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Abstract— For supervised learning models, the analysis of 

generalization ability (generalizability) is vital because the 
generalizability expresses how well a model will perform on 
unseen data. Traditional generalization methods, such as the VC 
dimension, do not apply to deep neural network (DNN) models. 
Thus, new theories to explain the generalizability of DNNs are 
required. In this study, we hypothesize that the DNN with a 
simpler decision boundary has better generalizability by the law 
of parsimony (Occam's Razor). We create the decision boundary 
complexity (DBC) score to define and measure the complexity of 
decision boundary of DNNs. The idea of the DBC score is to 
generate data points (called adversarial examples) on or near the 
decision boundary. Our new approach then measures the 
complexity of the boundary using the entropy of eigenvalues of 
these data. The method works equally well for high-dimensional 
data. We use training data and the trained model to compute the 
DBC score. And, the ground truth for model’s generalizability is 
its test accuracy. Experiments based on the DBC score have 
verified our hypothesis. The DBC is shown to provide an effective 
method to measure the complexity of a decision boundary and 
gives a quantitative measure of the generalizability of DNNs. 

Keywords— complexity of decision boundary, generalization 
ability, deep neural networks, network generalizability, adversarial 
examples 

I. INTRODUCTION 
The generalization ability (generalizability) is an essential 

characteristic of classifiers in both machine learning and deep 
learning. A classifier with good generalizability performs well 
on unseen data. In most situations, a small portion of data taken 
from the training set as test/validation data is used to describe 
the generalizability. It would be valuable to analyze the 
generalizability of a classifier model directly, without test data, 
because it could help the model selection, and save time and data 
(data are precious in some cases) for training models. 

A deep neural network (DNN) usually contains manymore 
parameters than training data. Based on traditional 
generalization analysis such as the VC dimension [1] or 
Rademacher complexity [2], DNNs tend to overfit the training 
data and demonstrate poor generalization. Much empirical 
evidence, however, has indicated that neural networks can 
exhibit a remarkable generalizability [3]. This fact requires new 

theories to explain the generalizability of neural networks. Two 
main approaches characterize studies of generalizability for 
deep learning [4]: a generalization bound on the test/validation 
error calculated from the training process [5], [6], and a 
complexity measure of models [7]–[9], motivated by the VC-
dimension. 

Classifiers overfitting the training data lead to poor 
generalizability. To limit the overfitting, several regularization 
techniques such as dropout and weight decay have been widely 
applied in training DNNs. As ℒ1  and ℒ2  regularization could 
generate sparsity for sparse coding [10], regularization 
techniques simplify the model’s structure and then prevent the 
model from overfitting [11], [12].  This is because the simplified 
model cannot fit all training data precisely but must learn the 
approximate outline or distribution of the training data, which is 
the key information required to perform well (generalizability) 
on test data. On the other hand, the law of parsimony (Occam's 
Razor) [13] implies that any given simple model is a priori more 
probable than any given complex model [14]. Therefore, we 
hypothesize that, on a specific dataset, if two models have 
similar high training accuracy (close to 1), the simpler model 
will have a higher test accuracy (better generalizability).  

There are two ways to measure model complexity: 1) to 
examine trainable parameters and the structure of the model [8], 
[15]; 2) to evaluate the complexity of the decision boundary 
[16]–[18], which is the consequential representation of model 
complexity. Recently, an analysis of complexity of the decision 
boundary investigated adversarial examples that are near the 
decision boundary [19]–[21]. In this paper, for DNN models, we 
analyze generalizability based on the complexity of the decision 
boundary. Unlike other recent studies, we propose a novel 
method to characterize these adversarial examples to reveal the 
complexity of the decision boundary, and this method is 
applicable to datasets of any dimensionality. 

 

II. METHODS 

A. Adversarial examples 
It is difficult to describe the decision boundary of a trained 

DNN model directly. Using adversarial examples is the key to 



this problem because they are near the boundary and could be 
considered as points sampled from the boundary. The boundary 
is described by these examples. Specifically, for a two-class 
classifier f, an adversarial example x is one for which: 

𝑓𝑓(𝑥𝑥) ≈ 0.5 

There are several approaches to generate the adversarial 
examples [19]–[21]; we apply a simple one [20] to linearly 
generate them. For example, for the two-class classifier f, as Fig. 
1 shows, we select one training data point 𝑎𝑎  in Class 1 and 
another one 𝑏𝑏 in Class 2. The example 𝑥𝑥 on the line segment 
between 𝑎𝑎 and 𝑏𝑏 can be defined by: 

𝑥𝑥 = 𝜆𝜆𝜆𝜆 + (1 − 𝜆𝜆)𝑏𝑏,   0 ≤ 𝜆𝜆 ≤ 1 

The line must cross the decision boundary because its two ends 
are in different classes. Hence, the adversarial example 𝑐𝑐 exists 
on the line.  

 
Fig. 1. To generate adversarial examples of classifier f 

To find the adversarial example on such line segment, a 
simple method is to test different 𝜆𝜆 from 0 to 1 by a small step. 
The pseudocode shows the algorithm of this process. 

Algorithm To find an adversarial example 
1: ∀  𝑎𝑎 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1,  𝑏𝑏 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2    // 𝑓𝑓(a) < 0.5; 𝑓𝑓(b) ≥ 0.5 

2: 𝑐𝑐∗ = 𝑎𝑎 𝑜𝑜𝑜𝑜 𝑏𝑏      // initial the adversarial example 

3: for 𝜆𝜆 = 0 to 1 step 𝜀𝜀 

4:      𝑐𝑐 = 𝜆𝜆𝜆𝜆 + (1 − 𝜆𝜆)𝑏𝑏 

5:  // closer data point to decision boundary 
     if |𝑓𝑓(𝑐𝑐) − 0.5| < |𝑓𝑓(𝑐𝑐∗) − 0.5|   

6:           𝑐𝑐∗ = 𝑐𝑐 

7: return 𝑐𝑐∗ 

 
The precision of how the adversarial example closely locates to 
the boundary depends on the step (𝜀𝜀) value. And its time cost 
depends on the step (𝜀𝜀) too; it is about 𝒪𝒪(1 𝜀𝜀⁄ ). This process can 
be speeded up to 𝒪𝒪(log(1 𝜀𝜀⁄ ))  by the divide-and-conquer 
algorithm, which uses the binary search. In experiments, we set 
𝜀𝜀 = 1 256⁄ . 

B. Boundary complexity measure 
For two-class datasets, one adversarial example is generated 

by a pair of data points from the two classes. Suppose Class 1 

has 𝑁𝑁 data and Class 2 has 𝑁𝑁 data, randomly selected 𝑁𝑁 pairs of 
data can generate 𝑁𝑁  adversarial examples. As Fig. 2 shows, 
these adversarial examples (green points) are likely sampled 
from the decision boundary and could describe it. These 
generated adversarial examples form the adversarial set. We 
measure the complexity of the decision boundary by 
investigating the complexity of the adversarial set. 

 
Fig. 2. Adversarial examples generated by pairs of data 

 We apply principal components analysis (PCA) to analyze 
the complexity of the adversarial set. In 𝑛𝑛 -dimensions, an 
adversarial set with 𝑚𝑚  examples forms a 𝑛𝑛 × 𝑚𝑚  matrix 𝑿𝑿 . 
Suppose 𝑛𝑛 < 𝑚𝑚; by PCA, we have: 

𝑿𝑿𝑿𝑿𝑇𝑇𝑾𝑾 = 𝝀𝝀𝝀𝝀 

Where 𝑾𝑾 is eigenvector matrix: s.t. 𝑾𝑾𝑇𝑇𝑾𝑾 = 𝑰𝑰 and 𝝀𝝀 contains 
the 𝑛𝑛 eigenvalues: {𝜆𝜆1, 𝜆𝜆2,⋯ , 𝜆𝜆𝑛𝑛}.  

 These eigenvalues could show the complexity of adversarial 
set. If 𝜆𝜆𝑖𝑖

∑𝜆𝜆𝑘𝑘
= 1, it means all 𝑚𝑚 examples lie on the line of i-th 

eigenvector. It is the simplest condition for the adversarial set. If 
𝜆𝜆𝑖𝑖+𝜆𝜆𝑗𝑗
∑𝜆𝜆𝑘𝑘

= 1, it means all 𝑚𝑚 examples are on a plane; that indicates 
the decision boundary most likely is a plane. In general, we 
could measure the decision boundary complexity (DBC) of 𝑓𝑓 by 
computing the Shannon entropy of the eigenvalues: 

DBC{𝑓𝑓} = 𝐻𝐻 �
𝜆𝜆1
∑ 𝜆𝜆𝑖𝑖

,
𝜆𝜆2
∑𝜆𝜆𝑖𝑖

,⋯ ,
𝜆𝜆𝑛𝑛
∑ 𝜆𝜆𝑖𝑖

� log𝑛𝑛�  

Dividing by log𝑛𝑛 normalizes the DBC in range of [0, 1]. 0 is the 
simplest condition that the decision boundary is just a line. 

 A problem arises if we think about the most difficult 
condition of the boundary (DBC=1). For example, in 2-D, 
DBC=1 when the adversarial set forms a circle, but we cannot 
say the round boundary is the most complex one. For round-
shape decision boundaries, some boundaries are smooth, and 
some may be lumpy. As Fig. 3 shows, the boundary (a) is more 
smooth (simpler) than (b). Through the hypothesis, we consider 
that the generalizability of model (a) is better than (b). However, 
DBC scores computed by adversarial sets of the two models will 
be similar (and close to 1). 

Decision boundary of classifier f  

𝑓𝑓(𝑎𝑎) ≈ 0 

𝑓𝑓(𝑏𝑏) ≈ 1 

𝑓𝑓(𝑐𝑐) ≈ 0.5 

𝜆𝜆 

1 − 𝜆𝜆 

Class 1 Class 2 

Decision boundary of classifier f  

Class 1 Class 2 



 
Fig. 3. Two kinds of round decision boundary 

 In Fig. 3, the boundary (a) is obviously simpler than 
boundary (b) because (b) has many zigzags in every segment. 
But if we compute the DBC score using the entire adversarial 
set, the effect (on eigenvalues’ entropy) of zigzags is confused 
with the round-shape. Thus, it is not appropriate to use the entire 
adversarial set in such cases. If the adversarial set is generated 
by all data (in Fig. 2), we name it the global adversarial set. 
And the DBC score computed from it is called the global DBC. 
To solve the round-shape problem, we turn to consider 
adversarial examples on a section of the boundary, the 
segmental boundary. We define the adversarial data set formed 
by a segmental boundary as the local adversarial set. 

 
Fig. 4. Local adversarial set generated by 3-nearest neighbors of a pair 

 Adversarial examples in a local adversarial set should be 
close to each other to outline the shape of the segmental 
boundary. As Fig. 4 shows, a pair of data points from two classes 
is randomly selected, then to find 𝑛𝑛-nearest neighbors of one of 
those two data points. Finally, adversarial examples (green 
points) are generated by lines between these 𝑛𝑛 + 1 data points 
in one class to another data point in a different class. To decide 
the number of examples for one local adversarial set is an 
interesting question. It probably depends on the dimension and 

 
1 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html 
2 https://github.com/vyomshm/Cats-Dogs-with-keras 

distances between example points. We will further discuss this 
question in Sec. III.B. 

 The computation process for complexity of a local 
adversarial set is the same as that for the global adversarial set. 
The steps show the process. The difference is that 𝑁𝑁 pairs of 
data generate one global adversarial set but 𝑁𝑁 local adversarial 
sets. Thus, one decision boundary has many local DBC scores. 

Steps  To compute one local DBC score 
1: Take: ∀  𝑎𝑎 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1,  𝑏𝑏 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 

2: Set of adversarial examples {𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑘𝑘+1}  generated by: 
 𝑎𝑎 to k-nearest neighbors of 𝑏𝑏 including 𝑏𝑏 

3: Compute the eigenvalues of the local adversarial set by PCA 

4: Compute the normalized Shannon’s entropy of eigenvalues 

 

III. EXPERIMENTS AND RESULTS 
We design three experiments to verify our boundary 

complexity measure. The dataset for the first experiment 
contains synthetic 2-D data with two classes. The second 
experiment uses the breast cancer Wisconsin dataset from 
sklearn.datasets.load_breast_cancer1. Its dimensionality is 30. 
The third experiment uses real images of cats and dogs 
downloaded from the GitHub2. The image size is 150x150x3; 
thus, these data are in very high dimension. 

The key ideas of experiments are to train DNNs with 
different generalizabilities and compute DBC scores of these 
trained models. The ground truth for generalizability is the test 
accuracy because the final purpose of DNNs with high 
generalizability is to improve their performances on unseen data, 
which are represented by the test set. In the experiments the 
generalizability of a DNN is changed by intentional overfitting, 
such as by adding excessive trainable weights and removing 
regularization layers. 

A. Synthetic 2-D dataset 
The dataset is generated by sklearn.datasets.make_blobs. 

The dataset has two well-separated clusters; each cluster has 200 
data points and belongs to one class (see data points in Fig. 5), 
and thus this dataset is linearly separable. 

Two fully-connected neural networks (FCNNs) have been 
trained to classify this dataset. There are no test data, and both 
training accuracies are 100%. Their real decision boundaries are 
shown in Fig. 5. Obviously, the decision boundary of model (a) 
is simpler than that of model (b) because to the linearly separable 
dataset, any non-linear boundary is superfluous. 

For the two models (a) and (b), we generate adversarial 
examples (green points) by pairs of data from two classes to 
form the global adversarial sets, which clearly illustrate the 
boundary shape. And, the global DBC scores successfully show 
their different complexity situations (smaller DBC means 
simpler boundary). In this case, we could assert that the local 
DBC of model (a) must be smaller than the local DBC of model 
(b) without quantitative comparison because any segment of 
boundary (a) is not more complex than any segment of boundary 

Class 1 

Class 2 

Class 1 

Class 2 

boundary (a) boundary (b) 

Segment of (a) Segment of (b) 

Decision boundary of classifier f  

Class 1 Class 2 



(b). Hence, the overall (average) local DBC of boundary (a) 
must be smaller than that of boundary (b). For convenience, in 
other experiments, we compute only the local DBC. 

 
Fig. 5. Decision boundaries of two models trained by the synthetic 2-D dataset. 
The FCNN:(a) has only one hidden layer with one neuron; its number of 
parameters is 5 (including bias). The FCNN:(b) has three hidden layers with 
10, 32 and 16 neurons; its number of parameters is 927 (including bias). 

 The DBC effectively detects the model with better 
generalizability (simpler decision boundary). It is not very 
impressive for the 2-D dataset because the boundary is visible. 
We could visually spot the simpler boundary case. But for a 
high-dimensional dataset, we must rely on the DBC score to 
describe the complexity of decision boundary. 

B. Breast cancer dataset 
The dataset is imported from the breast cancer (Wisconsin) 

dataset and has two classes (212 Malignant and 375 Benign 
cases). Each case contains 30 numerical features. 

 Two FCNN models (bC1 and bC2) have been trained to 
classify this dataset. The training-test data ratio is 3:2 and both 
training accuracies are nearly 100% (>0.99) at the end. Then, we 
obtain models’ test accuracies as the ground truth for model 
complexity. The greater test accuracy value means better 
generalizability (simpler decision boundary). 

To compute the local DBC scores uses only the training data. 
We randomly select a pair of data points, of which one is a 
Malignant sample and another one is a Benign sample, to 
compute one local DBC score on trained models. This process 
is repeated 2,500 times (about 5 times of total number of data) 
to obtain 2,500 local DBC scores for each model. These local 
DBC scores are based on 30-nearest neighbors because the space 
dimension is 30. Thus, each local DBC score is computed by 31 
adversarial examples. The reason is that, in 30-D, the simplest 

 
3 https://www.mathworks.com/help/stats/signrank.html 

element (30-simplex) contains 31 vertices (e.g. as triangle in 2-
D and tetrahedron in 3-D). We consider that 𝑛𝑛-nearest neighbors 
could best reflect the complexity of segmental boundary in 𝑛𝑛-D. 
The next experiment shows that the number of nearest neighbors 
could be much smaller than the dimensionality and not unique. 

 Fig. 6 and TABLE I clearly indicate that the model bC2 
generally has bigger local DBC scores than bC1. The result 
means bC1 has better generalizability than bC2, which is 
verified by their test accuracies. We do not calculate the standard 
deviation of scores because their distributions are not Gaussian 
but more like the long-tailed distribution. Instead, we apply the 
two-sample rank test3 to estimate whose scores are smaller. 

 
Fig. 6. Local DBC scores from two models trained by the breast cancer dataset. 
The FCNN bC1 has three hidden layers (20 neurons in each layer) and three 
Dropout layers; its number of parameters is 1,481 (including bias). The bC2 has 
one hidden layer with 1,000 neurons; its number of parameters is 32,001 
(including bias). 

TABLE I STATISTICAL RESULTS OF LOCAL DBC SCORES 
 ON BC1 AND BC2 

Model Test Acca 
2,500 local DBC scores 

Mean Median h0 (bC1≥bC2)b 

bC1 0.970 0.087 0.057 Rejected 
(p ≈ 0) bC2 0.921 0.113 0.079 

a. Test accuracy is the ground truth. 
b. By Two-sample Wilcoxon signed rank test. 

C. Cat and dog dataset 
This dataset contains 1,440 cat and 1,440 dog RGB photos. 

The image size is 150x150x3 (67,500 8-bit integers). Three 
convolutional neural network (CNN) models (cC1, cC2 and 
cC3) are trained to classify this dataset. The training-test ratio 
is 32:13 and both training accuracies are >0.95 at the end. Then, 

boundary (a) boundary (b) 

adversarial set of (a) 
𝑫𝑫𝑫𝑫𝑫𝑫 ≈ 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎  

adversarial set of (b) 
𝑫𝑫𝑫𝑫𝑫𝑫 ≈ 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 

Histograms of local DBC scores from models 

Sorted local DBC scores from models 

Number of repetitions 



we obtain models’ test accuracies as the ground truth for model 
complexity. Fig. 7 shows the training process. 

 
Fig. 7. Training and test accuracies in training process of three models. The 
CNN cC1 has three convolutional layers, three max-pooling layers, one dense 
layer (64 neurons) and one Dropout layer. The cC2 has one convolutional layer 
and three dense layers (256, 128, 64 neurons). The cC3 has only one dense layer 
(1024 neurons). 

To compute the local DBC scores uses only the training set. 
We randomly select a cat and a dog image from the training set 
to compute local DBC scores on trained models. This process is 
repeated 6,000 times (about 5 times of the size of training set) to 
obtain 6,000 local DBC scores for each model.  

Since the space dimension (67,500) is far beyond the size of 
dataset (2,880), we cannot choose based on the idea of a simplex 
and use 67,500-nearest neighbors to compute local DBC scores. 
Even if we have enough images to use, the number of nearest 
neighbors is too large to run the process. Hence, to find a 
properly small number, we test the 3, 5, 10, 15, 20, 30-nearest 
neighbors. 

 
Fig. 8. Means and medians of local DBC scores on model cC1, cC2 and cC3 
using different numbers of nearest neighbors. 

 Fig. 8 shows the means and medians of 6,000 local DBC 
scores based on various numbers of nearest neighbors. Since the 
distributions of these scores are not Gaussian but more like the 
long-tailed, we use their medians instead of the standard 
deviations. By comparing the means and medians for the three 
models, we find that, regardless of the number of nearest 
neighbors, for the DBC scores: cC1 < cC2 < cC3 always holds. 

Such a conclusion is verified by their test accuracies (see test 
accuracy in TABLE II). The higher test accuracy suggests the 
model has better generalizability and should have a simpler 
decision boundary and smaller DBC scores. More strict 
estimates require the two-sample rank test. We provide an 
example of the 15-nearest neighbors case in TABLE II. We 
reject two null hypotheses:  cC1≥cC2 and cC2 ≥ cC3 with p ≈
0; it proves that cC1 < cC2 < cC3. Also, Fig. 9 indicates the 
same conclusion. 

 
Fig. 9. Increasingly sorted local DBC scores from three models. The upper 
figure is the whole plot and the lower figure is zoomed the plot in range from 
2k-6k to clearly see positions of three curves. 

TABLE II STATISTICAL RESULTS OF LOCAL DBC SCORES 
 ON CC1, CC2 AND CC3 

Model Test Acca 
6,000 local DBC scores (15-NNb) 

Mean Median h0 (cC1≥cC2)c h0 (cC2≥cC3) 

cC1 0.730 0.850 0.873 Rejected 
(p ≈ 0) 

 

cC2 0.626 0.877 0.889 Rejected 
(p ≈ 0) cC3 0.583 0.887 0.897  

a. Test accuracy is the ground truth. 
b. Computation bases on 15-nearest neighbors. 
c. By Two-sample Wilcoxon signed rank test. 

 

IV. DISCUSSION 
The main idea of this study is simple and clear, that is, using 

the adversarial examples on or near the decision boundary to 
measure the complexity of the boundary. It is difficult to define 
and measure the complexity of a boundary surface in high 
dimensions, but easier to measure the complexity of adversarial 
example sets. We measure the complexity via the entropy of 
eigenvalues of adversarial sets. Other complexity measures for 
grouped data are also worth considering [22]. Fig. 10 shows 
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several adversarial examples for the cC1 model generated by 
training images. They look like mixed cat and dog photos. 

 
Fig. 10. Adversarial examples for the cC1 model 

To generate the adversarial examples, as Fig. 1 shows, we 
use a pair of real data from different classes. At least one 
adversarial example is on the line segment between two data 
points because the line must cross the decision boundary at least 
once. If we use only real data from the training set, we could 
evaluate a model’s generalizability without using a test set. 
That is an advantage when data are limited  because we could 
have more data for training. However, the disadvantage of this 
method is the dependence on real data. The number of 
adversarial examples that could be generated depends on the size 
of the real dataset. Can we generate an adversarial example 𝑥𝑥 for 
classifier 𝑓𝑓 by randomly searching 𝑓𝑓(𝑥𝑥) ≈ 0.5? Maybe, but it is 
very difficult for the high-dimensional space. Even to find two 
data points 𝑎𝑎, 𝑏𝑏 whose 𝑓𝑓(𝑎𝑎) ≈ 1, 𝑓𝑓(𝑏𝑏) ≈ 0 is difficult because 
one of the areas (say 𝑓𝑓(𝑎𝑎) ≈ 1) would be very small and sparse 
in the space. Definitely, there are some other methods to 
generate adversarial examples, such as the DeepDIG [21] and 
applications of the generative adversarial network (GAN). 

 
Fig. 11. Linear adversarial set on lumpy boundary 

Smaller local DBC scores are necessary but insufficient 
conditions to simpler decision boundary because a lower 
complexity adversarial set may be generated from a higher 
complexity boundary (Fig. 11). Hence, the density of 
adversarial examples is important. Denser examples have 
higher probability to reflect the real condition of boundary. In 
practice, more adversarial examples are required to be on the 
effective segment of decision boundary, which is not the whole 
boundary but the part close to the data. From this aspect, to 
generate adversarial examples on the line segments between 
two data points is an appropriate way to create a dense 
adversarial set on the effective segment of decision boundary. 

A smaller DBC score indicates that the model has a simpler 
decision boundary and better generalizability on a certain 
dataset. It is worth noting that the DBC score is meaningless for 
a single model and cannot be compared across different datasets. 
The gist of DBC score is used to compare various models 
trained on the same dataset. In this study, all three 
experiments use two-class datasets. In future work, we will use 
multiclass datasets. The multiclass problem could be treated as 
multiple two-class problems by one class vs. others. 

V. CONCLUSION 
The decision boundary complexity of DNNs is defined and 

measured by DBC scores. This new DBC score is computed 
from the entropy of eigenvalues of adversarial examples, which 
are generated on or near the decision boundary, and in a feature 
space of any dimension. 

Training data and the trained models are used to compute the 
DBC scores, and test data are used to obtain test accuracies as 
the ground truth for models’ generalizability. Then, the DBC 
scores are used to detect the model with better generalizability 
trained on the same dataset. Results have verified our hypothesis 
that a DNN with a simpler decision boundary has better 
generalizability. In this paper, we provide an effective method 
to measure the complexity of decision boundaries and helps 
analyze the generalizability of DNNs. 
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