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Abstract—Motivated by the general robustness properties of
the 01 loss we propose a single hidden layer 01 loss neural
network trained with stochastic coordinate descent as a defense
against adversarial attacks in machine learning. One measure
of a model’s robustness is the minimum distortion required to
make the input adversarial. This can be approximated with
the Boundary Attack (Brendel et. al. 2018) and HopSkipJump
(Chen et. al. 2019) methods. We compare the minimum distortion
of the 01 loss network to the binarized neural network and
the standard sigmoid activation network with cross-entropy loss
all trained with and without Gaussian noise on the CIFAR10
benchmark binary classification between classes 0 and 1. Both
with and without noise training we find our 01 loss network
to have the largest adversarial distortion of the three models
by non-trivial margins. To further validate these results we
subject all models to substitute model black box attacks under
different distortion thresholds and find that the 01 loss network
is the hardest to attack across all distortions. At a distortion of
0.125 both sigmoid activated cross-entropy loss and binarized
networks have almost 0% accuracy on adversarial examples
whereas the 01 loss network is at 40%. Even though both
01 loss and the binarized network use sign activations their
training algorithms are different which in turn give different
solutions for robustness. Finally we compare our network to
simple convolutional models under substitute model black box
attacks and find their accuracies to be comparable. Our work
shows that the 01 loss network has the potential to defend
against black box adversarial attacks better than convex loss
and binarized networks.

Index Terms—adversarial attacks, transferability of adversar-
ial examples, 01 loss, stochastic coordinate descent, convolutional
neural networks, deep learning

I. INTRODUCTION

State of the art machine learning algorithms can achieve
high accuracies in classification tasks but misclassify minor
perturbations in the data known as as adversarial attacks [1]–
[5]. Adversarial examples have been shown to transfer across
models which makes it possible to perform transfer-based
(substitute model) black box attacks [6]. To counter adversarial
attacks many defense methods been proposed with adversarial
training being the most popular [7]. This is known to improve
robustness to adversarial examples but also tends to lower
accuracy on clean test data that has no perturbations [8], [9].
Many previously proposed defenses have also shown to be
vulnerable [4], [10], [11] thus leaving adversarial robustness
an open problem in machine learning.

The 01 loss is known to be more robust to outliers than
convex loss models [12]–[14]. In addition to being robust to
outliers the 01 loss is also robust to noise in the training
data [15], [16]. Under this loss minimizing the empirical risk
amounts to minimizing the empirical adversarial risk [17], [18]
with certain assumptions of noise. Convex losses also fail to
minimize the adversarial 01 loss on linear models [19].

Motivated by the above robustness properties of 01 loss
we propose a 01 loss dual layer neural network as a defense
against adversarial attacks. Computationally 01 loss presents
a considerable challenge because it is NP-hard to solve [20].
Previous attempts [13], [21]–[24] lack on-par test accuracy
with convex solvers and are slow and impractical for large
image benchmarks. However, a recent stochastic coordinate
descent method for linear 01 loss models [12] has shown to
attain comparable accuracies to state of the art linear solvers
like the support vector machine. Thus we extend the coordinate
descent as an optimizer to train our network.

We compare the adversarial robustness of our model to an
equivalent one that uses sigmoid activation and cross-entropy
loss. This is the standard activation and loss that are widely
used in neural networks today. We also compare our model
to the binarized neural network [25]–[27]. that also uses sign
activations like our model but it has two differences. First its
weights are also constrained to be binary +1 and -1, or 1 and
0 [25]–[27]. Second, it is trained with gradient descent by
approximating the sign activation whereas we take a direct
coordinate descent approach.

Measuring adversarial robustness is not trivial and several
best practices have been recommended [28]. We incorporate
several of them in our study. In particular we study (1)
the robustness of models to random Gaussian noise, (2) the
minimum distortion required to make a datapoint adversarial,
and (3) the accuracy of substitute model black box attacks. We
focus mainly on binary classification between classes 0 and 1
on the CIFAR10 image benchmark [29] where we make the
following findings.

• All models are more robust to Gaussian noise than
adversarial attacks, but our 01 loss network augmented
with Gaussian noise during training has a higher accuracy
on large distortions
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• The minimum distortion to make an image adversarial
is higher for our 01 loss network compared to the
standard sigmoid activated cross-entropy loss network
and binarized networks

• Substitute model black box attacks are far less effective
on our 01 loss network compared to the standard sig-
moid activated cross-entropy loss network and binarized
networks

• Compared to simple convolutional neural networks like
LeNet [30] our model (without convolutions) has higher
accuracies on adversarial examples from substitute model
black box attacks when the distortions are high.

II. METHODS

A. Background

The problem of determining the hyperplane with minimum
number of misclassifications in a binary classification problem
is known to be NP-hard [20]. In mainstream machine learning
literature this is called minimizing the 01 loss [31] given in
Objective 1,

1

2n
argmin

w,w0

∑
i

(1− sign(yi(wTxi + w0))) (1)

where w ∈ Rd, w0 ∈ R is our hyperplane, and xi ∈
Rd, yi ∈ {+1,−1}.∀i = 0...n − 1 are our training data.
Popular linear classifiers such as the linear support vector
machine, perceptron, and logistic regression [32] can be con-
sidered as convex approximations to this problem that yield
fast gradient descent solutions [14]. However, they are also
more sensitive to outliers than the 01 loss [12]–[14] and more
prone to mislabeled data than 01 loss [15]–[17].

B. A dual layer 01 loss neural network

We extend the 01 loss to a simple two layer neural network
with k hidden nodes and sign activation that we call the
MLP01 loss. This objective for binary classification can be
given as

1

2n
argmin

W,W0,w,w0

∑
i

(1− sign(yi(w
T (sign(WTxi +W0)) + w0)))

(2)
where W ∈ Rd×k, W0 ∈ Rk are the hidden layer param-

eters, w ∈ Rk, w0 ∈ R are the final layer node parameters,
xi ∈ Rd, yi ∈ {+1,−1}.∀i = 0...n− 1 are our training data,
and sign(v ∈ Rk) = (sign(v0), sign(v1), ..., sign(vk−1)).
While this is a straightforward model to define optimizing it
is a different story altogether. Optimizing even a single node
is NP-hard which makes optimizing this network much harder.

C. Stochastic coordinate descent for 01 loss

In Algorithm 1 we sketch our coordinate descent for our
01 loss network that is based upon earlier work [12]. We
initialize all parameters to random values from the Normal
distribution with mean 0 and variance 1. We then randomly
select a subset of the training data (known as a batch) and

Algorithm 1 Stochastic coordinate descent for two layer 01
loss network
Procedure:

1. Initialize all network weights W,w to random values from
the Normal distribution N(0, 1).
2. Set network thresholds W0 to the median projection
value on their corresponding weight vectors and w0 to the
projection value that minimizes our network objective.
while i < epochs do

1. Randomly sample a batch of data equally from each
class
2. Perform coordinate descent separately first on the final
node w and then a randomly selected hidden node u (a
random column from the hidden layer weight matrix W )

3. In the coordinate descent we randomly pick a set of
features and perform a single update to each one. For
each update we determine the threshold that optimizes
the 01 loss on the sampled data: we sort the projections
wTxi and pick the optimal middle value between each
consecutive pair in the projected values.
4. After making the best update we evaluate the 01 loss
on the full dataset and accept the change if it improves
the loss.

end while

perform the coordinate descent analog of a single step gradient
update in stochastic gradient descent [33].

When the gradient is known we step in its negative direction
by a factor of the learning rate: w = w − η∇(f) where f is
the objective. In our case since the gradient does not exist we
randomly select k features (set to 128 in our experiments),
modify the corresponding entries in w by the learning rate
(set to 0.17) one at a time, and accept the modification that
gives the largest decrease in the objective. Key to our search
is a heuristic to determine the optimal threshold each time we
modify an entry of w. In this heuristic we perform a linear
search on a subset of the projection wTxi and select w0 that
minimizes the objective.

In Figure 1 we show the effect of the batch size (as a
percentage of each class to ensure fair sampling) on a linear
01 loss search on CIFAR10 between classes 0 and 1. We see
that a batch size of 75% reaches a train accuracy of 80% faster
than the other batch sizes. Thus we use this batch size in all
our experiments going forward.

We also see that for this batch size the search flattens after
15 iterations (or epochs as given in the figure). We run 1000
iterations to ensure a deep search with an intent to maximize
test accuracy. The problem with our search described above
is that it will return different solutions depending upon the
initial starting point. To make it more stable we run it a 100
times from different random seeds and use the majority vote
for prediction. Full details of our training algorithms are in
the Supplementary Material.



Fig. 1. Train and test accuracy of our stochastic coordinate descent on
CIFAR10 class 0 vs 1 with different batch sizes (denoted as nrows).

D. Implementation, experimental platform, and image data

1) Implementation: We implement our 01 loss network
(MLP01) in Python and Pytorch [34], the sigmoid activated
cross-entropy loss network (MLP) in scikit-learn [35], and
binarized neural network (BNN) with the Larq software suite
https://github.com/larq/larq. We train MLP with stochastic gra-
dient descent that has a batch size of 200, momentum of 0.9,
and learning rate of 0.01. For BNN we use the approximate
sign activation [26] that has been shown to give higher test
accuracies than other variants and the original straight through
estimator [36].

2) Computational platform: We ran all experiments on Intel
Xeon 6142 2.6GHz CPUs and NVIDIA Titan RTX GPU
machines (for parallelizing multiple votes). Our MLP01 source
code, supplementary programs, and data are available from
https://github.com/zero-one-loss/mlp01.

3) Data: We experiment on the popular image benchmark
CIFAR10 [29] that has 32 × 32 color images with 50000
training and 10000 test. We extract data from classes 0 and
1 and experiment on binary classification between them. This
gives us a total of 10000 training and 1000 test examples. We
normalize each image by dividing each pixel value by 255.

III. RESULTS

We refer to our 01 loss neural network as MLP01, the
sigmoid activated cross-entropy loss network as MLP, and the
binarized network as BNN. We use one hidden layer of 20
nodes in all networks. For each model we run it a 100 times
with different random number generator seeds and return the
majority vote as the prediction.

In addition to training each model on the training data, we
also study three versions trained with augment Gaussian noise.
In the augmentation we take each datapoint x from the training
set and add Gaussian noise to it: x′ = x + N(0, σ) where
N(0, σ) is a vector of the same dimension as x and each
entry is selected from the Normal distribution with mean 0
and standard deviation σ.

We refer to the accuracy on the test data as clean data test
accuracy. An incorrectly classified adversarial example is con-
sidered a successful attack whereas a correctly classified ad-
versarial is a failed one. Thus when we refer to accuracy of ad-
versarial examples it is the same as 100−attacksuccessrate.
The lower the accuracy the more effective the attack.

A. Sensitivity to Gaussian noise

We start with accuracy of models trained without and with
noise on CIFAR10 class 0 vs. 1. In addition to evaluating
the accuracy of each model on clean test data, we add noise
to each test datapoint as x′ = x + N(0, σ) where N(0, σ)
is a vector of the same dimension as x and each entry
is selected from the Normal distribution with mean 0 and
standard deviation σ. We consider σ ranging from .004 to 1.
The lower bound is the minimum distance of 1

255 between two
pixels and 1 is the maximum distortion. If a pixel is negative
or above 1 after adding noise we clip it to 0 and 1 respectively.

In Figure 2 we see that noise does not affect the accuracy
of models trained without and with noise upto distortion
threshold of 0.125. After that all models begin to dip in
accuracy with MLP01 model trained without noise showing
the steepest descent. At the same time MLP01 trained with
noisy augmentation of σ = .2 (denoted as mlp01 ep2 in
Figure 2) is also most robust to high levels of noise.

Fig. 2. Accuracy of test data without and with random noise of different
random Gaussian distortions. In addition to models trained on clean training
data we consider two versions trained with augmented Gaussian noise with
distortion thresholds of 0.1 and 0.2 (denoted with ep1 and ep2 respectivelt).

B. Minimum adversarial distortion

Determining the minimum distortion to an image such that
it will fool a classifier is itself an NP-hard problem for
ReLu activated neural networks [37], [38] and tree ensemble
classifiers [39]. Even approximating the minimum distortion
for ReLu activated neural networks is NP-hard [40]. Recent
heuristics such as Boundary attack [5] and HopSkipJump
attack [41] attempt to find an adversarial example with the
minimum distance to the clean correctly classified version.

We use both methods to evaluate the minimum distortion of
all three models including their noise trained versions. Both

https://github.com/larq/larq
https://github.com/zero-one-loss/mlp01


methods can take long to finish with default parameters even
for a single example. For example for a single image BNN
takes 3 days on an exclusive CPU core. Thus we use all default
parameters except for maxiter that we set to 100 so that the
program finishes within our computing limitations. To confirm
that this does not severely affect the relative distortions we ran
both Boundary and HopSkipJump attacks with maxiter set to
10, 100, and 500 (which is the default) on a single image. We
found the relative distortions between MLP and MLP01 to be
the same across the three values.

Since both attack methods start with a random initialization
we run each of them 10 times for a single example on
each model and report the minimum value found. In Table I
we report these values for a single random test datapoint
from CIFAR10 classes 0 and 1 that is correctly classified by
all models. We see that the minimum distortion of MLP01
is much higher than both MLP and BNN by both attack
methods and under both L2 and L∞ norms. We also see that
HopSkipJump attack is more effective than Boundary attack
and finds a smaller distortion.

TABLE I
MINIMUM ADVERSARIAL DISTORTION OF A SINGLE RANDOM TEST IMAGE

L2 distance L∞ distance
BNN MLP MLP01 BNN MLP MLP01

Boundary 2.72 1.33 10.58 0.17 0.08 0.58
HopSkipJump 0.82 0.44 2.21 0.04 0.03 0.16

In Table II we report the HopSkipJump distortions for four
more randomly selected images from CIFAR10 classes 0 and
1 that are correctly classified. For the first image both have
comparable distortion but for the other three MLP01 is higher.

TABLE II
MINIMUM ADVERSARIAL DISTORTION GIVEN BY HOPSKIPJUMP OF FOUR

RANDOM CORRECTLY CLASSIFIED TEST IMAGES

L2 distance L∞ distance
MLP MLP01 MLP MLP01

Image1 .64 .52 .043 .041
Image2 .75 2.42 .06 .15
Image3 .88 1.12 .06 .09
Image4 1.15 4.86 .09 .28
Average .86 2.23 .063 0.14

Training our models with noise has an interesting effect on
the distortions. In Table III we see the minimum distortions
of models trained with Gaussian noise with distortions of 0.1
and 0.2 (as described earlier). We report the distortions for the
same image as in Table I. As we increase the noise threshold
the MLP01 model’s minimum distortion also rises whereas the
other two models are stable or fluctuate.

We make similar observations between MLP and MLP01
on four random examples as shown in Table IV. This suggests
that perhaps training MLP01 with augmented noise examples
increases their robustness.

C. Substitute model black box attacks
As further verification of the above distortions we perform

substitute model black box attacks on all three models. In

TABLE III
MINIMUM ADVERSARIAL DISTORTION OF THE SINGLE TEST IMAGE FROM

TABLE I AS GIVEN BY HOPSKIPJUMP. MODELS ARE TRAINED WITH
GAUSSIAN NOISE OF INCREASING DISTORTION SHOWN BY ε.

L2 distance L∞ distance
ε = .004 ε = .1 ε = .2 ε = .004 ε = .1 ε = .2

BNN .51 .47 .53 .025 .021 .025
MLP .39 .35 .36 .023 .021 .022
MLP01 2.52 2.61 3.32 .196 .215 .22

TABLE IV
MINIMUM ADVERSARIAL DISTORTION OF FOUR RANDOM CORRECTLY

CLASSIFIED TEST IMAGES FROM TABLE II AS GIVEN BY HOPSKIPJUMP.
MODELS ARE TRAINED WITH GAUSSIAN NOISE OF INCREASING

DISTORTION SHOWN BY ε.

L2 distance
MLP MLP01

ε = .004 ε = .1 ε = .2 ε = .004 ε = .1 ε = .2
Image1 .58 .47 .47 .69 .61 .47
Image2 .6 .52 .54 2.65 2.89 2.51
Image3 .72 .67 .66 1.92 2.72 4.03
Image4 .97 .85 .84 4.73 4.08 5.17
Average .72 63 .63 2.5 2.58 3.05

L∞ distance
MLP MLP01

ε = .004 ε = .1 ε = .2 ε = .004 ε = .1 ε = .2
Image1 .04 .03 .03 .05 .05 .03
Image2 .04 .03 .03 .18 .2 .18
Image3 .05 .04 .04 .14 .21 .35
Image4 .07 .05 .05 .28 .29 .35
Average .05 .04 .04 .16 .19 .23

this method we try to approximate the target model with a
substitute and then generate white box adversaries from the
substitute to attack the target model. The success of this
method relies upon transferability of adversarial examples
between models. We use the standard adversarially augmented
training algorithm of Papernot et. al. [42] to train the substitute.
In the Supplementary Material we provide full details of the
algorithm.

This in fact is a powerful attack method that needs only
predicted labels from the target (like Boundary and Hop-
SkipJump) but requires much fewer queries. Once the sub-
stitute is trained it can produce adversaries for any input.
Recent advances in transferability have made this method more
effective and broken defenses based on adversarial training
[43], [44]. For the substitute model we use a three layer
sigmoid activated cross-entropy loss network with 200 nodes
in each hidden layer. We start with 200 random test data
points from which we iteratively train the substitute model
with augmented adversaries.

In Figure 3 we see the accuracy of adversarial examples at
the end of the 20th epoch. We also show the accuracy of the
three models on random Gaussian noise of the same distortions
(from our earlier subsection above). Clearly the black box
adversaries are far more effective than random noise indicating
that the substitute model training was successful. In agreement
with our distortions from Boundary and HopSkipJump above
we see that MLP01 can correctly classify images of much
higher distortion than BNN and MLP.



Fig. 3. Accuracy of adversarial examples and test data with Gaussian noise
(denoted as -GN for each model) for various distortion thresholds. The
adversarial examples are far more effective than random noise. At distortion
0.125 both MLP and BNN have near 0% accuracy whereas MLP01 has 40%.

D. Comparison to convolutional neural networks

As a test against state of the art classification methods we
compare our 01 loss network with 500 hidden nodes to two
convolutional neural networks. First is LeNet [30] which is
among the first convolutional networks to be proposed and
second is SimpleNet500. In this model we use the same
convolutional layers as LeNet followed by one layer of 500
nodes and then the final output node.

We employ the same substitute model training algorithm as
in the above subsection. However instead of a dual hidden
layer model we use a convolutional network as the substitute.
In each convolutional block we have a 3 × 3 convolutional
kernel followed by max pool and batch normalization. In the
first, second, third, and fourth layer we have 32, 64, 128,
and 256 kernels respectively following by a final layer for
the output.

In Figure 4 we see that our model has a comparable
accuracy to the convolutional models on clean test data and
low distortion thresholds. However, when we cross 0.03125
then MLP01 has the highest accuracy. At threshold 0.125 it is
about 11% higher than both LeNet and SimpleNet500.

IV. DISCUSSION

Binarized neural networks [25]–[27] have weights and acti-
vations constrained to be near +1 and -1 (or 1 and 0) whereas
our model weights are real numbers. The purpose of those
networks is efficiency as opposed to robustness. Indeed we
see in recent work that binarized networks offer marginal
improvements in robustness to substitute model black box
robustness on MNIST and none in CIFAR10 (see Tables 4
and 5 in [25] and Table 8 in [45]).

We make the same observations here: BNN has similar
distortions to MLP and similar accuracies on adversarial
examples. Both BNN and MLP01 have sign activations yet
MLP01 has higher distortions and higher adversarial accu-
racies. Perhaps this has to do with the optimization method.

Fig. 4. Accuracy of adversarial examples for different distortion thresholds

BNNs are trained with an approximation to the sign activation
that is differentiable whereas we train with direct coordinate
descent.

In separate work we study transferability between our 01
loss network and the standard sigmoid activated cross-entropy
loss networks [46]. There we show a lack of transferability
between convex and 01 loss models in white box attacks and
that both convex and 01 loss substitute model black box attacks
are ineffective on our 01 loss network. However, in the work
here we focus on the distortion thresholds of adversarial and
Gaussian noise examples.

Interestingly the adversarial accuracy of our network is on-
par with simple convolutional models that have the powerful
advantage of convolutions. As future work 01 loss convolu-
tions may be a promising avenue to obtain models with high
clean test accuracy and high adversarial accuracy as well.

V. CONCLUSION

We show that our 01 loss neural network can correctly
classify images with a higher distortion than both the sigmoid
activated cross-entropy loss network and binarized neural
networks.
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[33] Léon Bottou. Large-scale machine learning with stochastic gradient

descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer,
2010.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. dÁlché Buc, E. Fox, and R. Garnett,
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