
Coarse Annotation Refinement for Segmentation of
Dot-Matrix Batchcodes

Ning Jia, Christopher J. Holder, Stephen Bonner, Boguslaw Obara∗
Department of Computer Science

Durham University
Durham, UK

ning.jia@durham.ac.uk, c.j.holder@durham.ac.uk, s.a.r.bonner@durham.ac.uk, boguslaw.obara@durham.ac.uk

Abstract—Deep Convolutional Neural Networks (CNN) have
been extensively applied in various computer vision tasks. Al-
though such approaches have demonstrated exceptionally high
performance in various open challenges, adapting them to more
specialised tasks can be non-trivial. In this paper we discuss
our design and implementation of a batchcode detection system
capable of accurate segmentation of batchcode regions within
images of consumer products. A batchcode is a unique identifier
printed on the packaging of many products that encodes useful
information such as date and location of manufacture. Detection
of batchcodes in images of products is a useful step in many
processes, including quality control, supply chain tracking and
counterfeit detection. Beginning with a unique dataset of product
images and a set of crowdsourced coarse annotations that roughly
correspond to the locations of batchcodes, we demonstrate that
such annotations are insufficient for training a reliable model,
and subsequently describe a novel label refinement process, which
we call the Maximally Stable Global Region (MSGR) method,
that we use to generate accurate ground-truth data suitable for
training a robust neural network. We also show that detection
accuracy can be further improved by applying MSGR to the
output of the neural network. We evaluate our approach using a
manually labelled test dataset of images of shampoo bottles, and
demonstrate the efficacy of the proposed method for accurate
real-time batchcode detection.

Index Terms—Batchcode detection, Convolutional Neural Net-
work, Semantic Segmentation, data labelling

I. INTRODUCTION

Many consumer goods are identified via a series of markings
printed by the manufacturer when the product is on the produc-
tion line. Markings such as the Universal Product Code (UPC),
more commonly known as the Barcode, are used by retailers
and manufactures to identify and track products throughout the
retail process. In addition to the UPC, manufactures often print
further codes on products that contain information relevant to
the manufacturing process. These additional codes, which we
will refer to as batchcodes throughout the rest of this paper,
can contain information such as the specific facility where
the product was manufactured, the date of the manufacture
and other product related meta-data. Unlike UPC or Quick
Response (QR) codes, batchcodes are generally not designed
to be machine readable, and can vary greatly in shape, size,
orientation and location on a given product. Furthermore, due
to batchcodes often being printed using a series of small dots,
automatic detection can be a challenging task.

∗ Corresponding Author

Fig. 1. Sample images of products with batchcodes. Apart from illumination
and scale variabilities, there might be other code-like textures for example
other text in the scene that affect detection accuracy.

Fig. 1 presents five sample images that show batchcodes
printed on shampoo bottles. These batchcodes, which are
printed directly onto the surface of the bottles, are composed
of discrete black dots which form alphanumeric characters
arranged in two lines. The bottles upon which they are printed
can be white or coloured depending on the product type.
Insomuch as being concerned with alphanumeric characters,
batchcode detection can be regarded as a similar problem to
scene text detection. On the other hand, batchcode detection
is generally a single target detection task which is similar to
barcode detection, while scene text detection requires finding
all regions that contain text.

Prior to the implementation of deep Convolutional Neu-
ral Networks (CNN), Maximally Stable Extremal Regions
(MSER) [1] based methods achieved leading performance on
benchmarking datasets due to their robustness against low
resolution/quality and background noise [2]. However, they
failed to address the diversity of printing methods and type-
faces and the problem of false detections in high-frequency
background regions [3]. Initially CNNs were used as classifiers
to prune the non-text proposals [3], however more recent
region-proposal-based CNN approaches [4]–[6], designed for
object detection, achieved the state-of-the-art performance on
large scale public datasets designed for text scene detection
[7]–[9]. We observe similar trends in barcode and QR Code
detection for the implementation of MSER based methods
[10] and region proposal models [11]. MSER is designed to



return each connected component that remains stable over a
range of changing threshold values [1], which is suitable for
detecting barcodes or text since the proposed regions follow
special patterns and can be easily clustered and recognised.
However, when applied to the task of batchcode detection
such approaches return each discrete dot along with regions of
strong background noise, demonstrating that low-level feature
detectors may be insufficient for robust batchcode detection.
Inspired by these previous works we propose a novel algorithm
that accurately detects a single batchcode region in a given
image by optimising the Maximally Stable Global Region
(MSGR). Due to the relatively small body of comparable
prior work, we collected our own dataset for evaluation of
our proposed framework. Thus, the primary contributions of
our work are:

• We evaluate an integrated pipeline that covers both data
annotation and model training, for the automated detec-
tion of batchcodes in images of products.

• We investigate issues that arise when crowdsourcing data
annotations, and propose solutions to address them with
a semi-supervised solution.

• We build upon existing MSER methods to propose our
own approach for batchcode detection, and demonstrate
state-of-the-art performance on our dataset.

• We evaluate several state-of-the-art deep CNN mod-
els and suggest their utilisation under different circum-
stances.

In the following sections we first discuss relevant prior
work, then detail the dataset used for training and evaluation,
and finally present the experiment analysis and conclusions.

II. RELATED WORK

As discussed in Section I, there are similarities and dis-
crepancies between scene text detection, barcode detection and
batchcode detection, so in this section we discuss prior work
in these areas.

A. Scene Text Detection and Barcode Detection

Work approaching text detection and recognition prior to
2015 can broadly be either sliding-window (i.e. moving a
multi-scale window through the input image and using a
pre-trained classifier to decide whether the current window
contains text) or connected component methods (whereby
text is separated from background using low-level image
features) [12]. It is reported that the latter achieves better
performance while requiring less time and computational
power on benchmarking datasets, especially the MSER based
methods which take advantage of the high contrast between
text and background [2], [3], [12]. However, due to their low-
level nature MSER tend to propose a large number of non-
text regions, thus pruning of proposals gains additional focus.
[3] is the first paper to introduce a CNN-based approach
to the removal of non-text region proposals and achieves
promising results, however the benchmarking datasets used
are of a relatively small size (≈500 images in total). Later
works [7]–[9], [13] updated benchmarking scores on larger

scale datasets (over 1000 images) using CNN based detection
models such as Faster-RCNN [4] and SSD (Single Shot
MultiBox Detector) [5], addressing the power of deep CNNs
on large scale computer vision tasks. Meanwhile, due to the
potential for scene text to be of arbitrary orientation and
shape, which cannot be accurately described by horizontally
aligned rectangular bounding boxes, [14] proposed to horizon-
tally aligned rectangular semantic segmentation methods for
arbitrarily shaped text detection, obtaining the highest recall
and F-measure scores on benchmarking datasets.

As discussed in Section I, barcode and batchcode both
encode product information, and while batchcode detection
remains a relatively unexplored problem, automatic barcode
detection has been widely studied since 2009, when Tekin
and Coughlan proposed an algorithm for blind users to find
barcode from video footage with audio guidance [15]. Since
barcodes consist of parallel black bars, the high intensity
difference between these bars causes a high response within
the gradient image generated by edge detectors such as sobel
kernels, which can be further isolated from background noise
using morphological operations and thresholding methods
[16]. In [10] Creusot and Munawar proposed to detect the
barcode region by measuring the stability of the output from
a thresholding function while the threshold value is shifted
within a predetermined range then filtering candidate regions
by their aspect ratio. More recently, CNN-based methods have
outperformed these approaches: the framework proposed by
[11], which combines two separate CNN models, one for
object detection and another for angle calibration, reported
leading performance on barcode and QR code detection. How-
ever, it is observed that the bounding-box output by the model
does not fully contain the barcode region, and so additional
processing steps are introduced to refine the accuracy of the
proposed region. Meanwhile, [17] divides an input image into
small patches and uses a fully connected network to make a
binary decision as to whether a code exists within a given
patch. As such, the neural network is not used in an end-to-
end manner, and the framework is very task-specific due to
the hand-crafted feature extraction process.

There are other relevant works, e.g. [18] presented a gabor
filter based expiry date recognition system, where they sim-
ply thresholded the grayscale images containing the cropped
expiry date, without specifying how to automatically detect it.
[19] proposed to use bottom hat filter to extract dot matrix
printed characters, we compared the proposed MSGR with
their method in the experiment section and found that their
method is more sensitive to background noise than ours.

B. CNN models for Semantic Segmentation

Deep CNN models have demonstrated state-of-the-art per-
formance over traditional methods at a wide range of computer
vision tasks, albeit with a requirement for large quantities
of data and corresponding labels for training. The use of
CNN which automatically update model parameters through
back-propagation of errors, removes the need to design and
optimise. By utilising massively parallel accelerators, such as



Graphics Processing Units (GPU), CNN-based approaches can
achieve real-time processing even for tasks that deal with large
size images.

The approach of Fully Convolutional Network (FCN) [20]
creates a downsized class map that is upsampled by reverse
pooling operations to create a final output comprising a vector
of class label confidence values for every pixel in the original
input image. SegNet [21] and U-Net [22] propose similar ap-
proaches, with the additional step of reusing output from prior
pooling operations to better inform corresponding upsampling
operations and retain higher resolution spatial information
that would otherwise be lost. These approaches demonstrate
state-of-the-art segmentation and classification results in a
wide variety of scenarios, including medical imagery. U-Net
was initially motivated by segmentation of medical imagery,
and is a more light-weight architecture than Segnet or FCN,
comprising eighteen convolutional layers and four pooling
and upsampling operations. The output of each upsampling
operation is concatenated with the input of the corresponding
pooling operation in order to retain spatial information that
would otherwise be lost through downsampling. PSPNet [23]
proposes to increase the empirical receptive field and improve
scene parsing by replacing global pooling with a pyraymid
pooling module. DeepLabV3 [24] adds parallel atrous con-
volution to control the resolution of CNN feature maps and
achieves the highest mean Intersection over Union (IoU) score
on public datasets for semantic segmentation.

Considering the advances of CNN in object detection and
segmentation, we evaluate four state-of-the-art architectures
that have been proposed in various pixel-wise image seg-
mentation tasks, in order to train an end-to-end batchcode
detection model. The four models we evaluate are: FCN
[20], DeepLabV3 [24], U-Net [22] and PSPNet [23]. We
chose not to include anchor-based methods (e.g. Faster R-
CNN [4], Mask R-CNN [6]) in this work as they are not
capable of marking objects with oblique boxes, and since we
focus upon a single-target detection task, it is not necessary
to utilise frameworks that integrated classification function.
Since FCN, PSPNet and DeepLabV3 all reported their best
performance when using a ResNet101 [25] as backbone,
in this paper we use FCN ResNet101, PSPNet ResNet101
and DeepLabV3 ResNet101 to explore the upper bound of
segmentation accuracy, but denote them as FCN, PSPNet and
DeepLabV3 correspondingly for simplicity.

III. METHOD

In this section we introduce the proposed framework for
refining batchcode bounding box annotations that are coarsely
annotated by crowd-source workers, and use them to train
segmentation models to predict batchcode locations on unseen
samples. The trained models can be used to automatically
annotate batchcodes with a bounding box from a given image.
There are two steps to our proposed approach:

• MSGR: locate batchcode by tweaking threshold value
until the foreground region remains stable.

Training Images

Crowd-
Sourcing

Coarse
Labels

MSGR

Refined
Labels

Training
Deep Model

Model1

Training
Deep Model

Model2

Test ImagesInference Inference

Results1 Results3

MSGR MSGR

Results2 Results4

Manual
Label

Test Labels

Evaluation

Performance
Metrics

Training Phase

Test Phase

Fig. 2. The pipeline of the proposed framework. The Deep Segment models
(Model1 and Model2) are trained with image-label pairs, and we use the
proposed MSGR method to improve the accuracy of labelling the batchcode
region. During test phase, we manually label the test data precisely to the
boundary of the batchcode region, and evaluate the performance of the model
outputs (Result1 and Result2), as well as the refined outputs after applying
MSGR (Result3 and Result4).

• Deep Segment: training deep segmentation CNNs for
automatic batchcode detection with image-label pairs.

Fig. 2 shows the full work flow of the framework, from raw
image as input to model inference as output.

In this paper batchcode detection is regarded as a single
target segmentation problem with large scale and shape vari-
ances. For the sake of simplicity in data labelling and storage,
we use a bounding box represented by top left corner {x1, y1}
and bottom right corner {x2, y2} to mark the rectangular1

batchcode area with a bounding box. However, since most of
the batchcodes are oblique to the horizontal or vertical axis, the
bounding box is not an optimally compact fit to true batchcode
region. In order to improve labelling accuracy, we also include
rotation angle {α|−90◦≤α≤90◦} in the bounding box vector
b, i.e. b = {x1, y1, x2, y2, α}. To compute rotation angle
α, we exhaustively rotate the cropped thresholded batchcode
and optimise for variance of columnwise sum, similar to the
approach of [26].

1Strictly the batchcode region is trapezoid, using bounding box is a way to
simplify the process. Experimentally it is also proved to be efficient.



Training Image I(x, y, c) IB(x, y), λ = 1 IB(x, y), λ optimised Refined label

Fig. 3. The workflow of generating compact box from the coarse label using
MSGR.

A. Maximally Stable Global Region (MSGR)

Algorithm 1 MSGR
1: procedure COLOUR SPACE TRANSFORM
2: IHED(x, y, c)← fHED(I(x, y, c))
3: t← fOtsu(IHED(x, y, 1))

4: procedure MAXIMISE GLOBAL STABILITY
5: a0 ←∞
6: for λ ∈ {1, 1− δ, 1− 2δ, ..., 0.5} do
7: IB(x, y)← IHED(x, y, 1) > λt
8: a← fdim(IB(x, y))
9: if a− a0 < 2 then

10: break
11: else
12: a0 ← a

return IB(x, y)

Algorithm 1 illustrates how we combine a colour
space transform and MSGR to find the batchcode region.
I(x, y, c), c ∈ {1, 2, 3} denotes the coarsely cropped image (in
RGB colour space) as shown in Fig.3 I(x, y, c). IHED(x, y, c)
is the image in Haematoxylin-Eosin-DAB (HED) colour space
[27], fHED denotes the colour space transform function from
RGB to HED. Otsu’s method fOtsu [28] is then applied to
the first channel IHED(x, y, 1) to obtain threshold t, that every
pixel value above t is set to 1 and the rest to 0 to obtain binary
image IB(x, y) as shown in Fig.3 IB(x, y), λ=1. We adjust a
parameter {λ∈R|0<λ≤1} in descending order by δ for each
iteration, where λ represents the ratio applied to threshold to
make the value gradually smaller(in our experiments we set
parameter δ to 0.01 for the balance of performance and speed),
and multiply with t, until the sum of the bright area a of
the binary image remains stable, as shown in Fig.3 IB(x, y),
λ optimised). fdim denotes the method for calculating the
dimensions of the foreground region of IB(x, y). Then we can
wrap IB(x, y) with bounding box plus the rotation to obtain
bounding box vector b.

Fig.3 demonstrates how images are processed through
MSGR. Firstly, we obtain a coarse crop of the batchcode
region, followed by thresholding, computing the angle of the
batchcode and rotating the image so that it is aligned hori-
zontally, retrieving a compact bounding box and generating a
binary mask image where pixels inside the bounding box is 1,
else 0, and finally rotating the binary mask to be aligned with
the input image.

Generally, the batchcodes in our dataset are black ink
marks printed on white or coloured bottles, and as such

they should always have lower intensity values than those of
the background. However, in reality there exists a significant
amount of background noise that to nave thresholding methods
would be indistinguishable from batchcode ink dots. In Fig.3
I(x, y, c), there is a small dark region to the right of the
batchcode batchcode, and as seen in Fig.3 IB(x, y), λ = 1 it is
regarded as foreground after thresholding. In order to suppress
noise of this type during batchcode extraction we adapt the
MSER approach of [1] to find a foreground region that remains
consistent while adjusting the threshold value given by Otsu’s
method in HED colour space. Instead of finding all the local
regions, we consider the batchcode area as an integration and
measure its area by maximising the stability across a range of
thresholds in order to minimise the interference of noise, thus
we name it Maximally Stable Global Regions. We adopt Otsu’s
thresholding method since it has excellent performance when
foreground and background pixels are roughly equivalent [29],
while in HED colour space the stability of the main colour
region is not significantly influenced by additional colour
regions, thus it is easier to remove dark regions that have
slightly lighter colour than the batchcode inks. Empirically
we also observed that HED outperforms other combinations
in revealing batchcodes, such as HSV (Hue, Saturation, Value)
[30] and CIELAB colour space [31]. The optimised bounding
box is highlighted with transparent mask in Fig.3 (Refined
label), with the original coarse bounding box shown in red for
comparison.

Despite the above-mentioned improvements, there are two
challenging scenarios that can cause the proposed algorithm to
fail: 1) Unrelated text embossed on the bottle overlaps with the
batchcode; 2) Additional unwanted ink near to the batchcode,
for example pen, or accidental drops of ink from the printer.
Fig. 4 demonstrates three cases: If the initial coarse bounding
box includes any of these features, there is a chance that they
will be incorrectly included in the batchcode bounding box.
We remove these cases manually, and keep the good examples
for training the segmentation neural network.

B. Deep Segment

After obtaining the bounding box coordinates and rotation
angles we produce binary masks for each image. We use these
ground-truth masks, along with corresponding colour images,
to train our selected deep segmentation models. We continue
training until a converged validation loss curve is observed,
and save the model weights for evaluation. A sigmoid function
ensures network output is between 0 and 1, to which a binary
threshold of 0.5 is applied followed by our MSGR algorithm
to ensure that the final output region is optimally compact
and accurate. We are expecting that the network outputs (the
selected good samples) can be used for incrementally training
the Deep Segment model. The hierarchical structure of CNN
should be able to learn both low-level local features (pixel level
features such as edge or texture details) and high-level global
features (i.e. the batchcode region in our case), thus we assume
that it is able to learn to predict a tight bounding box around



(a) (b) (c)

(d) (e) (f)

Fig. 4. The top row shows challenging samples where MSGR failed
to generate a precise bounding box due to strong background noise. (a)
handwritten text is visible on the bottle. (b) embossed regions of the bottle
generate shadows whose pixel intensity is similar to that of the batchcode. (c)
the batchcode is overlapped with the embossed bottle information, and there
are many small black dots around the code. The bottom row are examples
of coarsly labelled images marked by crowdsource workers. They are either
off the target (partially cropped) or over cropped to the background region
around batchcode.

the batchcode region from the refined labels, which helps
eliminate the aforementioned noisy areas near the batchcode.

IV. EXPERIMENTAL EVALUATION

A. Data

We evaluate our approach using our own dataset comprising
1479 images of shampoo bottles captured by mobile phone
camera, which we split into training and test sets. The training
set is initially annotated via the Amazon Mechanical Turk
crowdsourcing platform (MTurk). Workers are instructed to
draw an image-aligned rectangle containing the batchcode,
however these boxes were found to rarely be accurate, as
illustrated by the examples in Fig.4. Application of our MSGR
technique, described in section 3.1, within these rectangles
was used to obtain a more accurate bounding box for 1287
of the 1630 images originally sent to MTurk workers. During
training, we randomly divide these images into training and
validation sets using a ratio of 4:1. The test set consists of
192 images taken at a different time and location to the
training set, which we manually annotate using batchcode-
aligned bounding boxes.

B. Experiments

As discussed in II, we compare four CNN architectures
designed for semantic segmentation: FCN, DeepLabV3, U-
Net and PSPNet. Models are trained with our training dataset
using binary cross-entropy loss and Adam optimisation [32].
Input images are scaled to 512 x 512 pixels with padding used
to compensate for differing aspect ratios, and random rotation
is applied for data augmentation.

Mean loss across the validation set is used to judge model
convergence, which we observe to happen at between 80 and
100 epochs for each model, at which point training ends. We
report the performance of these four trained models on our
test set of 192 manually annotated samples in I, where p, r
and j refer to the mean precision, recall and Jaccard Index and

fps refers to the number of images the network can process in
one second.

First, we compare the impact of training label accuracy on
model performance. Models trained with coarse labels sourced
through MTurk generate Result1, while models trained with
labels refined through MSGR generate Result2. When trained
with coarse labels, U-Net, FCN and DeepLabV3 demonstrate
very low precision and Jaccard Index, but high recall due to
overly large segmented regions that include the batchcode as
well as surrounding pixels. It is observed that by applying
MSGR to the model output, precision and IoU are boosted by
a large margin (35.33%(U-Net)-43.45%(FCN)), while recall is
slightly reduced (2.44%(DeepLabV3)-4.59%(FCN)).

PSPNet struggles to make correct predictions across
datasets, where most of the failed cases (IoU<0.8) are either
missing part of the batchcode or segmenting regions of noise,
thus it has both low precision and recall. MSGR only provides
a moderate improvement, since it is not able to suppress hard
noise, e.g. the high contrast edge of the plastic bottle, or other
textures from the background, if they are included in the region
segmented by the model.

Result3 and Result4 are generated by models trained using
annotations refined through MSGR. DeepLabV3 achieves the
best Jaccard Index, with FCN performing similarly. However,
both are slow due to their use of a ResNet101 backbone, which
is a very deep structure with many parameters compared with
the more lightweight U-Net. PSPNet under-performs the same
way as in Result1, indicating that its spatial pyramid pooling
module may not perform well at tasks reliant on fine-grained
textural features, such as small discrete dots. It is also observed
again that the proposed MSGR method can further improve
Jaccard Index by up to 2.25%(U-Net), albeit with a reduction
in speed.

Model p(%) r(%) j(%) fps

Result1 (Trained with Coarse Labels)

FCN 41.26 98.50 40.71 ≈12
DeepLabV3 38.96 99.87 38.88 ≈9

U-Net 38.77 99.44 38.23 ≈23
PSPNet 66.69 61.33 42.51 ≈10

Result2 (Coarse Labels + MSGR)

FCN 86.90 93.91 84.16 ≈3.5
DeepLabV3 83.87 97.43 82.11 ≈3

U-Net 75.48 95.93 73.56 ≈4.5
PSPNet 81.36 58.56 56.24 ≈3

Result3 (Trained with Refined Labels)

FCN 93.29 97.08 90.53 ≈12
DeepLabV3 92.22 98.49 91.04 ≈9

U-Net 92.54 94.86 88.25 ≈23
PSPNet 91.06 77.84 72.94 ≈10

Result4 (Refined Labels + MSGR)

FCN 95.41 95.63 91.75 ≈3.5
DeepLabV3 93.83 95.56 91.63 ≈3

U-Net 93.73 94.43 90.51 ≈4.5
PSPNet 92.79 82.39 78.50 ≈3

TABLE I
PERFORMANCE COMPARISON OF FOUR DEEP SEGMENT MODELS TRAINED

WITH DIFFERENT DATA LABELS ON THE TESTING DATASET. THE
WORKFLOW OF GENERATING RESULT1-4 IS ILLUSTRATED IN FIG.2.

We evaluate MSGR against the method proposed by [19] in



its ability to refine CNN batchcode region segmentation output
with bottom hat algorithm to fill holes, denoted as Bottom hat
in Table II. As mentioned in Section III MSGR is based on a
colour space transform between RGB and HED, thresholded
using Otsu’s method. We also compare the results of using
colour space transform alone, named Baseline in Table II, and
the results show that when applying to FCN model trained
with coarse labels (corresponding to FCN of Result2 in Table
I, denoted as FCN Result2), MSGR outperforms others by a
significant margin.

Model p(%) r(%) j(%) fps

Bottom hat [19] 77.02 97.86 75.72 ≈3.5
Baseline 79.67 97.63 78.13 ≈3.5

FCN Result2 86.90 93.91 84.16 ≈3.5
TABLE II

PERFORMANCE OF MSGR COMPARED WITH OTHER THRESHOLDING
METHODS.

V. CONCLUSION

In this paper we have presented a new pipeline for the au-
tomatic detection of batchcodes in images of shampoo bottles.
Beginning with a set of imperfect crowdsourced annotations,
we demonstrated a novel approach to improving label quality
by binarising the cropped batchcode region, detecting the
orientation of the contained batchcode, then computing an
optimally compact bounding box. In order to suppress noise
when binarising the cropped image, we proposed a novel
method named MSGR, which finds the maximum stability
global region by tweaking the threshold value. Four state-of-
the-art semantic segmentation CNN models are trained with
the refined dataset and evaluated using a manually labelled
dataset captured under different conditions. Experimental re-
sults indicate that our pipeline achieves good performance
when detecting batchcode regions within real-world mobile
images of products. This work demonstrates that for super-
vised machine learning tasks, accurate data labelling is vital
for good model performance, and by automatically improving
label quality we manage to achieve overall superior results.

ACKNOWLEDGEMENT

This work was supported by the Procter & Gamble Com-
pany.

REFERENCES

[1] Jiri Matas, Ondrej Chum, Martin Urban, and Tomás Pajdla, “Robust
wide-baseline stereo from maximally stable extremal regions,” Image
and Vision Computing, vol. 22, no. 10, pp. 761–767, 2004.

[2] Xu-Cheng Yin, Xuwang Yin, Kaizhu Huang, and Hong-Wei Hao,
“Robust text detection in natural scene images,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 36, no. 5, pp. 970–983,
2013.

[3] Tong He, Weilin Huang, Yu Qiao, and Jian Yao, “Text-attentional con-
volutional neural network for scene text detection,” IEEE Transactions
on Image Processing, vol. 25, no. 6, pp. 2529–2541, 2016.

[4] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, “Faster r-cnn:
Towards real-time object detection with region proposal networks,” in
Advances in Neural Information Processing Systems, 2015, pp. 91–99.

[5] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg, “Ssd: Single shot
multibox detector,” in European Conference on Computer Vision, 2016,
pp. 21–37.

[6] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick, “Mask
r-cnn,” in IEEE International Conference on Computer Vision, 2017,
pp. 2961–2969.

[7] Wenhao He, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu, “Multi-
oriented and multi-lingual scene text detection with direct regression,”
IEEE Transactions on Image Processing, vol. 27, no. 11, pp. 5406–5419,
2018.

[8] Jianqi Ma, Weiyuan Shao, Hao Ye, Li Wang, Hong Wang, Yingbin
Zheng, and Xiangyang Xue, “Arbitrary-oriented scene text detection
via rotation proposals,” IEEE Transactions on Multimedia, vol. 20, no.
11, pp. 3111–3122, 2018.

[9] Minghui Liao, Baoguang Shi, and Xiang Bai, “Textboxes++: A
single-shot oriented scene text detector,” IEEE Transactions on Image
Processing, vol. 27, no. 8, pp. 3676–3690, 2018.

[10] C. Creusot and A. Munawar, “Real-time barcode detection in the wild,”
in IEEE Winter Conference on Applications of Computer Vision, 2015,
pp. 239–245.

[11] Daniel Kold Hansen, Kamal Nasrollahi, Christoffer B Rasmussen, and
Thomas B Moeslund, “Real-time barcode detection and classification
using deep learning.,” in International Joint Conference on Computa-
tional Intelligence, 2017, pp. 321–327.

[12] Qixiang Ye and David Doermann, “Text detection and recognition in
imagery: A survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 37, no. 7, pp. 1480–1500, 2014.

[13] Minghui Liao, Baoguang Shi, Xiang Bai, Xinggang Wang, and Wenyu
Liu, “Textboxes: A fast text detector with a single deep neural network,”
in AAAI Conference on Artificial Intelligence, 2017.

[14] Cong Yao, Xiang Bai, Nong Sang, Xinyu Zhou, Shuchang Zhou,
and Zhimin Cao, “Scene text detection via holistic, multi-channel
prediction,” arXiv preprint arXiv:1606.09002, 2016.

[15] Ender Tekin and James M. Coughlan, “An algorithm enabling blind
users to find and read barcodes,” IEEE Workshop on Applications of
Computer Vision, pp. 1–8, 2009.

[16] Melinda Katona and László G Nyúl, “Efficient 1d and 2d barcode
detection using mathematical morphology,” in International Symposium
on Mathematical Morphology and Its Applications to Signal and Image
Processing, 2013, pp. 464–475.

[17] Péter Bodnár, Tamás Grósz, László Tóth, and László G. Nyúl, “Efficient
visual code localization with neural networks,” Pattern Analysis and
Applications, vol. 21, no. 1, pp. 249–260, 2018.

[18] Ahmed Zaafouri, Mohamad Sayadi, and Farhat Fnaiech, “A vision
approach for expiry date recognition using stretched gabor features,”
International Arab Journal of Information Technology, vol. 12, pp. 448–
455, 2015.

[19] S. N. Patki, M. Joshi, and A. N. Kulkarni, “Dot matrix text recognition
for industrial carton classification,” in International Conference on
Industrial Instrumentation and Control, 2015, pp. 777–782.

[20] Jonathan Long, Evan Shelhamer, and Trevor Darrell, “Fully convolu-
tional networks for semantic segmentation,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[21] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla, “Segnet: A
deep convolutional encoder-decoder architecture for image segmenta-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

[22] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-Net: Convo-
lutional networks for biomedical image segmentation,” in International
Conference on Medical Image Computing and Computer-Assisted Inter-
vention, 2015, pp. 234–241.

[23] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya
Jia, “Pyramid scene parsing network,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 2881–2890.

[24] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig
Adam, “Rethinking atrous convolution for semantic image segmenta-
tion,” arXiv preprint arXiv:1706.05587, 2017.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[26] Changming Sun and Deyi Si, “Skew and slant correction for document
images using gradient direction,” in International Conference on
Document Analysis and Recognition, 1997, vol. 1, pp. 142–146 vol.1.



[27] Arnout C Ruifrok, Dennis A Johnston, et al., “Quantification of histo-
chemical staining by color deconvolution,” Analytical and Quantitative
Cytology and Histology, vol. 23, no. 4, pp. 291–299, 2001.

[28] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp.
62–66, 1979.

[29] Mehmet Sezgin and Bülent Sankur, “Survey over image thresholding
techniques and quantitative performance evaluation,” Journal of Elec-
tronic Imaging, vol. 13, no. 1, pp. 146–166, 2004.

[30] Dibya Jyoti Bora, Anil Kumar Gupta, and Fayaz Ahmad Khan, “Com-
paring the performance of L*A*B* and HSV color spaces with respect
to color image segmentation,” arXiv preprint arXiv:1506.01472, 2015.

[31] Vijai Singh and A.K. Misra, “Detection of plant leaf diseases using
image segmentation and soft computing techniques,” Information
Processing in Agriculture, vol. 4, no. 1, pp. 41 – 49, 2017.

[32] Diederik Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” in International Conference on Learning Representations,
2014.


	Introduction
	Related Work
	Scene Text Detection and Barcode Detection
	CNN models for Semantic Segmentation

	Method
	Maximally Stable Global Region (MSGR)
	Deep Segment

	Experimental Evaluation
	Data
	Experiments

	Conclusion
	References

