
Falsification-Based Robust Adversarial Reinforcement Learning

Xiao Wang1, Saasha Nair1, and Matthias Althoff1

Abstract— Reinforcement learning (RL) has achieved enor-
mous progress in solving various sequential decision-making
problems, such as control tasks in robotics. Since policies are
overfitted to training environments, RL methods have often
failed to be generalized to safety-critical test scenarios. Robust
adversarial RL (RARL) was previously proposed to train an ad-
versarial network that applies disturbances to a system, which
improves the robustness in test scenarios. However, an issue
of neural network-based adversaries is that integrating system
requirements without handcrafting sophisticated reward signals
are difficult. Safety falsification methods allow one to find a
set of initial conditions and an input sequence, such that the
system violates a given property formulated in temporal logic.
In this paper, we propose falsification-based RARL (FRARL):
this is the first generic framework for integrating temporal
logic falsification in adversarial learning to improve policy
robustness. By applying our falsification method, we do not
need to construct an extra reward function for the adversary.
Moreover, we evaluate our approach on a braking assistance
system and an adaptive cruise control system of autonomous
vehicles. Our experimental results demonstrate that policies
trained with a falsification-based adversary generalize better
and show less violation of the safety specification in test
scenarios than those trained without an adversary or with an
adversarial network.

I. INTRODUCTION

Recent advancements, such as superhuman performance in
a range of Atari games in 2015 [1], followed by AlphaGo’s
victory against the human world champion in Go in 2016
[2], [3], have developed numerous research interests in rein-
forcement learning (RL) [4]. Consequently, RL has greatly
progressed in real-world applications, such as robotics [5],
natural language processing [6], and autonomous driving [7],
[8]. However, RL still suffers from some shortcomings, such
as bad generalization in real-world scenarios, risk-sensitive
reward functions, and violation of safety constraints [9], [10].
This study addresses the generalization problem due to the
huge amount of training required for RL.

Pinto et al. [11] discussed generalization by adding distur-
bances as adversarial examples [12]. Their study was later
extended by Pan et al. [13]. By training with adversarial
examples, the authors reduced the simulation-to-reality gap
caused by modeling errors, so the trained models generalize
better in real-world scenarios. Adversarial RL is formulated
as a two-player zero-sum game in [11], [13], in which
an adversary aims to obstruct the success of the learning
system. However, learning in a zero-sum game requires
finding a Nash equilibrium, which is especially challenging
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for continuous high-dimensional problems [14]. Otherwise, if
we formulate the problem as a non-zero-sum game, in which
the adversary optimizes a different reward function, then a
sophisticated reward function for the adversary would have
to be handcrafted. One can argue that engineering the reward
function could improve the generalization ability of an RL
agent. However, as pointed out in [10], designing a perfect
reward function is a very challenging task. For instance, the
traffic rule a vehicle is not allowed to overtake another on its
right side except in congested traffic requires a sequence of
events, which is difficult to integrate into a reward function;
the traffic rule can easily be expressed by a temporal logic.
Therefore, temporal logic falsification methods provide a
possibility to automatically improve generalization without
having to tune the reward functions.

In this paper, we propose a new framework: we develop
adversarial samples in a single RL agent setting, wherein
the protagonist is represented by an RL agent, while safety
falsification methods act as an adversary. Safety falsification
approaches drive a system to unsafe behaviors, which violate
given safety specifications [15].

The remainder of this paper is organized as follows.
Section II provides an overview of current solutions in related
studies for adversarial RL and system falsification for safety-
critical systems. Section III introduces falsification-based
RARL, which is evaluated in Section IV. In Section V,
we present the conclusions and potential future research
directions.

II. RELATED WORK
A. Adversarial Reinforcement Learning

Despite the success of RL algorithms, they are susceptible
to changes in environmental settings [10], [16]. Hence,
various forms of adversarial training [12] have been intro-
duced to solve this problem. One such approach involves
adding adversarial perturbations to the observations of the
agent by attacking either only the image inputs [17]–[19]
or addressing the entire state vector [20], [21]. Another
approach involves using source-domain ensembles, which
are adapted to the target domain using the Bayesian model
adaptation [22].

Further, the approach most relevant to our study is the
minimax approach extending robust RL [16]. This approach,
which is known as robust adversarial RL (RARL) [11],
simultaneously trains two RL agents: one called the protag-
onist, while the other is called the adversary. The adversary
is tasked with applying destabilizing forces to impede the
protagonist, while the protagonist learns to be robust to
the adversary. An extension of RARL has been provided
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by risk-averse RARL (RARARL) [13], which focuses on
safety-critical cyber-physical systems, by modeling the risk
as the variance of an ensemble of value functions. However,
RARARL can only solve problems with a discrete action
space and requires an ensemble of multiple neural networks,
requiring a significant computational resource. In contrast to
the RARL and RARARL that model the setup as a two-agent
RL scenario, as mentioned in Section I, our proposed solution
reduces the number of reward functions to be defined and
tuned, requires fewer parameters of the adversary to be
optimized, as introduced in Section III-A, and allows for
better expressiveness for the adversary using temporal logic
specifications.

B. Safety Falsification

Safety falsification methods aim at finding initial condi-
tions and input sequences, with which a system violates
a given safety specification. Two categories of various ap-
proaches exist for solving this problem. We first review
single-shooting methods, which simulate trajectories from
specific initial conditions and input traces and iterate until a
falsifying trajectory is obtained. A single-shooting method is
achieved by applying Monte-Carlo methods [15], [23], [24],
ant colony optimization method [25], cross-entropy method
[26], or rapidly-exploring random tree search [27]–[30]. A
multiple-shooting approach is proposed in [31], [32] to split
system trajectories into small segments by simulating from
multiple initial conditions in a state space decomposed into
cells. Once a segment reaches an unsafe state, the cell size is
refined until the segments can be concatenated to a complete
system trajectory. The ant-colony method and the Monte-
Carlo method were compared in [25] for two benchmarks,
and similar results were obtained. As shown in [26], the
cross-entropy method outperformed the Monte-Carlo method
on five benchmarks. Hence, we employ the cross-entropy
method in this study. Note that our framework can also use
other falsification approach.

III. FALSIFICATION-BASED RARL

A. Safety Falsification

To formulate the safety falsification problem, we first
introduce several important definitions adopted from [15].
A dynamic system Σ can be regarded as a mapping from
initial states x0 ∈ X0 ⊂ Rn and input signals u ∈ U ⊂ Rm
to output signals y ∈ Y ⊂ Rk: X0 × U → Y .

We formulate system properties in metric temporal logic
(MTL) [33]. A temporal logic combines propositions of
classical logics with time dependence such that a truth value
is assigned to each atomic proposition at each time instant
[34]. An atomic proposition p is a statement that can be
either true or false. Atomic propositions and the logical
connectives, such as Boolean operators not and or denoted
by ¬ and ∨, form propositional formulas. The temporal
operator until, which is denoted by U , indicates that in
a formula ϕ1 U ϕ2, the first formula ϕ1 holds until the
second formula ϕ2 holds; the time t when ϕ2 starts to hold
is unconstrained, i.e., t ∈ (0,∞). The temporal operator

globally, which is denoted by G, indicates that formula ϕ
must hold for all times. In addition, MTL is an extension
of temporal logic in which temporal operators are replaced
by time-constrained operators. Thus, U is replaced by UI ,
where I ⊆ (0,∞), indicating that t is constrained by I . The
syntax of an MTL formula ϕ is defined as follows [24]:

ϕ := true | p | ¬ϕ |ϕ1 ∨ ϕ2 |ϕ1 UI ϕ2|Gϕ, (1)

which indicates that the value of an MTL formula is always
true or false. Other logical expressions can be formed from
logical equivalences, such as a =⇒ b ≡ ¬a ∨ b. In this
study, we use the global operator G as presented in (9).
More general formulas can be obtained from (1).

Definition. (MTL Falsification). For an MTL specification
ϕ, the MTL falsification problem aims to find initial states
x0 ∈ X0 and an input sequence u : [0, T ]→ U such that the
resulting trajectory y of system Σ violates the specification
ϕ, which is denoted by

y(x0,u) 6|= ϕ. (2)

Naı̈ve falsification uniformly samples the set of initial
conditions and input sequences. A more efficient approach
is to guide the search using a metric, measuring the dis-
tance between the trajectory and set of states violating the
specification. A robustness metric ε is proposed in [35] to
express the satisfaction of an MTL property over a given
trajectory as a real number instead of a Boolean value (0
for no intersection with unsafe sets and 1 for successful
falsification). The sign of ε reveals whether a trajectory
y satisfies an MTL property ϕ. The robustness of y with
respect to ϕ is denoted by

ε = JϕKd(y, t), (3)

and defined as follows [24]–[26]:

JtrueKd(y, t) := +∞
JpKd(y, t) := Distd(y(t),O(p))

J¬ϕKd(y, t) := −JϕKd(y, t)
Jϕ1 ∨ ϕ2Kd(y, t) := max(Jϕ1Kd(y, t), Jϕ2Kd(y, t))

Jϕ1 UI ϕ2Kd(y, t) := sup
t′∈(t+I)

min(Jϕ2Kd(y, t′),

inf
t<t′′<t′

Jϕ1Kd(y, t′′)),

(4)

where O(p) denotes the set in which p is fulfilled. The signed
distance denoted by Distd is defined as

Distd(y,O) :=

{
− inf{d(y, x) |x ∈ O} if y /∈ O
inf{d(y, x) |x ∈ X \ O} if y ∈ O,

(5)
where d(y, x) is typically defined as the Euclidean distance
for continuous systems:

d(y, x) = ||y − x||2. (6)

Consequently, (2) can be defined as a minimization problem:

min
x0∈X0,u:[0,T ]→U

JϕKd(y(x0,u), t). (7)
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Fig. 1. Falsification-based RARL framework. The RL agent and environ-
ment are regarded as the black box system Σ. Falsification model serves
as the adversary, which provides input sets x0 and u for the environment
such that the system trajectory falsifies MTL specifications. The RL agent
is trained further under the falsified environment.

The cross-entropy method combines piecewise-uniform
and Gaussian distributions to approximate the underlying
distribution of the robustness value in (3) over the set
X0×U [26]. The proposed distribution is denoted by pθ with
parameter θ, while the unknown real distribution is denoted
by q. The distance between the two distributions is measured
using the Kullback-Leibler divergence [36]:

D(q, pθ) =

∫
X0×U

log

(
q(ξ)

pθ(ξ)

)
q(ξ) dξ, (8)

where ξ ∈ X0×U . Since the actual distribution q is unknown,
D(q, pθ) is estimated using Ns sampled data points, which
are chosen by the current approximation pθ. The samples are
sorted through their robustness values, and the m least robust
samples are considered, with m � Ns. Then, parameter
θ is updated by minimizing the divergence D(q, pθ) over
m data samples. Moreover, this procedure iterates until the
divergence converges to a threshold. Afterward, the initial
conditions and input sequences are sampled based on the
converged distribution pθ.

In this study, we consider an autonomous vehicle on a
highway with two safety requirements: the agent is not al-
lowed to collide with the leading vehicle or to drive backward
on the highway at all times. Therefore, we formulate these
requirements as follows:

G(¬ϕcollision ∧ ¬ϕreverse). (9)

Note that the proposed method can be directly applied to
more complicated specifications containing temporal oper-
ators, such as until and eventually. In the future, we will
integrate more traffic rules in the system requirements as
proposed in [37]–[41].

B. Falsification-Based RARL

Figure 1 depicts our framework of falsification-based
RARL, and Algorithm 1 presents our approach in detail.
We formulate our RL problem as a Markov decision process
(MDP) defined by a 5-tuple (S,A, P,R, γ), where S denotes
the state space, A denotes the action space, P denotes the
state transition probability, R denotes the expected reward
signal, and γ ∈ [0, 1] denotes the discount factor. Further,

the left part of Fig. 1 describes the learning process of the
RL policy. The agent acts on the environment, followed by
updating its state and reward. Our experiments reveal that
the policy converges slower if the adversary interferes too
early, as was also observed in [13]. Therefore, as shown in
Algorithm 1 line 2-8, we first train the agent for tf time
steps without an adversary (see Fig. 3 and Fig. 4). Next,
we regard our trained model and the environment as a black
box system Σ. As illustrated in the right part of Fig. 1, we
employ the cross-entropy method to obtain initial conditions
and input sequences for the environment (the behavior of
other vehicles) under which the agent violates our MTL
specification (9). We initialize our environment with the
initial conditions, change the behavior based on the new input
sequences, and train the policy further in the new adversarial
environment (line 13). This procedure is repeated until the
policy converges to zero violations.

Algorithm 1: Falsification-Based RARL
Input: Training steps T ; environment E; number of

actors na; time steps each actor runs at each
iteration ta; MTL specification ϕ; time step
to start falsification tf ; number of falsification
iterations nf

Initialize: Parameters of policy and value network φ0
Result: Trained policy and value network φ

1 while t < T do
2 for actor = 1, 2, ..., na do
3 Run policy φold in E for ta time steps ;
4 Compute advantage estimates Â1, ..., Âta

(10);
5 end
6 Optimize surrogate LCLIP+VF (11) wrt. φ with

batch size nata ;
7 φold ← φ ;
8 t = t+ nata ;
9 if t > tf then

10 Initialize falsifier parameter θ0 ;
11 for iter = 1, 2, ..., nf do
12 Sample input conditions x0,u from pθold ;
13 Initialize new environment Eiter with x0,

change the behavior of Eiter with u ;
14 Collect trajectories y in Eiter with agent

φold and evaluate robustness value
according to (3) ;

15 Estimate (8) with y and minimize (8) wrt.
θ ;

16 θold ← θ ;
17 end
18 E ← E(x0,u) ;
19 end
20 end

We choose proximal policy optimization (PPO) [42] to
optimize the policy network due to its superior performance
in continuous control problems when compared with other



state-of-the-art approaches. To reduce variance, we use an
actor-critic architecture [43] to approximate both the policy
and the value function with neural networks. Additionally, we
estimate the advantage function Ât using a general advantage
estimator (GAE) [44] as follows:

Ât = δt + (γλ)δt+1 + ...+ ...+ (γλ)T−t+1δT−1,

with δt = rt + γV (st+1)− V (st),
(10)

where λ ∈ [0, 1] denotes a discount factor of the advantage
estimator and makes a compromise between variance and
bias. The objective function of PPO is defined as follows:

LCLIP+VF(φ) = Êt
[
LCLIP
t (φ)− cLVF

t (φ)
]
,with (11a)

LCLIP(φ) = Êt
[
min(rt(φ)Ât, clip(rt(φ), 1− ε, 1 + ε)Ât)

]
(11b)

LVF
t (φ) = (Vφ(st)− V targ

t )2, (11c)

where φ denotes the parameters of the policy and value
network, the probability ratio is defined by rt(φ) =
πφ(at|st)
πφold

(at|st)
, πφold

denotes the old policy before the update,

c and ε are hyper-parameters, Vφ denotes the estimated value
function, V targ

t is the target value function collected through
Monte-Carlo simulations, clip is an operator for limiting the
operand in a given range, and Êt[...] denotes the empirical
average over a finite batch of samples.

IV. EXPERIMENTS

We evaluate our approach on two systems. The first one is
a braking assistance (BA) system of an autonomous vehicle
applied to avoid rear-end collisions and driving reversely on a
highway, while the second one is an adaptive cruise control
(ACC) system that keeps a safe distance from the leading
vehicle and follows the desired velocity. The two systems
are implemented in the same traffic simulator with different
reward functions, which are described in Section IV-B. To
fairly evaluate the performance of our approach, we train
each system in three environments: a baseline environment
without an adversarial model, an adversarial environment
with an RL agent as an adversary, and an adversarial environ-
ment with an adversary using our falsification method. The
adversarial RL agent in the second environment is trained by
utilizing RARL [11]. Moreover, because RARARL [13] was
proposed to solve discrete action space problem and cannot
be directly applied to problems with a continuous action
space, we choose RARL over the more recent RARARL to
train the adversarial RL agent. Following [11], we call the
policy that controls the ego vehicle protagonist.

A. Dataset

In the adversarial environments, the behavior of the lead-
ing vehicle is altered by applying the falsification method
or an adversarial RL agent. The baseline environment could
be achieved by utilizing either rule-based driver models,
such as the intelligent driver model (IDM) [45], or real
traffic data. A key limitation of rule-based driver models is
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Fig. 2. Frequency histogram of the length of lane-following trajectories in
HighD dataset [46].

their homogeneity. The policy could easily overfit to react
only to a particular behavior such that it fails to generalize,
while driving behaviors from real traffic are more diverse.
Therefore, we choose the recently published highway drone
(HighD) dataset of naturalistic vehicle trajectories on Ger-
man highways [46].

HighD recorded 16.5 h of video at six locations using a
drone and it extracted over 45 000 km of vehicle trajectories
at 25 Hz using computer vision algorithms. Since the longitu-
dinal driving behavior of a lane-changing vehicle differs from
that of a lane-following vehicle, we filter out the trajectories
of all lane-changing vehicles so that 97 184 lane-following
trajectories remain. As depicted in Fig. 2, the frequency
histogram demonstrated the distribution of the total length
of these trajectories. To avoid overfitting, each trajectory
should be used at most once during training. In addition,
the original traffic scenarios cover a lane of 420 m with a
median duration of 13.6 s for each vehicle. In this setting,
the ego vehicle is less likely to encounter a critical situation.
Therefore, we extend the lane length to 600 m and the total
time of a scenario to 20 s, i.e., 500 time steps. Therefore,
to obtain sufficient trajectories, we select the longitudinal
acceleration signals of lane-following trajectories with total
time step L ≥ 250, cut signals to 250 time steps, and append
the signals with reversely duplicated signals. In all, we obtain
93 454 trajectories and separate them into 70 % and 30 %
trajectories for training and testing, respectively.

B. Environment

We set up a driving simulator based on the CommonRoad
benchmark suite [47] and OpenAI Gym [48]. Since the goal
of the agent is to learn the longitudinal driving behavior,
our simulator contains only a straight lane of 600 m. An
episode terminates if the leading vehicle reaches the end of
the lane, the maximal time step 500 is reached, a collision
happens, or the ego vehicle drives in reverse. Both vehicles
are driven based on a point-mass model, whose input is
acceleration, which is sampled from the policy network. To
ensure that the scenario is solvable, the leading vehicle is
initially at least as far away from the ego vehicle as the
safe distance. We assume that both vehicles have the same
maximum deceleration amax = 10 m/s2. Then, the safe



distance is computed based on [49] as follows:

ssafe =
1

2amax
(v2f − v2l ) + vfδ, (12)

where vf and vl denote the velocities of the following and
leading vehicles, respectively, and δ is the reaction delay
of the following vehicle. As assumed by [49], we utilize
δ = 0.3 s for autonomous vehicles.

Without loss of generality, the initial position of the ego
vehicle is fixed at sego = 10 m, whereas the initial position
of the leading vehicle is either randomly sampled within
the range [sego + ssafe, sego + ssafe + 40] or calculated by
applying the falsification tool. The acceleration and initial
velocity of the leading vehicle are either extracted from the
selected HighD trajectories, or computed by utilizing the
adversaries, e.g., in (7), x0 corresponds to the initial position
and velocity of the leading vehicle, and u corresponds to the
acceleration of the leading vehicle.

Since maintaining a safe distance from the leading vehicle
is crucial for avoiding collision, the feature vector of the
policy networks should provide all the necessary information
to calculate the safe distance in (12). Thus, we choose the
feature vector for both systems as presented in Tab. I.

The reward function of the protagonist of the BA system
is defined as follows:

rBA =

{
−1, if agent drives reversely or collision happens
0, otherwise.

(13)
The reward function of the protagonist of the ACC system
is defined as follows:

rACC =


−1, if agent drives reversely or collision happens

−0.1 exp
(
−5 s
ssafe

)
, if s < ssafe

−0.05 exp
(
−5 vego
vleading

)
, if vego < vleading

0, otherwise.
(14)

The first and last items are the same as in rBA. Additionally,
two terms are added: the second term penalizes a violation
of the safe distance using a nonlinear function that increases
the penalization as the ego vehicle gets closer to the leading
vehicle; the third term penalizes the ego vehicle for driving
slower than the leading vehicle if the distance is greater than
the safe distance. Note that the coefficients in (13) and (14)
are selected through a grid search. The nonlinear functions
in the second and third terms in (14) significantly increase
the performance of the agent.

The goal of the adversarial policy is to minimize the
reward of the protagonist. Therefore, we choose radv =
−rBA and radv = −rACC as the reward functions of the
adversarial policies for the BA and ACC systems.

C. Baseline Model

As mentioned in Section III-B, we train our policies
and value functions by utilizing PPO [42] and an actor-
critic algorithm [43]. In particular, we use a shared network
design to share the features between the policy and the

TABLE I
FEATURES USED BY POLICY NETWORK

Feature Units Description

s m distance to leading vehicle
vego − vleading m/s relative velocity to leading vehicle
vego m/s velocity of ego vehicle
aleading m/s2 acceleration of leading vehicle
aego m/s2 acceleration of ego vehicle

value functions. Moreover, we build our models based on
the implementation of OpenAI Baselines [50]. Since our goal
is to compare all methods with the same hyper-parameters,
we did not perform a hyper-parameter optimization for each
method. We instead utilized the default hyper-parameters that
the OpenAI Baselines [50] provides. The shared policy and
value network has two hidden layers with 64 neurons each
and tanh as its activation function. The model is optimized
using Adam optimizer [51] with a learning rate of 0.0003
and a batch size of 128. In (10), the discount factor of the
advantage estimator is λ = 0.95.

In all conducted experiments, we first train the protagonist
policy without the adversary for 200,000 training steps to
allow it to learn basic skills as proposed in [13]. In the
RL adversarial environment, we update the parameters of
the protagonist θµ to maximize rBA or rACC for Nµ = 10
iterations, while the parameters of the adversary θν are kept
constant. Then, to maximize radv, we keep θµ constant and
update θν for Nν = 1 iteration. Here, Nµ and Nν are
empirically chosen. This process iterates until both policies
converge. In the falsification adversarial environment, we
apply S-Taliro [52], which is a MATLAB toolbox for MTL
falsification for hybrid systems, to falsify the protagonist
during training. S-Taliro is called every 10 iterations to
compute 10 acceleration traces as well as initial positions and
velocities for the leading vehicle, in which the protagonist
falsifies the given specification (9). To train the policy further,
the computed traces were randomly picked by the simulator.
For the rest of this paper, we call the baseline model PPO, the
policy model trained with an RL adversarial agent RARL,
and the policy model trained with our method FRARL.

D. Evaluation

During the training phase, policies are set to be stochastic
to encourage exploration, whereas during the evaluation and
falsification phases, deterministic policies are used. To fairly
compare the robustness of the three models, 10 policies with
different random seeds are trained for each method. We
evaluate the learning progress of all models in two groups of
test scenarios, namely the HighD and random test scenarios,
where the acceleration of the leading vehicle is randomly
sampled in a given range. Note that we used random test
scenarios instead of the adversarial or falsified scenarios
because the agent is destined to encounter low reward in
the adversarial and falsified scenarios.

We regard a model as robust if it satisfies the safety
specification (9) in unseen scenarios, i.e., the HighD and
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(a) Episode reward and safe distance violation curves on the HighD testing scenarios of the braking
assistant system.
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(b) Episode reward and safe distance violation curves on the HighD testing scenarios of the adaptive
cruise control system.

Fig. 3. The learning curves of episode reward and number of safe distance violations on the HighD test scenarios of the BA and ACC system trained
using PPO, RARL, and FRARL. For both systems, FRARL showed slightly higher episode reward and much less safe distance violations. In addition, for
the BA system, FRARL converged to a zero reward at half of the training steps. Furthermore, FRARL had a lower variance for the episode reward and
safe distance violations.

TABLE II
AVERAGE RATE OF UNSAFE BEHAVIORS OVER 28 037 HIGHD TEST

SCENARIOS

BA ACC
Violation Reverse Collision Reverse Collision

PPO 0.34% 4.59% 0.005% 0.24%
RARL 0.009% 2.70% 0 0.17%
FRARL 0 0.015% 0 0

random test scenarios. To analyze the safety of the behavior
of the agent, we count the number of time steps in which
the agent violates the safe distance to the leading vehicle.
Figures 3 and 4 depict the episode reward and number of safe
distance violations of the BA and ACC systems trained using
PPO, RARL, and FRARL in the random and HighD test
scenarios, respectively. For both systems, FRARL showed
slightly higher episode reward and much less safe distance
violations. In addition, for the BA system, FRARL converged
to a zero reward at half of the training steps. Furthermore,
FRARL had a lower variance for the episode reward and
safe distance violations. It also showed more advantage on
random than on HighD test scenarios, indicating that training
in a falsified environment improves the ability of an RL agent
to generalize to unknown scenarios.

To further address the robustness of the trained models,
we evaluate all models on 28 037 HighD and random test

TABLE III
AVERAGE RATE OF UNSAFE BEHAVIORS OVER 28 037 RANDOM TEST

SCENARIOS

BA ACC
Violation Reverse Collision Reverse Collision

PPO 0.40% 6.05% 0.028% 0.33%
RARL 0.026% 3.59% 0.013% 0.26%
FRARL 0.0018% 0.025% 0 0

scenarios and show the average rate of reverse driving
and collisions in Tabs. II and III, respectively. For both
systems on both test scenarios, FRARL achieved the lowest
rate of collisions and reverse driving. FRARL outperformed
RARL because an adversarial RL agent seeks scenarios in
which the reward of the policy stays low but not necessarily
safety-critical scenarios. Thus, after a policy converges to a
good behavior, a further increase in safety becomes much
more difficult for RARL. Our falsification method instead
optimizes the scenarios until safety-critical scenarios are
obtained. Therefore, the policies trained in safety-critical
scenarios behave much safer than those classically trained.

V. CONCLUSIONS

We presented a framework for combining RL with safety
falsification methods, which served as an adversarial RL,
to improve the robustness of trained policies. By formulat-
ing safety requirements in metric temporal logics (MTLs),
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(a) Episode reward and safe distance violation curves on random testing scenarios of the braking
assistant system.
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(b) Episode reward and safe distance violation curves on random testing scenarios of the adaptive
cruise control system.

Fig. 4. The learning curves of episode reward and number of safe distance violations on the random test scenarios of the BA and ACC system trained
using PPO, RARL, and FRARL. FRARL showed more advantage on random than on HighD scenarios, indicating that training in a falsified environment
improves the ability of an RL agent to generalize to unknown scenarios.

we spared ourselves the trouble of handcrafting a reward
function for the adversary. For BA and ACC systems, we
demonstrated that the policies trained using our approach
satisfy the safety specification much better in test scenarios
and thus are more robust. In the future, we will extend
our experiments to more complex driving scenarios, such
as urban scenarios. Further, we will integrate traffic rules in
our MTL specifications.
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