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Abstract—In this paper, we propose Ensemble Learning models
to identify factors contributing to preterm birth. Our work
leverages a rich dataset collected by a NIEHS P42 Center that
is trying to identify the dominant factors responsible for the
high rate of premature births in northern Puerto Rico. We
investigate analytical models addressing two major challenges
present in the dataset: 1) the significant amount of incomplete
data in the dataset, and 2) class imbalance in the dataset. First,
we leverage and compare two types of missing data imputation
methods: 1) mean-based and 2) similarity-based, increasing the
completeness of this dataset. Second, we propose a feature
selection and evaluation model based on using undersampling
with Ensemble Learning to address class imbalance present
in the dataset. We leverage and compare multiple Ensemble
Feature selection methods, including Complete Linear Aggre-
gation (CLA), Weighted Mean Aggregation (WMA), Feature
Occurrence Frequency (OFA) and Classification Accuracy Based
Aggregation (CAA). To further address missing data present
in each feature, we propose two novel methods: 1) Missing
Data Rate and Accuracy Based Aggregation (MAA), and 2)
Entropy and Accuracy Based Aggregation (EAA). Both proposed
models balance the degree of data variance introduced by the
missing data handling during the feature selection process,
while maintaining model performance. Our results show a 42%
improvement in sensitivity versus fallout over previous state-of-
the-art methods.

I. INTRODUCTION

Machine Learning (ML) techniques have shown significant
potential in facilitating public health research. Unlike conven-
tional data-driven statistics and analytics in the public health
domain, ML can discover hidden patterns and knowledge in
large amounts of data, significantly facilitating the research
process. In recent years, public health research institutes have
invested a vast amount of effort on: i) increasing the availabil-
ity of research data, and ii) investigating and building accurate
and reliable analytical models with ML and AI algorithms [1].

Although ML algorithms provide a rich collection of candi-
date methods, building a reliable ML-based analytical model
can be challenging. For instance, ML algorithms provide a
range of performance and accuracy based on the characteristics
of the input dataset. Selecting the right ML algorithm requires
a thorough understanding of the characteristics of the given
dataset. After building the analytical model, we can apply the
same model to all datasets with similar characteristics.

We have developed an analytical model that can identify
the key factors tied to preterm birth. Our work is informed
through access to a rich dataset from an National Institute for
Environmental Health Sciences (NIEHS) P42 Center. Unfor-
tunately, analyzing this dataset presents two major challenges.
First, given the nature of the data collected, we encounter
a significant number of missing data entries in a variety of
fields, resulting in incomplete records. Second, given that the
dataset includes a limited number of preterm birth outcomes
(anomalies), the dataset is highly imbalanced in terms of
class distribution, where the number of negative samples (term
births) is several times larger than the number of positive sam-
ples (preterm births). If we attempt to use standard algorithms
on this data, the outcome imbalance will clearly bias our
results, misleading researchers, and resulting in poor model
performance.

In this paper, we explore analytical models that address
these two challenges present in the dataset. First, to impute the
missing data, we leverage and compare two types of missing
data imputation methods, i.e., mean-based and similarity-based
algorithms. Next, we propose a model built using under-
sampling with ensemble learning [2], incorporating Decision
Trees [3] and Recursive Feature Elimination (RFE) [4] to
rank and select features. We also leverage multiple com-
monly used ensemble feature selection methods, including
Complete Linear Aggregation (CLA), Weighted Mean Aggre-
gation (WMA), Feature Occurrence Frequency (OFA), and
Classification Accuracy Based Aggregation (CAA) [5]. As
a further step, to address the high variance introduced by
missing data handling, we propose two novel methods: 1)
Missing Data Rate and Accuracy Based Aggregation (MAA)
and 2) Entropy and Accuracy Based Aggregation (EAA), which
are both based on CAA. The former leverages the missing
data rate of each feature, selecting features that have a lower
degree of missing data. The latter leverages the information
entropy change of each feature after applying missing data
handling, selecting features that preserve the original entropy.
We evaluate and compare these two methods, and provide
insights when leveraging them during feature selection for the
dataset. We use both accuracy and Area Under the ROC Curve
(AUC) metrics to evaluate the performance, considering that
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the data is highly imbalanced in terms of the outcome class
distribution. The experiment results show a 42% improvement
in AUC over previous state-of-the-art results on the same data,
which pursued a hybrid approach [6].

II. RELATED WORK

The use of Machine Learning analytics in public and
environmental health research has attracted global attention.
Auffray et al. evaluate the potential benefits of leveraging Big
Data techniques for public health in Europe [7]. Chen et al.
present the work of leveraging cognitive computing to address
Big Data challenges in medical research [1]. Zheng et al.
present a study of air pollution using Big Data techniques [8].
Beam et al. elaborate the connections between Big Data
technologies and health studies, clarifying their roles in each
research domain [9].

Other than general work related to Big Data analytics, our
work here focuses on addressing challenges of missing data
and outcome class imbalance. Many previous studies have
considered these issues. For missing data imputation, multiple
techniques are available, including mean substitution, multiple
imputation and full information maximum likelihood, and have
been applied to survey and clinical data [10]–[14]. There are
multiple techniques for tackling class imbalance as well. Prior
studies adopted using a Decision Tree combined with AUC
as training criterion to select features with the best AUC per-
formance [6]. SMOTEBoost [15] and RUSBoost [16] are two
similar approaches leveraging oversampling and ensemble of
weak learners that are commonly used in boosting. Balanced
random forest [17] and EasyEnsemble [2], on the other hand,
leverage undersampling and ensemble learning, on which our
work is based.

Ensemble feature selection methods have long been inves-
tigated and applied in bioinformatics, especially given their
robustness when identifying biomarkers. Brahim et al. analyze
and compare multiple commonly used ensemble feature selec-
tion methods [5]. Abeel et al. propose two aggregation meth-
ods, Complete Linear Aggregation (CLA) and Weighted Mean
Aggregation (WMA) [18]. The former aggregates the complete
feature rank lists across each instance of ensemble and selects
a set of features with the highest ranks. The latter uses the
mean of the AUC as a weight for ranking. Chan et al. propose
classification Accuracy Based Aggregation (CAA) [19]. In this
paper, we investigate these various ways for performing feature
selection from ensemble methods. Furthermore, since our data
has a high percentage of missing data entries, we introduced
a novel strategy for taking data missing rate into account (via
the effect of data imputation) in ensemble feature selection.

The previous work relied on correlation, SVMs and
PCA [18], [19] to select features. In our work we used
Decision Trees because they have shown to produce superior
performance on this specific dataset [6], and intrinsically
performs feature selection.

III. BACKGROUND

A. The NIEHS Dataset Targeting Preterm Birth

The NIEHS has established a Center to study environmental
links to the high preterm birth rates observed in northern
Puerto Rico. Over an 8 year period, the Center has collected
both environmental data (e.g., water samples, air samples,
product use surveys) and personal health data (e.g., chemicals
in blood, urine, and placenta, health records, birth outcomes)
for a cohort of over 2000 expectant mothers in this region,
as well as the birth outcome (i.e., preterm birth or term
birth) [20]. The dataset consists of a wide range of sources,
including:

• Human subjects information - medical history, reproduc-
tive health records, product use data surveys, and birth
outcomes

• Biological samples - blood, urine, hair and placenta
samples

• Environmental samples and measurements - soil samples,
well and tap water samples, historical Environmental
Protection Agency (EPA) data, soil samples, superfund
site data

The Center has made their data available to the broader
research community. We have gained access to this large
repository of environmental health data records, enabling us
to explore analytical models to identify linkages between a
large number of potential contributing factors and the high
premature birth rate. We consider one subset of data in this
paper, i.e., the human subject data. It contains forms capturing
demographics and lifestyle information, as well as medical
and health records. The dataset includes many key factors
that can help guide domain-specific research. Additionally,
the collection procedure for the human subject data is carried
out in four phases chronically, associated with four visits
according to different stages of the mother’s pregnancy. The
data subset analyzed in this paper represents information
collected at different pregnancy stages, defined as visit 1 (V1)
to visit (V3), which correspond to the trimesters, and with visit
(V4) included as a postpartum collection.

IV. MISSING DATA IMPUTATION

A. Data Preprocessing Model

Missing data entries pose significant challenges to machine
learning algorithms. We developed a series of tools to prepro-
cess the data stored in the database, generating valid inputs
that can be readily consumed by the analytical model. Our
tools provide an end-to-end processing pipeline.

Specifically, the tool chain consists of components including
a form extractor, data filter, missing data handler and merger.
Figure 1 shows the workflow of our tool chain. First, the
form extractor obtains the selected forms for a set of selected
patient IDs which correspond to pregnant mothers. Second,
data is fed to the data filter and missing data handler. The data
filter takes care of two things: 1) filtering out text-based data
entries, and 2) filtering out features that have less than P% of
the participants completing the field, and filtering out patients
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Fig. 1. Analytical tool chain for data preprocessing.

having less than the P% of their feature values completed, in
which, P% is a configurable parameter, representing a data
completion rate threshold. After data filtering, each form only
contains numerical and categorical data values, and at least
P% valid data values on both a feature basis and participant
basis. The missing data handler implements the means-based
or similarity-based imputation algorithm.

B. Missing Data Imputation Algorithm

To address missing data handling, we leverage two
commonly-used missing data imputation methods: 1) mean-
based imputation and 2) similarity-based imputations [10],
[11]. Applying mean-based algorithm is straightforward. The
missing data entries in each feature are replaced with the mean
value of the corresponding feature. For the categorical data,
we replace the missing data entries using the category closest
to the mean value. But applying a similarity-based imputation
is challenging on the given dataset. The dataset contains mixed
data types (i.e., textual, numerical and categorical data) ,
restricting the use of standard data imputation methods which
are commonly used when targeting a specific type of data.
Alternatively, we propose a customized algorithm that can
handle both categorical and numerical data, based on K-nearest
Neighbor Imputation [21]. To calculate the similarity, we use
the following equation:

Sij =
~xi · ~yj
N

(1)

where Sij stands for the similarity between sample vectors xi
and yj . The · denotes a dot product operation and N denotes
the number of features involved in the dot product operation.
Note that the numerical data is normalized and the categorical
data is transformed to a one-hot encoding format.

V. UNDERSAMPLING ENSEMBLE FEATURE SELECTION

A. Undersampling Ensemble Learning

Undersampling forcibly balances positive and negative sam-
ples to address the class imbalance issue in a straightforward
manner. In a binary class problem, an instance of undersam-
pled training data can be constructed with equal-sized samples
from both the majority and minority classes. For example, one
dataset contains two classes, positive and negative outcomes.
The positive samples are assigned to subset P and the negative
samples are assigned to subset N . When the class distribution
is highly imbalanced, the size of P (|P |) is several times
smaller than the size of N (|N |). The undersampling randomly
selects samples from N to construct a subset N̄ so that
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Fig. 2. Undersampling ensemble learning model for feature selection and
evaluation.

|P | = |N̄ |, and then combines them into a single training
data instance, i.e., P

⋃
N̄ .

Although the new instance of the training data is balanced,
we lose a lot of information from the majority class. Solely
relying on this training data can lead to poor model perfor-
mance. To deal with this problem, a form of ensemble learning
can be applied using multiple instances of training data in a
set, i.e. {P

⋃
N̄0, P

⋃
N̄1, ..., P

⋃
N̄n−1}, in which each N̄i

is a subset of the samples from the majority class obtained
through undersampling, where n is the number of ways.

In our proposed model, which is based on undersampling
with ensemble learning, we elect to incorporate Decision
Trees [3] as the base classifier and feature selector, considering
that it can serve as both a feature ranker and a classifier.

Figure 2 shows the proposed analytical model leveraging
undersampling ensemble learning with Decision Trees. The
model consists of three steps: i) feature selection, ii) data
selection and iii) performance evaluation. In the feature se-
lection step, an ensemble of training data sets are produced
by applying the undersampling procedure described above.
Each training set will be used to build a Decision Tree to
rank the entire feature set during the training process. Then
an ensemble feature selection method (aggregation algorithm)
is applied to produce the final selected feature set, according to
a configurable number of features. We will explore a collection
of commonly used ensemble feature selection methods in
the next section. In the data selection step, a subset of
data is selected according to the selected features. During
performance evaluation, we follow a similar process. The only
difference is that the Decision Tree built using each training
data instance is used for prediction instead of ranking features.
The classification results from each ensemble instance will be
fed to an ensemble classifier to make a final prediction. In
this work, we use a simple majority voting as the ensemble
classifier. Based on the prediction, we calculate performance
metrics such as accuracy and AUC.

B. Ensemble Feature Selection

In this section, we describe four commonly-used ensemble
feature selection methods used as the aggregation algorithms
shown in figure 2.

Complete Linear Aggregation (CLA) and Weighted Mean
Aggregation (WMA) [18] are representative of the class of
algorithms that perform aggregation of list rankings, using the
numbers ranging from 1 to the number of total features. Here,
1 represents the highest rank. CLA simply sums up every list



ranking to obtain the final ranking results for every feature.
Finally, a number of features with highest ranks (smallest
scores) are selected. WMA is an advanced version of CLA,
treating model performance metrics of each feature selector as
weights applied to feature ranks. Before summing up ranks,
each rank will be weighted by a performance metric from the
associated feature selector.

In our proposed model, Recursive Feature Elimination
(RFE) is used to generate ranks based on the feature ratings
from the Sklearn Decision Tree [4]. For WMA, we use
1−AUC as the weight for each rank. The AUC is obtained
through a 10-fold cross validation using the training data for
each ensemble instance.

Feature Occurrence Frequency (OFA) and Classification
Accuracy Based Aggregation (CAA) [5] represent a class of
algorithms that count the occurrence of each selected feature.
OFA is the most straightforward method, only counting the
occurrence of selected features from each ensemble instance.
CAA takes one step further, weighing the counts for each
occurrence with an associated classification accuracy. When
selecting features, the ones with the largest score (weighted
count of occurrence in CAA) are selected. In our proposed
model, for each feature selector, we select features with only
positive ratings using a Decision Tree and validate the AUC
and accuracy using 10-fold cross validation.

C. Missing Data Rate/Entropy And Accuracy Based Aggrega-
tion (MAA/EAA)

Next, we present two novel ensemble-based feature selec-
tion methods: 1) Missing Data Rate And Accuracy Based
Aggregation (MAA) and 2) Entropy And Accuracy Based
Aggregation (EAA). Both methods are based on CAA, using
the frequency of occurrence as the score. In addition to
leveraging classification accuracy, our proposed approaches
also consider mitigating the impact of the potential increase in
variance introduced by data imputation when ranking features.
MAA uses the missing data rate of each feature to adjust
the weight, whereas EAA uses the change in entropy for
each feature, computed before and after applying missing data
handling. Equations 2 and 3 show the adjusted weights for
MAA and EAA, respectively.

Accuracy

(Missing rate+ α)β
(2)

Accuracy

(4Entropy + α)β
(3)

In the above two equations, Missing rate is the miss-
ing data rate for the associated features and 4Entropy is
the information entropy change of the associated features,
as computed before and after applying missing data han-
dling. Accuracy is the classification accuracy, and the α
and β are hyber-parameters to adjust the importance of the
Missing rate and 4Entropy.

The implications of using MAA and EAA are to adjust
the classification accuracy based on the magnitude of data

TABLE I
DETAILS OF DATA.

Data completion rate threshold
50% 60% 70% 80%

Number of samples 667 647 626 598
Number of positive samples 66 58 53 51
Number of negative samples 601 589 573 547

Number of features 1011 975 954 928

TABLE II
PARAMETERS AND ELEMENTS FOR THE UNDERSAMPLING ENSEMBLE

LEARNING MODEL.

Decision Tree CART [22]

Ensemble Feature Selection Methods CLA, WMA, OFA, CAA
MAA, EAA (α : 1, 0.5;β : 2)

Performance metrics Accuracy, AUC
Number of ensemble ways 91

Number of selected features 20

variance, represented by the missing data rate and information
entropy change for MAA and EAA, respectively. Instead of
estimating the actual value of the data variance, we estimate
the magnitude of data variance based on two assumptions: 1)
features with a lower Missing rate will experience less data
variance after applying missing data handling, and 2) a small
4Entropy preserves the information entropy, leading to lower
data variance. MAA uses the Missing rate to select features
with a lower missing data rate. Based on equation 2, whenever
the missing data rate is high, the associated weight value
shrinks, reducing the overall contribution of the corresponding
feature. Likewise, EAA uses the 4Entropy, following the
same procedure.

MAA is a straightforward method to select the features
that exhibit low data variance. However, MAA also poten-
tially eliminates important features that have a relatively large
missing data rate, but small 4Entropy values. EAA, on the
other hand, focuses on using the change in information entropy
to adjust the classification accuracy, potentially being able to
select important features MAA ignores.

VI. EXPERIMENTS

A. Dataset Specifications

We generate a series of multi-dimensional datasets, selected
based on different data completion rate thresholds (50% to
80%, in steps of 10%), with participants (i.e., mothers) and
features selected across all visits (V1 to V4).

Table I lists the details of the datasets. As indicated in the
table, the dataset is highly imbalanced in terms of the outcome
class distribution. Almost 90% of the samples are negative
(i.e., term births) and only 10% are positive (i.e., preterm
birth).

B. Experimental Setup

Table II below lists the parameters and elements used to
construct the undersampling ensemble learning model.

As indicated in table II, we use CART from sklearn [4]
as the Decision Tree model in our proposed undersampling



TABLE III
PERFORMANCE OF CLA, WMA, OFA AND CAA, WITH MEAN-BASED

MISSING DATA IMPUTATION.

CLA WMA OFA CAA
Accuracy 0.72 0.75 0.76 0.79

AUC 0.68 0.61 0.68 0.71

TABLE IV
PERFORMANCE OF CLA, WMA, OFA AND CAA, WITH

SIMILARITY-BASED MISSING DATA IMPUTATION.

CLA WMA OFA CAA
Accuracy 0.41 0.38 0.73 0.74

AUC 0.57 0.52 0.69 0.71

ensemble learning model. We leverage and compare CLA,
WMA, OFA and CAA, as well as our proposed MAA and
EAA, and evaluate accuracy and compute the AUC. We use
an odd number as the ensemble way size so that we can easily
apply majority voting during the performance evaluation step
shown in figure 2. In addition, we found that an ensemble
way size larger than 91 produces negligible performance gains
in our experiments. Therefore, we select 91 as the ensemble
way size. We use the number of selected features reported in
previous studies that analyzed this same dataset [6] to provide
a fair comparison. We use 10-fold cross validation in the
performance evaluation step.

VII. RESULTS

In this section, we present results from our experiments. We
use AUC and classification accuracy as the major measures of
model performance.

Given the same experimental setup as used in a previous
study using the same dataset [6] (where only data from visits
V1 and V2 were evaluated), the undersampling ensemble
model combined with CAA produces a 30% improvement in
AUC over a hybrid approach, while achieving an accuracy of
72%. When using the dataset that combines all 4 visits, the
base line method [6] is equivalent to random guessing (the
number of samples is too small to apply the method explored
in previous work [6]). Given this behavior, we exclude this
option in our results. Using undersampling with ensemble
learning, on the other hand, overcomes this issue.

Tables III and IV list the AUC and accuracy of CLA, WMA,
OFA and CAA, while using both mean-based and similarity-
based missing data imputation methods. From the results, we
find that mean-based missing data imputation produces better
performance across all ensemble feature selection methods.
We see that CAA achieves the best performance in terms of
both accuracy and AUC. Considering that the hybrid approach
presented in prior work [6] produced results close to random
guessing (AUC was close to 50%), our proposed analytical
model that includes CAA can improve AUC by 42%, while
achieving a 79% accuracy, as seen in Table III.

Next, we present the results based on data selected across
different data completion rates. As CLA and WMA do not
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have as good performance as compared to OFA and CAA, we
only present the results from OFA, CAA, MAA and EAA,
with mean-based missing data imputation.

Figures 3 and 4 show the AUC and accuracy with ensemble
feature selection with OFA, CAA, MAA and EAA, while
varying the data completion rate from >= 50% to >= 80%, in
steps of 10%. From these results we can see that EAA has the
best performance. Both MAA and EAA have slightly better
performance than OFA and CAA. They are both effective in
selecting features, while improving evaluation performance.
Figures 5 and 6 show the average missing data rate and
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the change in information entropy of features selected by
OFA, CAA, MAA and EAA. From Figure 5, the feature
set selected by MAA presents a lower missing data rate as
compared to OFA and CAA. This is expected, as MAA adjusts
the classification accuracy using the missing data rate. EAA,
surprisingly, performs more effectively in selecting features
with a lower missing data rate, especially when the data
completion rate is larger than 70%. The feature set selected
by EAA, as expected, results in a lower 4Entropy, as shown
in Figure 6. From the results, MAA and EAA are found to
be more effective at providing low-variance feature selection,
as measured using the missing data rate and the 4Entropy,
respectively.

VIII. CONCLUSION

In this paper, we present an analytical model for identifying
potential key factors contributing to the high rates of preterm
birth in northern Puerto Rico, based on the dataset available
from the NIEHS P42 Center. We highlight the challenges of
analyzing a diverse dataset with class imbalance in the target
variable, as well as a high missing rate in predictors.

To address these issues, we propose an undersampling
ensemble learning approach leveraging many state-of-the-art
ensemble feature selection methods, including CLA, WMA,
OFA and CAA. We found that a undersampling ensemble
model equipped with CAA can achieve a 42% improvement
in AUC as compared to previous studies. We also propose
two novel feature selection methods, MAA and EAA, limiting
the variance introduced by missing data handling. With OFA
and CAA as a baseline, we evaluate MAA and EAA. Our
results show that MAA and EAA are effective at selecting
features with lower data variance, while providing slightly
better performance than CAA.
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