studies have formally analyzed the

effect of the parameters on HTM behavior [9]. In addition,

little is known about the predictive capabilities of HTM

on multivariate data. This study aimed at answering two

questions. First, what parameters most impact the prediction

abilities of HTM? We answer this question by evaluating

the number of time steps necessary for HTM to learn to

predict the input sequence values. Second, what parameters

most influence robustness to sensor faults? To answer this

question, we compare the difference between the prediction

of HTM when faults are inserted in the sequence to the

prediction and when no fault is inserted in the dataset. In

the following sections, we will present a state-of-the-art on

prediction of multivariate time series and introduce HTM.

We will then present the methodology used to perform our

study, the results of our study and a discussion.

II. BACKGROUND AND RELATED WORK

A. Related work

Multivariate forecasting of sensor data consists in pre-

dicting future values in time series comprising several and

potentially correlated values coming from sensors. Multi-

variate forecasting has been extensively studied over the

last decades. Models used for multivariate forecasting en-

compass statistical models like the Vector Autoregression

Model, the multivariate bilinear model, and machine learning

models like Bayesian Networks, Hidden Markov Models

(HMM), Long Short Term Memory (LSTM) and Online-

Sequential Extreme Learning Machine (OS-ELM). Most of

these approaches are supervised and necessitates an offline

learning [5].

An important property of a multivariate forecasting algo-

rithm is its capacity to be robust to sensor faults. Several



types of sensor faults exist [1] [10]. We chose to study the

robustness of HTM to data loss. In this case, one sensor is

unable to deliver values during a period of time. In the case

of data loss, a robust model should be able to use the values

of other sensors to guess the values the faulty sensors should

deliver.

HTM have been proposed by [6] as an alternative to ex-

isting machine learning models. HTM is a neuro-inspired,

unsupervised and online machine learning algorithm ded-

icated to prediction and anomaly detection in time series.

Several articles compared the performance of HTM to other

machine learning techniques. [2] showed that HTM have

better prediction performances than LSTM and OS-ELM on

the NYC taxi passengers dataset, a dataset representing the

evolution of the number of taxi passengers every 30 min

in New-York during a year. Contrarily, [4] showed that, on

the same dataset, LSTM had better prediction performances

than HTM. The difference compared to the study of [2]

lies in the implementation used for LSTM and its training

method. However, they also showed that HTM was able

to adapt to non-stationary time series while LSTM was

not able to adapt to the changes without going through a

training phase again. Finally, they found that, for this dataset,

HTM and LSTM have similar performance than a multi-

layer perceptron. [3] compared the prediction performance

of HTM to the prediction performance of a Hidden Markov

Model (HMM). They showed that HTM performed better

than a first-order HMM on a dataset of images representing

letters. In their setup, the internal representation of data

made by HTM was used by HMM to predict the next label.

However, they also showed that the prediction performances

of HMM was better when random noise was added to the

images.

These studies show that HTM do not outperform current

machine learning techniques in pure prediction performance.

However, by its unsupervised and online nature, HTM is

able to adapt to changes in the sequences of data while such

changes require a new learning step in other algorithms.

However, the effect of HTM parameterization on its

prediction performance is mostly unknown. Except works

by [8] and [9] that studied the effect of parameterization on

the Spatial Pooler ability to discriminate inputs, no study

has analyzed the effect of parameterization on HTM ability

to predict values in the input sequences. Moreover, the

behavior of HTM on multivariate datasets with more than

two variables is unknown.

B. HTM structure and operation

The role of HTM is to memorize sequences of data and

to predict the next element of a sequence. HTM takes as

an input a binary array representing the current element of

the sequence to predict. Internally, HTM is composed of a

set of interconnected columns of cells that are connected to

the input. For the remainder of the article, N is the number
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Figure 1. Illustration of HTM operation

of columns and Nc the number of cells within a column.

As an output, HTM activates or deactivates cells. The set

of activated cells represents both the internal representation

of the current element of the sequence and the temporal

context, that is, the previous values of the sequence. It also

produces a second set of predicted cells that represents the

expected value at the next time step. Figure 1 illustrates the

operation of HTM.

1) Encoder: HTM encodes the current label of the se-

quence to a binary array representing the data. In this binary

array, each bit has an equal weight relative to the others.

Moreover, each value representing the same type has the

same total number of bits and a fixed number of active bits.

The number of active bits is called the population of the

array. For the remainder of the article, we will call the total

number of bits the dimension (Ni) and the number of bits

with the value 1 the population w. The sparsity s is then

defined as w
Ni

. The way data are encoded depends on the

encoder used.

2) Spatial Pooler: The Spatial Pooler takes as an input

the binary array produced by the encoder and produces as

output an internal representation of the input by activating

columns of neurons. Moreover, the Spatial Pooler ensures

that the ratio between the number of active columns and

the total number of columns (i.e. the sparsity) is constant

for each input. In the Spatial Pooler, each column of cells

is connected to a subset of the input by a single proximal

segment. The column can only have connections with the

inputs when distance is less than the connection radius γ.

Moreover, the segments have connections only with a subset

of the input bits within γ. The ratio of input bits to which the

segment can be connected to within the connection radius

γ is defined by the parameter ri. The connections between

the inputs and the column can be potential or real. For real

connections, the active state of a bit is transmitted to the

column while it is not the case for a potential connection.

Based on the connections between the column and the

inputs, an activation value is computed at each time step.

The activation value is proportional to the number of real

connections corresponding to active inputs. More precisely

the activation is computed by the equation 1.

ai = bi
∑

j

Wijzj (1)



In equation 1, ai corresponds to the activation value of the

column, Wij equals to 1 if the corresponding connection

is real, and zj is the state of the bit corresponding to the

connection. bi is a boosting parameter associated with the

column. The column is activated when this activation value

is greater than a threshold θstim.

Next, an inhibition step ensures that only a fixed ratio rc
of columns remains activated. The inhibition can be global or

local. When the inhibition is global, the inhibition is done on

the entire region. When the inhibition is local, the inhibition

is done on subsets of columns. In the case of local inhibition,

the inhibition radius is computed by the following formula

φ = γ × Navg , Navg being the mean number of columns

connected to a single input bit.

The learning step consists in modifying the nature of

the connections between the column and its inputs. While

a column can’t have connections with an input that does

not initially have a connection with this column, a potential

connection can become a real connection and conversely.

Each connection is associated with a permanence value

p. A connection is real if and only if this permanence

value is greater than a threshold θp and potential if the

connection is less than this threshold. Then, at each time

step, for each activated column after the inhibition process,

the permanences of the connections are modified such that

the connections to active bits are increased by a value p+

and connections to inactive bits are decreased by a value

p−. At the end of the Spatial Pooling process, the boosting

parameter is adjusted in order to maximize the number

of columns that contribute to the representation of input

data. The boosting mechanism favorizes the activation of

columns that have an activation frequency below a level,

and disadvantages columns that have an activation frequency

above this level. The boosting parameter is decreased or

increased based on the equation 2.

bi = eβ(ta−āi) (2)

āi represents the ratio of time a column has been activated

over the Tb last time steps, ta represents the desired activity

ratio for Tb time steps. The boosting parameter is then less

than 1 when the mean activity of a column is greater than the

targeted activity and greater than 1 when the mean activity

of the column is less than the targeted activity.

3) Temporal Memory: The Temporal Memory determines

the activated and predicted cells based on the activated

columns determined by the Spatial Pooler and the set of

predicted cells determined by the Temporal Memory at the

previous time step.

The Temporal Memory algorithm selects the cells being

activated within a column by looking if cells have already

been predicted. If the column contain cells that have been

predicted, these cells remain activated and deactivate the oth-

ers. Otherwise, all the cells of the column remain activated.

The next step consists in determining the predicted cells

based on the active cells. For that, each cell has a maximum

number of maxseg of distal segments, these distal segments

being connected to the other cells by a set of synapses.

Thus, Nsyn is the number of synapse that cannot be greater

than maxsyn. Following the same principle as the Spatial

Pooler, these connections are either potential or real. The

distal segment is then activated when the number of active

cells having a real connection with the distal segment is

greater than a threshold θd. Then, if a cell has at least one

activated distal segment, it becomes predicted.

Next, the Temporal Memory has a learning algorithm

that is similar to the learning algorithm of the Spatial

Pooler. Each synaptic connection has a permanence value

pt. When a cell has been predicted at time step t − 1
and activated at time step t (meaning it has been correctly

predicted), the synaptic connections are reinforced such that

the permanence values of the connections corresponding to

active cells at time step t− 1 are increased by the value p+t
and the permanence values of the connections corresponding

to inactive cells are decreased by the value p−t . When the

permanence is greater than the permanence threshold θpt

the connection is considered real and if the permanence is

less than this value, the connection is considered potential.

Moreover, when a predicted neuron has not been activated

at the next time step, the permanence value is decreased by

p−−t . At the beginning of the simulation, the permanence

values of the Temporal Memory are initialized with the value

pi.

Finally, it is likely that, in the first time steps, no cells are

predicted. In an actived column having no predicted cells,

the segment having the greater activation is reinforced by

increasing by p+t the permanence values of its connections

if this segment has an activity greater than a threshold m.

III. METHOD

In this section we present the methodology used to con-

duct our experiment. First, we present the way we generated

the signal. Next, we describe the simulations we did and how

we measured HTM performance on the prediction and fault

robustness test. Finally, we present the parameters we used.

A. Sequence generation and encoding

The sequence generation step is in charge of determining

the sequence of labels used in the study and encoding it. The

sequence generated has five different categorical variables

V0, V1, V2, V3, V4. Each of these variables has three possible

values. Moreover, variables have causality links. V0 and V1

causes V2 and V4 causes V3. The values of V2 and V3

variables at time step t + 1 are then entirely determined

by the values of the cause variables (V0 and V1 for V2

and V4 for V3) at the previous time step. The values of

V0, V1 and V4 depend only on their values on the two

last time steps. This means that HTM needs to keep in



memory the last two values in order to predict the next

value. The resulting sequence is composed of a total of 400

elements. Moreover, this sequence consists in 33 repetitions

of the same pattern composed of 12 elements. The encoding

step consists in transforming the sequence into binary array.

Each variable is encoded into a binary array composed of

contiguous active bits such that each value is represented by

a different set of active bits. The binary arrays produced for

each variable are then concatenated into one single binary

array. The binary arrays representing each variable have a

population w = 43 and a dimension Ni = 215. As a result,

after the concatenation of each binary array, the output of

the encoder has a dimension Ni = 1075 and a population

w = 215.

B. Simulation and performance measurements

We ran two different simulations. The first simulation

consisted in learning to predict the normal sequence of data.

In this simulation, learning was activated. At each time step,

the exactness of the prediction was computed by comparing

the predicted cells with the active cells at the next time step.

The comparison was done by the prediction score presented

in equation 3. In this equation, πi−1 is the set of predicted

cells at time step i − 1 and ai is the set of active cells

at time step i. dim(ai) is the number of active cells and

dim(πi−1) is the number of predicted neurons. πi−1 · ai is

a scalar product that gives the total number of shared cells

between the set of predicted neurons and the set of active

neurons. The result is a value that represents how exactly

HTM was able to predict the cells that could be active at the

next time step. The value of the prediction score was then

decreased when HTM predicted cells that were not activated

at the next time step and did not predicted cells that were

activated at the next time step.

ri =
2× πi−1 · ai

dim(ai) + dim(πi−1)
(3)

At the end of the simulation, we applied a weight to the

prediction score for each time step by a coefficient computed

from the mean number of shared columns msc between

the different representations of the input. This weight was

computed according to equation 4.

v =
1

1 + e−(msc−0.8)
(4)

This formula means that we strongly decrease the

values of the prediction score when the mean number

of shared columns between the representations is greater

than 80%. Sharing more than 80% of columns between

representations means that different values of the input

are represented by the same columns. In this case, this

means that the Spatial Pooler did not correctly learn to

represent the data. Finally, we compute a learning speed

metric. This metric corresponds to the time step where

the prediction score definitely becomes greater than a

threshold value of 0.8. We retained only simulations where

the prediction score was greater than 0.8 for at least five

iterations. Otherwise, we set the learning speed metrics to -1.

During the second simulation, we evaluated the robustness

of HTM to sensor faults. For that, we replaced the values

of the effect variables (V2 and V3) by a symbol indicating a

fault between time step 50 and time step 100. We then eval-

uated the ability of HTM to continue to predict the normal

values of V2 and V3. For that, we compute a robustness score

between what the model predicted at time step t-1 and the

value that should normally be present without sensor faults

as shown in equation 5. This equation is similar to equation

3 except that the scalar product is done between the set of

predicted neurons at time step t− 1 π
f
i−1 and the last set of

active cells representing input at time step t without faults.

In this simulation, learning was deactivated.

fri =
2× π

f
i−1 · a

n
i

dim(ani ) + dim(πf
i−1)

(5)

C. Selection of the parameters

The parameters and their values we used in our sim-

ulations are described in table I. We could not test all

combinations of parameters as it would necessitate to run

over 55 × 109 simulations. We then decided to randomly

select the parameter values before executing the simulations.

IV. RESULTS

We ran a total of 14101 simulations with different pa-

rameter values, 1079 succeeded in predicting the inputs.

Among these 1079 simulations, 961 gave results of fault

robustness greater than 0.6 as computed by equation 5. The

small amount of simulations that succeeded can be explained

by the fact that we chose the parameters randomly.

A. Prediction performance

1) Logistic regression: We used the learning speed met-

rics to measure the contribution of the parameters on HTM

prediction performance. We distinguished two cases. We

first analyzed which parameter combinations conducted to

the learning of the sequence (learning speed greater than

0) and which parameter combination led to an inability to

learn (learning speed equals to -1). We thus created a binary

variable which equalled 0 when HTM did not learn and 1

when it learned to predict the inputs. We then ran a logistic

regression. Before applying the logistic regression, all vari-

ables were scaled by substracting their value by their mean

and dividing by their standard deviation. We then divided

the data into a training set and a test set. For each model

tested, we ensured that the model had the same classification

performance on the train and test set, showing that it did not

overfit the data. Finally, as the number of simulations that



Name Component of HTM Description Range of values tested

N Spatial Pooler Number of columns 128,256,512,1024

rγ Spatial Pooler Ratio between the connexion radius γ and the size of the inputs Ni rγ =
γ

Ni
0.0,0.01,0.1,0.3,0.5,0.8,1.0

ri Spatial Pooler Ratio of inputs having a connection with the column 0.0,0.01,0.1,0.3,0.5,0.8,1.0

g Spatial Pooler Whether the inhibition is local (0) or global (1) 0,1

rc Spatial Pooler Ratio of columns selected by the inhibition mecanism 0.0,0.02,0.1,0.2,0.5,0.8,1.0

rp+ Spatial Pooler Ratio between the permanence increase and the connection threshold
p+

θp
0.0,0.01,0.2,0.5,0.8,1.0

rp− Spatial Pooler Ratio between the permanence decrease and the connection threshold
p−

θp
0.0,0.01,0.2,0.5,0.8,1.0

rs Spatial Pooler Ratio between the activation threshold of a column and the number of synapses
rγ×ri
θstim

0.0,0.01,0.2,0.5,0.8,1.0

β Spatial Pooler The boosting strength 0.0,0.1,0.5,1.0,3.0

Nc Temporal Memory The number of cells in a column 3,6,8

rst Temporal Memory Ratio between the maximum number of synapses and the activation threshold
of a segment

maxsyn

θd

0.0,0.01,0.1,0.3,0.6,0.8,1.0

ric Temporal Memory Ratio between the initial value of the permanences and the connection
threshold

pi
θpt

0.2,0.5,1.0

rm Temporal Memory Ratio between the minimal activation value for learning and the activation
threshold of a segment m

θd

0.0,0.01,0.1,0.3,0.5,0.8,1.0

maxseg Temporal Memory The maximum number of segments 4,8,20,40,128

rinc Temporal Memory The ratio between the increase value of the permanence and the connection

threshold
p
+

t

θpred

0.0,0.01,0.1,0.3,0.6,0.8,1.0

rdec Temporal Memory The ratio between the decrease value of the permanence and the connection

threshold
p
−

t

θpred

0.0,0.01,0.1,0.3,0.6,0.8,1.0

rpred Temporal Memory The ratio between p−−t and θpred rpred =
p
−−

t

θpred
0.0,0.01,0.1,0.3,0.6,1.0

maxsyn Temporal Memory The maximum number of synapses a segment can have with other cells 4,8,16,32,64,128,256

Table I
HTM PARAMETERS AND THEIR VALUES USED IN THE SIMULATIONS

succeeded in predicting the inputs represented only 7 % of

the data, we upsampled the training set in order to have the

same number of elements in both classes. We tried several

logistic regression model and selected the model that had the

highest McFadden pseudo-R2. The model selected is a first

order model with interaction effects between parameters. A

log-likelihood ratio test and a McFadden pseudo-R2 measure

showed that this regression model performed significantly

better than a null model (McFadden: R2 = 0.72, likelihood

ratio test: χ2 = 26034, p < 2.2× 10−16 ).

The results of the logistic regression are shown in table II.

For each parameters, a Wald test is computed in order to

assess the significance of each parameter. Moreover, as the

number of predictors is large in the final regression model

(1006), we chose to show only the 20 predictors with the

highest coefficient absolute value.

The results of the logistic regression are shown in table

II. Both the Spatial Pooler and the Temporal Memory

parameters have an impact on the input learning.

Several main effect were found. The ratio of columns

selected by the inhibition mechanism has the highest associ-

ated coefficient. The highest rc the highest the probability to

learn. Next, the activation threshold of the column rs seems

to decrease the learning likelihood as it grows. Similarly,

the percentage of input bits a column is connected to, ri,

should remain low in order to favorize the learning. The ratio

between the input radius and the input size, rγ , has the same

impact on the learning. The maximum number of synapses

maxsyn and the ratio between the permanence increase of

the Temporal Memory and the connection threshold, rinc,

should be low in order to favorize learning. Finally, the

highest the number of columns N , the highest the probability

to learn.

Several interaction effects can also be observed in this

table. ri is negatively correlated with rs and maxsyn, the

highest ri is, the lowest rs and maxsyn should be. rγ also

has a negative correlation with rs and ri. rc is negatively

correlated with g, meaning that, when inhibition is global,

rc should remain low. Similarly a negative correlation can

be observed between rc and rγ . The maximum number of

synapses maxsyn, the ratio between the activation threshold

and the maximum number of synapses rst should also be

low when the inhibition is global. The boosting strength β

is postively correlated with rc. When β is low, rc should be

high and conversely. Finally, Nc has a negative correlation

with maxsyn and ric.

2) Learning speed: We selected the simulations where

the learning speed was greater than 0 and ran a regression

analysis to measure the effect of the parameters on the learn-

ing speed. We scaled the input parameters using the same

method as the logistic regression. We tested several models

and selected the model that had the best R2. During, the



Parameter Estimated coefficient standard error z-value p-value

Intercept -4.75 0.30 -15.84 < 2.2× 10
−16 ***

rc 3.59 0.19 18.90 < 2.2× 10
−16 ***

rs -2.40 0.25 -9.72 < 2.2× 10
−16 ***

ri -2.14 0.20 -10.91 < 2.2× 10
−16 ***

rγ -2.14 0.19 -11.11 < 2.2× 10
−16 ***

ri × rs -1.86 0.19 -9.77 < 2.2× 10
−16 ***

ri ×maxsyn -1.83 0.20 -9.38 < 2.2× 10
−16 ***

rγ × rs -1.64 0.16 -10.04 < 2.2× 10
−16 ***

rγ × ri × rs -1.45 0.08 -18.78 < 2.2× 10
−16 ***

rγ × rc -1.38 0.13 -10.77 < 2.2× 10
−16 ***

g ×maxsyn -1.34 0.21 -6.42 1.38× 10
−10 ***

maxsyn -1.24 0.33 -3.70 2.12× 10
−4 ***

rγ × ri -1.23 0.16 -7.73 1.07× 10
−14 ***

g × rc -1.05 0.10 -10.07 < 2.2× 10
−16 ***

rinc -1.05 0.20 5.21 1.92× 10
−7 ***

Nc ×maxsyn -1.00 0.19 -5.28 1.29× 10
−7 ***

N 0.93 0.17 5.60 2.17× 10
−8 ***

g × rst -0.87 0.10 -8.29 1.12× 10
−16 ***

rc × β 0.86 0.15 5.71 1.16× 10
−8 ***

Nc × ric -0.85 0.14 -6.14 8.18× 10
−10 ***

Table II
RESULTS OF THE LOGISTIC REGRESSION

Parameter Estimated coefficient Standard error t-value

Intercept 156.46 12.59 12.42 < 2.2× 10
−16 ***

β -49.95 15.59 -3.20 1.51× 10
−3 **

maxseg 47.27 7.99 5.91 9.16× 10
−9 ***

β × rdec -40.56 5.88 -6.90 3.18× 10
−11 ***

rm 37.79 7.67 4.93 1.38× 10
−6 ***

rdec 37.49 7.18 5.22 3.36× 10
−7 ***

g -37.43 6.26 -5.98 6.32× 10
−9 ***

ri ×maxseg 37.38 6.67 5.61 4.73× 10
−8 ***

rs × ric -34.20 6.04 -5.66 3.5× 10
−8 ***

rγ × rdec 32.80 5.80 5.65 3.69× 10
−8 ***

maxsyn × rinc 31.36 5.96 5.26 2.75× 10
−7 ***

g ×maxseg -30.79 4.71 -6.53 2.85× 10
−10 ***

rγ × rinc 29.86 5.99 4.98 1.07× 10
−6 ***

rp− -28.87 7.47 -3.87 1.36× 10
−4 ***

rst × ric 28.79 6.08 4.74 3.40× 10
−6 ***

ric 28.43 11.18 2.54 1.15× 10
−2 *

rinc ×maxseg -28.31 7.17 -3.95 9.91× 10
−5 ***

β2 -28.08 9.26 -3.03 2.63× 10
−3 **

rp+ ×maxseg -28.04 5.80 -4.84 2.13× 10
−6 ***

rinc × rpred 27.50 5.73 4.80 2.53× 10
−6 ***

Table III
RESULTS OF THE REGRESSION ON THE LEARNING SPEED

selection process, we divided the data into a training set and

a test set. Each time we tested a model, we systematically

trained the model with the training set and, after, checked

its prediction performance on the test set using a root mean

squared error (RMSE) measure. The model learned had a

residual standard error of 26.34. The prediction on the test

set gave a RMSE similar to the RMSE on the training set,

showing that the model did not overfit the data. Moreover

the trained model had an adjusted R2 = 0.80 and F-statistic

showed that the model performed significantly better than

a null model (F = 7.692, p < 2.2e − 16). The results are

shown in table III. As the number of predictor is high (461),

we chose to show only the 20 highest parameters. In this

table, t-values and p-values are computed by a Student test.

Several main effects where found. High boosting strength β

favorizes the learning speed, as a global inhibition (g) and

a high spatial pooler permanence decrease value rp− . Con-

versely, low minimum activation threshold rm, low temporal

memory permanence decrease value rdec and low minimum

activation threshold ric improve the learning speed.

Several interaction effects are also observed. β and rdec
are negatively correlated, as rs and ric, rinc and maxseg ,

rp+ and maxseg . Conversely, ri and maxseg , rγ and rdec,

maxsyn and rinc, rst and ric, rinc and rpred are positively



correlated.

B. Fault robustness

We ran a regression analysis in order to measure the effect

of parameterization on the robustness score. The method

used to run the analysis was similar as the regression analysis

on the learning speed. Overall, the model selected had a

residual standard error of 0.11, an adjusted R2 = 0.58 and

the F-statistic showed that the regression model performed

better than a null model (F = 42.83, p =< 2.2e − 16).

The results are shown table IV. In this table, t-values and

p-values are computed by a Student t-test.

The parameter that influences the most the robustness of

the HTM is the inhibition parameter rc. The higher rc, the

higher the robustness. Similarly, high values of rp− and rs
positively influence the robustness. Conversely, ri, ric, rst
and rγ should be low in order to favorize robustness.

Several interaction effects are observed. rc and rm, rc and ri,

rc and rst, rc and ric, rγ and rc, rp− and ric are positively

correlated. Conversely, rst and ric, ri and rm, ric and rm,

rc and rs, rγ and rm are negatively correlated.

V. DISCUSSION

The results on the experiment show several interesting

points. First, what parameters impact the most the pre-

diction performance? According to our results, both Spa-

tial Pooler and Temporal Memory parameters impact the

learning likelihood and learning speed. For Spatial Pooler

parameters, learning likelihood is favorized when each col-

umn is connected to a low number of input bits situated

in its neighbourhood (rγ and ri are low) with an activation

and an inhibition mechanism that encourage the selection

of a high number of columns (low rs and high rc) in the

Spatial Pooler. Boosting seems to favorize learning as a high

boosting positively impacts both the learning likelihood and

the learning speed. Global inhibition should also be preferred

as it strongly increases the learning speed. However, learning

likelihood tend to decrease when using global inhibiton with

high rc and high maxsyn. This means that a tradeoff should

be found between using global inhibition to increase learning

speed and using high rc and maxsyn to favorize learning

likelihood. Finally, high permanence increase and decrease

values rp− and rp+ tend to increase the learning speed.

For Temporal Memory parameters, limiting new connections

that cells can have with other cells tend to favorize both

learning likelihood and speed. Indeed, the maximum number

of synapses maxsyn and the maximum number of segments

maxseg should remain low as the permanence parameters

rinc, rdec and ric and the number of cells per column Nc.

Finally, a low minimum activation threshold for learning rm
encourages learning speed.

Second, what parameters impact the most HTM robustness

to faults? For Spatial Pooler parameters, the number of

inputs a column is connected to should remain low. The

inhibition mechanism should encourage the activation of a

low number of columns. Finally, high values of permanence

decrease rp− and activation threshold rs encourage robust-

ness. For Temporal Memory, a low minimum activation

threshold for learning rm, a low activation threshold rst and

a low permanence initialization value ric postively impact

robustness.

This study is a preliminary study about the effect of parame-

terization on the prediction and robustness to faults abilities

of HTM and has several limitations. First, our study focused

on only one dataset. While we hypothesize that the results

is generalizable on multivariate datasets of the same type,

further study should verify that the results are the same for

different datasets. Such study would imply testing the HTM

on datasets where causal variables are faulty, testing the

HTM on datasets with circular causalities (for example V 2
causes V 1 that causes V 2) and varying the number of vari-

ables. Moreover, testing HTM on continuous variables rather

than categorical variables should be interesting. Finally, in

our study, we considered HTM as a black box. We modified

its parameters and observed the outputs without analyzing

the details of HTM behavior. Observing the internal behavior

of HTM could make us observe more in details how the

inputs are internally represented by the Spatial Pooler and

how columns and cells are interconnected.

VI. CONCLUSION

In this article, we presented a study on the behavior of

HTM in the prediction of values from multivariate time

series. We showed the influence of the parameters on the

prediction ability and robustness to faults. We discovered

several interesting effects of parameters on the performance

of HTM performance. We plan to do further analyses to

understand more in-depth how HTM behaves in the case of

multivariate datasets with faults. We also plan to compare

the performances of HTM with other machine learning

algorithms.
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