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Abstract—In the last century, we have passed two severe
pandemics; the 1957 influenza (Asian flu) pandemic and the
1918 influenza (Spanish flu) pandemic with a high fatality rate.
In the last few months, we have been again facing a new
epidemic (COVID-19), which is a frighteningly high-risk disease
and is globally threatening human lives. Among all attempts and
presented solutions to tackle the COVID-19, a publicly available
dataset of radiological imaging using chest radiography, also
called chest X-ray (CXR) images, could efficiently accelerate the
detection process of patients infected with COVID-19 through
presented abnormalities in their chest radiography images. In
this study, we have proposed a deep neural network (DNN),
namely RAM-Net, a new combination of MobileNet with Dilated
Depthwise Separable Convolution (DDSC), Residual blocks, and
Attention augmented convolution. The network has been learned
and validated using the COVIDx dataset, one of the most popular
public datasets comprising the chest X-ray (CXR) images. Using
this model, we could accurately identify the positive cases of
COVID-19 viral infection while a new suspicious chest X-ray
image is shown to the network. Our network’s overall accuracy
on the COVIDx test dataset was 95.33%, with a sensitivity and
precision of 92% and 99% for COVID-19 cases, respectively,
which are the highest results on the COVIDx dataset to date,
to the best of our knowledge. Finally, we performed an au-
dit on RAM-Net based on the Grad-CAM’s interpretation to
demonstrate that our proposed architecture detects SARS-CoV-
2 (COVID-19) viral infection by focusing on vital factors rather
than relying on irrelevant information.

Index Terms—Dilated Depthwise Separable Convolution,
Residual Blocks, Attention Augmented Convolution, MobileNet,
COVID-19, Medical Image Analysis, CXR, Grad-CAM

I. INTRODUCTION

The rapid spread of severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2, also known as 2019-nCov or

COVID-19) has caused a global alarm since December 2019.

There are some credible published papers [6], [7] that have

provided beneficial information about clinical features of in-

fected patients with this viral pneumonia, their epidemiologi-

cal and radiological characteristics besides presenting several

treatment outcomes. Moreover, in [8], the authors investigated

the diagnostic value and consistency of chest CT compared

with RT-PCR examination. They concluded that chest CT has

a high sensitivity for the diagnosis of COVID-19, and might

be considered as a primary tool for COVID-19 screening

in epidemic areas. Fang et al. [9] have also compared the

sensitivity of chest CT and viral nucleic acid assay at the

initial patient presentation. They have reported that chest

CT exhibits higher sensitivity than that of RT-PCR (98% vs

Fig. 1. Our proposed Residual Attention MobileNet (RAM-Net) presents
superior accuracy with the fewest number of parameters than ResNet-50 [1],
VGG-19 [2], InceptionV3 [3], Dilated MobileNet [4] and COVID-Net [5].

71%, respectively, p<.001), that makes radiography images an
acceptable complement or even better alternative than RT-PCR

examination.

Therefore, radiological examination such as chest X-ray

(CXR) imaging could be considered an alternative to detect

viral infection of COVID-19. According to some early studies

[6], [7], [10], chest radiography images can exhibit the ab-

normalities of COVID-19, and it could be employed as one of

the foremost tools for the virus screening. Influenced by a dire

need of automated solutions to fight against COVID-19, and

public availability of chest radiography images, we propose

a deep neural network, namely RAM-Net (Residual Attention

MobileNet), to detect viral infection of COVID-19 from chest

X-ray images. To train the neural network, we have used 13675

chest X-ray (CXR) images of the three classes (COVID-19,

Normal (no Pneumonia), Other Pneumonia) from the COVIDx

dataset [5]. Furthermore, in order to test the Residual Attention

MobileNet, 300 X-ray images of the COVIDx test dataset

have been utilized. The results are then compared with the

state of the art method COVID-Net [5]. COVID-Net is a

deep convolutional neural network (DCNN) designed to detect

COVID-19 cases from chest X-ray images. The CXR dataset
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(COVIDx) comprising 13,975 chest radiography images across

13,870 patient cases has been used to train their model.

The contributions of this work are three folds. (1) A novel

RAM friendly model (mobile vision application) is proposed

to efficiently and effectively detect the infected COVID-19 pa-

tients. It greatly releases the computational burden and makes

the model applicable to the real-world. (2) An attention-based

residual module is constructed to force the network focus on

the lesion within the X-ray, which offers the network more

interpretability to rely on. Besides, the dilated convolution is

applied to enlarge the field of view and save the computational

cost simultaneously. Together dilated convolution and attention

augmented convolution assist the network in achieving the

global information from images. (3) Extensive quantitative and

qualitative experiments have demonstrated that the proposed

RAM-Net can more accurately recognize the positive sample

and outperforming state-of-the-art methods.

The remaining sections of the paper are arranged as follows:

in section 2, we present our proposed deep neural network

(DNN) based architecture that is designed to learn the chest

X-ray images. We present and discuss our experimental results

that are achieved after employing the model to the unseen

(new) chest X-ray images, in Section 3. Finally, we conclude

the paper and recommend the potential future directions in

Section 4.

II. METHODOLOGY AND DATASET

For embedded mobile vision applications, MobileNet has

been built with a small number of parameters, less com-

putational complexities, and very low latency [11]. It holds

three different convolution operations, including pointwise

convolution, depthwise convolution, and standard convolution.

In this work, we proposed a new version of MobileNet called

RAM-Net (in Fig. 2) which based on attention augmented

convolution [12], residual block [1], and dilated convolution

[13]. The network pre-trained on ImageNet dataset [14] to

bolster the accuracy of this classification task.

A. Dilated Depthwise Separable Convolution (DDSC)

The proposed dilated depthwise separable convolution

(DDSC) is different from the standard convolution operation.

One significant weakness of the traditional convolutional layer

is that it works with a small receptive field. Thus, this

characteristic prevents it from achieving global information

during classification [12]. We attempt to tackle this problem

by employing the dilated convolution and attention augmented

convolution in our architecture. Firstly, to incorporate dilated

depthwise separable convolution, we select five depthwise lay-

ers of this network where all of these depthwise convolutional

layers have a stride = 2. The output of depthwise convolution
with one filter, stride = 1, and padding can be reckoned as:

Ẑk,l,m =
∑

i,j

K̂i,j,m · Fk+i−1,l+j−1,m (1)

where, Z= output feature map, F= input feature map, and

K= convolutional kernel. Besides, F is a discrete function,

and K̂ : ωr → R is a discrete depthwise convolution kernel

of size (2r + 1)2 where, ωr = [−r, r]2 ∩ Z2 and nth filter

in K̂ is registered to the nth channel of feature map in F to

provide the nth channel of the filtered output feature map ẑ.
Next, if h is an element, q is a dilation factor, then ∗q will be:

F ∗q K̂(h) =
∑

s+qt=p

F (s)K̂(t) (2)

In equation (2), ∗q is a dilated convolution where * is

referred to as 1-dilated convolution. In dilated depthwise sepa-

rable convolution (DDSC), we combine this depthwise dilated

convolution with pointwise convolution (1×1 convolution).

There are five DDSC layers in our proposed RAM-Net, and

every layer has a stride = 2. In our network, the first two

depthwise layers have a dilation rate of 1; however, for the

third and fourth depthwise convolution layers, we placed a

dilation rate of 2. Furthermore, we create three depthwise

convolutions parallelly with a dilation rate of 4, 8, and 16,

respectively. Finally, we concatenated these three depthwise

layers together to produce the fifth dilated depthwise separable

convolution layer, which can be formulated as:

DC5 = CONCAT [(F4K̂)(h), (F8K̂)(h), (F16K̂)(h)] (3)

Here, DC5 is the 5th depthwise convolution layer, which

obtains the output from a concatenation operation. Addition-

ally, F4, F8, and F16 are feature maps from three different

DDSC layer where 4, 8, and 16 are different dilation rate.

B. Residual Blocks

The vanishing/exploding gradients problem is a colossal

issue in the neural networks that happened because of the

combination of an extensive amount of layers [1]. It occurs

during the backpropagation and hinders convergence from very

early. So, We apply identity residual blocks and convolutional

residual blocks in our residual part. Firstly, the identity blocks

have the same input activation dimensions (a[l]) and the output
activation dimension (a[l+2]). In the residual blocks, “skip

connection” has been utilized to backpropagate the gradient

to the earlier layers so that the network can comfortably learn

the identity mapping [1]. We implement three layers in each

identity block. The first and last layer consists of (1×1) kernel
size with ReLU activation and BatchNormalization steps to

speed up the training. The second layer has a (3×3) convolu-
tion operation with ReLU activation and BatchNormalization.

We employ a stride rate of 1 throughout the identity block.

The convolutional residual blocks have dissimilar input and

output of residual mapping tensor shape. The main difference

with the identity block is that there is one convolutional layer

in the shortcut path. This convolutional layer is used to reshape

the input tensor to a different dimension. We can denote this

layer as a shortcut convolutional layer. Therefore, the first layer

and the shortcut convolutional layer has (1× 1) convolutional
operation with the stride = 2. However, the other layers have
kernel size (3 × 3) with a stride = 1. All the layers have
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Fig. 2. Block 1, Block 2, and Block3 in Residual Attention MobileNet (RAM-Net) have the same structures. DConv, S, and DL mean Depthwise Convolution,
Stride, and Dilation Rate, respectively. Furthermore, RS denotes the residual block, which holds Convolutional (Conv) Residual operation and Identity (IDN)
Residual operation. Then, BatchNormalization (BN) and Attention Augmented Convolution (AA) followed by the first two Residual (RS) Blocks. Finally, the
classification part has three fully connected (FC) layers.

Fig. 3. Left: Normal Conv have standard convolutional layer with (3x3)
kernel, BatchNormalization (BN), and Rectified Linear Unit (ReLU). Right:
Depthwise Dilated Conv contains (3x3) dilated depthwise separable convolu-
tional (DDSC) operation, (3x3) standard convolutional operation, BatchNor-
malization (BN), and Rectified Linear Unit (ReLU).

the ReLU activation except the shortcut convolutional layer,

though all the layers have BatchNormalization steps.

We utilized three different sets of residual blocks: The first

set contains two identity residual blocks, followed by one

convolutional residual block, and The second and third set

includes three identity blocks, followed by one convolutional

residual block. The identity operation can be defined as:

y = ReLU(f(x, (ωi)) + x) (4)

Here, y is the output tensor, x is the input tensor, and

function f(x, (ωi)) can be represented as the learned residual
mapping. For the identity residual block, the dimensions of x

and f(x, (ωi)) must be equal. Next, the convolutional residual
block can be formulated as:

y = ReLU(f(x, (ωi)) + ωsx) (5)

Where to match the output tensor shape of shortcut con-

nection, we have to execute projection ωs. In both types of

residual blocks, the ReLU activation function has been applied

after the element-wise addition on two feature maps.

C. Attention Augmented Convolution

Though the convolutional operation is a popular classifi-

cation method, it has notable frailty because it only con-

centrates on the local neighborhood via limited receptive

field [12]. Nevertheless, this fondness of convolutional kernel

on the local environment prevents it from attaining global

understanding during the image classification. Previously, we

proposed dilated depthwise separable convolution to avoid this

problem, and now we apply attention augmented convolutional

with residual blocks. Besides, attention augmented convolution

increases the classification accuracy with the same architec-

tural complexities as it does not enhance the parameters of

the model [12]. Overall we have two attention augmented

convolutional layers. Each of these is followed by the first and

second sets of the residual block and the BatchNormalization

layer. Like Bello et al. [12], we implement attention augmented

convolution after the BatchNormalization layer. After getting

our output tensor y from a residual block, we pass this tensor

to the multi-head self-attention attention augmented layer. If

the single head can be assumed by h, then the multi-head

self-attention for the input matrix y can be computed as:

MA(y) = CONCAT [SA1, . . . , SANh]W
0 (6)

Where SAh is for single head attention, andW
0 is a learned

linear transformation. During the training phase, multi-head

self-attention feature maps produce high accuracy when it is

concatenated with the convolutional feature maps. So the final

output from this layer can be defined as:
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AAC(y) = CONCAT [MA(y), CONV (y)] (7)

D. RAM-Net Architecture

We replaced all the present depthwise convolutional layers

in traditional MobileNet with dilated depthwise separable con-

volution (DDSC). In RAM-Net, we employ the three residual

blocks, two attention augmented convolutional layers, and two

standard convolutional layers with stride = 1 in between the

fourth and the fifth DDSC layer. In the classifier part, we apply

global-average max pooling to convert the tensor shape from

h×w×d to 1×1×d, where h×w = spatial dimensions and d
referred to as the number of feature maps. There are three

fully connected (FC) layers with filters number 512, 256, and

3 (for three classes), respectively. We apply a dropout rate of

0.50 for the first two FC layers that substantially debilitates

the overfitting. Moreover, The first two layers have the ReLU
activation, and the last one has the SOFTMAX activation.

E. Dataset

Lately, there have been noteworthy endeavors to detect

COVID-19 as fast and automatic as possible [15]–[17]. In

this regard, Wang et al. [5] generate the COVIDx dataset

after integrate five open-access datasets: 1) COVID-19 im-

age data collection [15], 2) Actualmed COVID-19 chest X-

ray data initiative [16], 3) Figure-1 COVID-19 chest X-ray

data initiative [18], 4) COVID-19 radiography database [19],

5) RSNA Pneumonia Detection Challenge dataset [17]. The

dataset is divided into the training and test parts. The dataset

contains 13675 chest X-ray images in the training part, where

we have 7966 Normal, 5451 Non-COVID Pneumonia, and 258

COVID-19 X-ray images. The COVIDx test dataset holds 100

X-ray images from each class (300 images in total). COVIDx

includes three different categories of X-ray images:

• Normal: X-ray images do not have Pneumonia infection

• Non-COVID Pneumonia: different kinds of pneumonia

infection other than COVID-19

• COVID-19: comprise COVID-19 positive cases

F. Data Augmentation

All the images resized into (224×224), and to achieve faster
convergence, we apply the min-max normalization technique

to re-scale each pixel between 0 and 1.

zi =
xi −min(x)

max(x)−min(x)
, i = 1, 2, ..., n (8)

Here zi is the output for the ith data point, and xi is

the input for the same data point. Several data augmented

approaches have been followed to produce transformed im-

ages. At first, we have applied a horizontal and a vertical flip

with a probability of 0.40. Then, the zoom range ±0.20 is

employed to randomly zooming inside each image. Height and

width shifting with range 0.20 have been utilized to manage

off-centered objects. Finally, vertical shear mapping range

(x, y+0.20) and horizontal shear mapping range (x+0.20, y)
has been used to supplant the image.

G. Implementation Details

The proposed RAM-Net is pre-trained on the ImageNet [14]

and trained on the COVIDx dataset for the 22 epochs with

Adam optimizer. Moreover, for the training part, the learning

rate was 1e − 4, utilized cross-entropy loss, and the mini-

batch size 32. We have used a callback function to lessen

the learning rate factor by
√
0.1 if learning stagnates for five

epochs (patience). The lower bound for the learning rate was

0.5e − 6. Hence, if x= current learning rate, then the new

learning rate xnew will be:

xnew = x ∗
√
0.1 (9)

III. EXPERIMENT RESULTS

Numerous combinations of RAM-Net are investigated to

discover the proposed one. We perform various experimental

analyses to evaluate the efficacy of our method. Through sev-

eral evaluation criteria, we attempt to understand the decision-

making and classification performance of RAM-Net.

A. Ablation Study

We have inspected several different setups with new dilated

depthwise separable convolution (DDSC) in MobileNet to pick

the appropriate one. That means in all our combinations, we

include the DDSC part but attach or detach the residual blocks

and attention augmented convolution. In Table I, we have

displayed the outcome of several combinations for different

evaluation criteria such as test accuracy, and average sensitivity

and precision of all classes to choose the best combinations.

The best result has been found by selecting the dilated depth-

wise separable convolution (DDSC) in MobileNet with three

residual blocks and two attention augmented convolutions.

B. Test Accuracy and Architectural Complexities

The proposed architecture provides superior accuracy with

minimal parameters than many popular models such as

ResNet-50 [1], VGG-19 [2], and InceptionV3 [3] on the

COVIDx test dataset. Furthermore, we compare our experi-

mental results with Dilated MobileNet [4] and COVID-Net

[5], which is a state-of-the-art model for the COVIDx dataset.

Our proposed network has only 3.88 million parameters,

similar to Dilated MobileNet but exhibits less architectural

complexities with higher accuracy than COVID-Net (11.75

million). According to Fig. 1, RAM-Net achieves 95.33% test

accuracy. To the best of our knowledge, this efficacy is higher

than any state-of-the-art methods tested on the COVIDx test

set, including COVID-Net (93.3%).

C. Recall, Precision, and Confusion Matrix

We inspect our proposed network critically by studying

recall (sensitivity), precision (positive predictive value), and

confusion matrix for separate infections. In Tables II and

III, we compare the recall and precision, respectively, for

different infections with some existing methods. At first, we

can notice that RAM-Net obtains a decent recall rate for

COVID-19 instances (92%). A decent recall rate is necessary
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TABLE I
THE PERFORMANCE OF SEVERAL COMBINATIONS ON THE COVIDX TEST DATASET AND THE BEST OUTCOMES (PROPOSED METHOD) MARKED IN BOLD

Setups Test Accuracy
(%)

Average
Recall (%)

Average
Precision (%)

DDSC in MobileNet + 2 residual blocks 94.3 94.3 94.3
DDSC in MobileNet + 3 residual blocks 93.7 93.7 94.0

DDSC in MobileNet + 2 residual blocks + 2 attention augmented convolution 94.7 94.7 94.7
DDSC in MobileNet + 3 residual blocks + 2 attention augmented convolution (RAM-Net) 95.3 95.7 95.3

DDSC in MobileNet + 3 residual blocks + 3 attention augmented convolution 94.0 94.00 94.0

Fig. 4. Confusion Matrix of RAM-Net for the COVIDx test dataset.

TABLE II
RECALL (SENSITIVITY) FOR EACH VIRAL INFECTION. THE BEST RESULTS

ARE HIGHLIGHTED IN BOLD.

Model Normal
(%)

Non-COVID
Pneumonia (%)

COVID-19
(%)

VGG-19 [2] 98.0 90.0 58.7
ResNet-50 [1] 97.0 92.0 83.0

Dilated MobileNet [4] 98.0 89.0 91.0
InceptionV3 [3] 93.0 93.0 88.0
COVID-Net [5] 95.0 94.0 91.0

RAM-Net (Ours) 99.0 95.0 92.0

because we do not want to miss a considerable amount of

COVID-19 cases during the recognition process. Secondly, we

examine that our network attains a high 99% precision rate for

COVID-19 infection. This highly accurate positive predictive

value demonstrates the low amount of false-positive COVID-

19 recognition. From the confusion matrix (Fig. 4), we can see

only one patient of COVID-19 viral infections was misclas-

sified. In order to minimize PCR testing, a low false-positive

rate is necessary for any healthcare system [5]. Thus, based on

the experimental result, we can state that our proposed RAM-

Net operates well to detect COVID-19 viral infections from

chest X-ray (CXR) images. The proposed method generalizes

and performs better than all baseline models for the COVIDx

test dataset to the best of our knowledge.

D. Explainability of RAM-Net:

This study’s primary goal is to provide a clinical applica-

tion in response to a critical problem like COVID-19 viral

infection. The performance of this application will directly

TABLE III
PRECISION (PPV) FOR EACH VIRAL INFECTION. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

Model Normal
(%)

Non-COVID
Pneumonia(%)

COVID-19
(%)

VGG-19 [2] 83.1 75.0 98.4
ResNet-50 [1] 88.2 86.8 98.8

Dilated MobileNet [4] 90.0 95.0 95.0
InceptionV3 [3] 86.0 95.0 94.0
COVID-Net [5] 90.5 91.3 98.9

RAM-Net (Ours) 93.0 95.0 99.0

affect the health of infected patients. Thus, we design RAM-

Net with sheer accountability and transparency. Here, we

displayed that RAM-Net determines the outcome based on

apposite knowledge rather than unacceptable facts such as

imaging artifacts, incorrect visual indicators outside of the

patient body, embedded markup signs, etc. Here, we employ

the Gradient-weighted Class Activation Mapping (Grad-CAM)

[20] technique, which provides a visual explanation for the

outcome of the Deep Neural Network to make it more trans-

parent. Grad-CAM utilizes the gradients of any target concept,

flowing into the last convolutional layer to provide a coarse

localization map indicating the crucial regions in the image

for forecasting the concept. We apply the Grad-CAM method

on our proposed RAM-Net to understand how this network

inspects the CXR images and makes decisions. Moreover,

we validate the result produced from Grad-CAM to examine

whether RAM-Net makes a decision based on relevant facts or

takes some erroneous bias decisions based on unrelated visual

indicators. Based on the interpretation of Grad-CAM in Fig.

5, we can observe that RAM-Net focuses on some particular

areas in the lungs on detecting COVID-19 viral infections from

chest X-Ray (CXR) images of the patients. In Fig. 5, the red

mark can recognize these critical factors, which validates that

our proposed RAM-Net focuses on essential aspects rather

than depending on irrelevant details.

IV. CONCLUSION

In this paper, we have proposed a deep convolutional neural

architecture to tackle the adverse upsurge of COVID-19 cases.

Our proposed RAM-Net is learned by employing the chest X-

ray (CXR) examples of publicly available COVIDx dataset.

Inside our system, we apply the new Dilated Depthwise Sepa-

rable Convolution (DDSC) layer instead of the basic depthwise

layer of MobileNet. Additionally, we integrate three sets of
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Fig. 5. Chest X-ray (CXR) images of SARS-CoV-2 (COVID-19) cases from four different patients and their associate infected area marked in red, which is
identified by Grad-CAM.

residual blocks and two sets of the Attention Augmented

Convolution layer. We evaluate our approach on the COVIDx

test dataset and achieve superior outcomes for each evaluation

metric, which is higher than baseline methods to the best of

our knowledge. This study’s primary motivation is to assist

radiologists in the diagnosis step and accelerate the treatment

process of infected patients who urgently require it. However,

the future directions of this work will include learning our

model with a higher number of CXR images of COVID-19

cases from all over the world. The principal purpose behind

the future data collection process is to raise the sensitivity,

the precision of COVID-19 infections, and avoid biases. We

also hope to increase the explainability of our network in the

future. By increasing the network’s interpretability, we would

be able to indicate the critical factors that have a significant

effect on making the right detection decision based on CXR.
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