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Abstract—Deep learning and especially the use of Deep Neural
Networks (DNNs) provides impressive results in various regres-
sion and classification tasks. However, to achieve these results,
there is a high demand for computing and storing resources.
This becomes problematic when, for instance, real-time, mobile
applications are considered, in which the involved (embedded)
devices have limited resources. A common way of addressing this
problem is to transform the original large pre-trained networks
into new smaller models, by utilizing Model Compression and
Acceleration (MCA) techniques. Within the MCA framework,
we propose a clustering-based approach that is able to increase
the number of employed centroids/representatives, while at the
same time, have an acceleration gain compared to conventional,
k-means based approaches. This is achieved by imposing a special
structure to the employed representatives, which is enabled
by the particularities of the problem at hand. Moreover, the
theoretical acceleration gains are presented and the key system
hyper-parameters that affect that gain, are identified. Extensive
evaluation studies carried out using various state-of-the-art DNN
models trained in image classification, validate the superiority of
the proposed method as compared for its use in MCA tasks.

I. INTRODUCTION

Deep Neural Networks (DNN) [1] have emerged recently

as a central ingredient in many modern artificial intelligence

applications [2], [3], [4], [5], [6]. However, the impressive

performance that has been reported in the literature, is closely

related to the size of the DNNs, which, for state-of-the-art

models can reach to tens, or even hundreds of millions of

parameters (e.g., 138 millions of parameters are used by the

Visual Geometry Group (VGG) DNN [7]). This leads to vast

computing and storage requirements during both the training

phase of the DNNs and (most importantly) the operational (or

inference) phase, i.e., when the DNNs are actually employed.

In real applications, these requirements are usually tackled

via high-performance computing platforms [8] that include

graphics processing units (GPUs).

Nowadays, there is an increasing interest in blending deep

learning and mobile computing in which platforms of limited

resources are employed [9], including smart devices (such as

phones, watches, and embedded sensors). In order for these

platforms to exploit the DNN gains, especially, during the

inference phase, two main lines of research can be identi-

fied. In the first one, new compact, smaller DNN models

[10] are designed or searched for in a design space for the

applications at hand (e.g., SqueezeNet [11], MobileNets [12],

and EfficientNet [13]). In the second line, existing pre-trained,

highly performing DNN models (e.g., AlexNet [14], VGG [7],

Residual Net (ResNet) [15], and many more) are transformed

into new smaller models by utilizing Model Compression and

Acceleration (MCA) techniques [10], [16], [17], [18]. The im-

portance of this line of research stems from the fact that, apart

from their standalone use, state-of-the-art, pre-trained DNN

models can also be utilized as back-bone modules in models

designed for different (but similar in nature) applications. For

example, the convolutional layers of AlexNet and VGG (that

are originally trained for image classification tasks), constitute

the core modules of the R-CNN [19] and Fast R-CNN [20],

respectively, object detectors.

The MCA-related literature has been increasing in recent

years and there are numerous surveys that provide a compre-

hensive overview of the area ([10], [16], [17], [18]). Roughly

speaking (and by no means being exhaustive), some of the ear-

liest works proposed parameter pruning, in which, unimportant

parameters (e.g., filters [21], [22]) are removed and, hence, not

considered during the inference phase of the DNN deploy-

ment. Other works focus on limiting the representation of the

involved parameter by reducing their bit-width or increasing

common representations via the design of codebooks (e.g.,

scalar [23], vector and product quantization [24]). Finally,

several works employ tensor / matrix decompositions on the

involved quantities (e.g., filters) into factors by utilizing, for

instance, low-rankness [25].

In this paper, a new MCA technique for pre-trained DNNs

is described and evaluated. The highlights of the paper are

outlined as follows:

• We propose a novel codebook design procedure that, for

the same target acceleration, leads to larger codebooks

than the typically used k-means-based approaches, thus

improving considerably the quantization error.

• This is achieved by imposing a special structure to

the learned codewords based on a Dictionary Learning

framework.

• Theoretical analysis is provided for determining the pa-

rameters that dictate the structure of the codebook.

• The efficacy of the proposed MCA technique is assessed

on three state-of-the-art DNN models (VGG, ResNet,

SqueezeNet) on the demanding ILSVRC2012 dataset

[14], achieving up to 100% (or 2×) acceleration gain

over the conventional approach, for the same quantization

error.
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• The application of the proposed technique for the selected

DNNs results in significantly accelerated models with

limited performance degradation.

In the following, first, the relevant bibliography is presented

and the positioning of this paper is described. Then, in Sec. III,

the problem is formulated, while, in Sec. IV, the proposed

technique is explained. Simulation results are presented in

Sec. V. Finally, Sec. VI concludes the paper.

II. RELEVANT BIBLIOGRAPHY

The work in this paper is related to MCA techniques that

utilize a codebook for quantizing network parameters. The

codebook contains representative quantities (called codewords,

centroids, etc.) for the parameters to be approximated (e.g.,

vectors of weights). As multiple network parameters are

mapped to a single representative quantity, such approaches

are also called parameter sharing techniques.

Towards this end, [24] proposed vector quantization meth-

ods (using the k-means algorithm) for estimating the desired

codebook with the aim to compress the weights of fully

connected layers. In [26], a three stage method was presented

in which parameter pruning was followed by a codebook de-

sign for parameter quantization and concluded with Huffman

coding. In [27], a new codebook design was devised that im-

proved upon or generalized works like [24], [26]. In [27], the

proposed approach could be applied to both convolutional and

fully connected layers, while two cost-functions for estimating

the involved codebooks, were devised that minimized the

quantization error of the weights and the representation error

of the layers’ output (namely, the error between the outputs

of the original and the accelerated layers for a given input),

respectively. In [28], the proposed technique operates on scaled

versions of the 2D kernels for estimating the desired centroids

using the k-means algorithm. Then, during fine-tuning, both

the scales and the centroids are considered free variables to be

updated. In [29], [30] and [31], proper regularization terms are

introduced and via re-training procedures the resulted weights

can be more easily clustered using the k-means algorithm.

The work in [32] adopts product quantization and focuses

on the representation error of the layer outputs. Finally, in

[33], a methodology is devised for determining the size of

the codebooks by introducing a sensitivity analysis per layer

in order to assess the impact of compression on the accuracy

performance.

The proposed MCA technique is mostly related to works

like [24], [26], and [27]. Here, however, by exploiting the

special structure of the weights to be quantized, improved

quantization error is achieved. For assessing the performance,

[27] is selected as a baseline. Moreover, although, here, a

new MCA technique is outlined, the proposed dictionary-

learning approach for designing the codebook, can be actually

utilized by all the works mentioned above (i.e., instead of the

commonly used k-means algorithm).

Fig. 1: The linear operation of a single convolutional layer.

III. PROBLEM FORMULATION

The core operation performed by a convolutional layer and

the involved quantities, are depicted in Fig. 1. In particular,

the input volume consists of N channels Xi, i = 1, 2, . . . , N .

Also, there are M kernel volumes and the k-th kernel volume

has N filters Wk,i, k = 1, 2, . . . ,M , i = 1, 2, . . . , N . For

simplicity, it is assumed that the dimensions of the Xi’s,

Wk,i’s and Uk’s are m×m, p× p, and m×m, respectively.

The convolution of the input volume with the k-th kernel

volume is given by

Uk =

N∑

i=1

Xi ⋆Wk,i, (1)

where ⋆ denotes the 2D convolution operation.

In order to proceed and describe the entities to be clustered

(i.e., coded by the codebook that will be designed), (1) is re-

written in order to describe the (i, j)-th element Uk[i, j] as

Uk[i, j] =
∑

n,l∈Ri,j

xT
n,lwk,i−n,j−l, (2)

where xi,j = [X1[i, j], . . . ,XN [i, j]]T contains the samples at

the (i, j)-th position of all input channels. Also, wk,u,v =
[Wk,1[u, v], . . . ,Wk,N [u, v]]T contains the filter weights at

the (u, v) position of all channels in the k-th kernel volume.

Finally, the set Ri,j contains p2 indices around the position

(i, j).
In the product quantization framework, the N -dimensional

vector space is partitioned into S, N ′-dimensional subspaces

with N ′ = N/S, so that the s-th subspace spans dimensions

[(s− 1)N ′ + 1, . . . , sN ′], s = 1, . . . , S. Let us now partition

vectors xi,j , wk,u,v defined in Eq. (2), accordingly, as

xi,j=[(x1

i,j)
T, . . . , (xS

i,j)
T]T, (3)

wk,u,v=[(w1

k,u,v)
T, . . . , (wS

k,u,v)
T]T, (4)

where each of the sub-vectors lies in N ′-D space. Then, (2)

can be rewritten as

Uk[i, j] =

S∑

s=1

∑

n,l∈Ri,j

(xs
n,l)

Tws
k,i−n,j−l, (5)



where the inner sum denotes the contribution of the s-th

subspace to the k-th convolutional output, at position (i, j).
For each subspace, the goal of product quantization is to per-

form vector quantization to the Mp2 kernel sub-vectors lying

in s-th subspace, and cluster them into Ks ≪ Mp2 clusters.

This way, each sub-vector is represented by the centroid of

the cluster it belongs to, reducing accordingly the number of

required dot-products. To be more specific, the acceleration

occurs because the original dot-products between the input

and the Mp2 kernel sub-vectors, are approximated by the ones

between the input and the Ks centroids/representatives.

IV. DICTIONARY-LEARNING-BASED WEIGHT CLUSTERING

In this section, first, the proposed codebook structure for ap-

proximating the kernel sub-vectors, is described and discussed

in comparison with the conventional codebook structure that

appears in current literature. This discussion is also extended

towards the gains that are achieved through a computational

complexity analysis. Then, the proposed codebook design is

approached as a Dictionary Learning (DL) problem, which

actually treats the k-means-based conventional codebook de-

sign as a special case. The latter will be referred to as Vector

Quantization (VQ) in the following. Finally, some implemen-

tation details are described concerning the initialization of the

involved parameters when applying the proposed DL solution.

A. Proposed approximation

Let us first define the kernel approximation scheme incurred

by the conventional codebook structure, as follows:

W ≈ CΓ, (6)

where the columns of W ∈ R
N ′

×p2M , C ∈ R
N ′

×Kvq ,

and Γ ∈ R
Kvq×p2M , contain the kernel sub-vectors (of a

particular subspace), the representatives (or cluster centroids),

and assignment vectors, respectively. Specifically, each column

of Γ has exactly one non-zero element, equal to 1, meaning

that each column of W is approximated by one column

of C. Thus, in the conventional case, the Mp2 sub-vectors

are approximated by Kvq ≪ p2M representatives, using the

codebook C.

Instead, in this paper, the following approximation is pro-

posed:

W ≈ DΛΓ, (7)

where W ∈ R
N ′

×p2M and Γ ∈ R
Kdl×p2M are defined as

in (6), while D ∈ R
N ′

×Ldl and Λ ∈ R
Ldl×Kdl denote the

dictionary and the matrix of sparse coefficients, respectively.

Specifically, the columns of D (called dictionary atoms), are

normalized, while Λ is a sparse matrix in the sense that each

of its columns contains at most α non-zero elements, with

α being the sparsity level. Thus, under the proposed scheme,

the p2M sub-vectors are approximated via Kdl representatives

contained in the codebook DΛ. In turn, these representatives

are obtained as linear combinations of at most α atoms from

a dictionary of size Ldl, with Ldl < Kdl ≪ p2M . Note that

the matrix approximation defined in (7) can be viewed as a

special case of the general Dictionary Learning (DL) problem

[34], which is why we call our acceleration technique as a

DL-based one.

It should be noted that, in the general case, the proposed

approximation requires more representatives than the conven-

tional approach (i.e., Kdl > Kvq), for achieving the same

quantization (i.e. approximation) error. This is by definition

since the conventional codebook C is obtained in an uncon-

strained fashion, while the proposed codebook DΛ follows a

specific structure. Although it seems counter intuitive (in the

sense that the proposed approximation is less efficient than the

conventional one, in the general case), due to the particularities

of the problem at hand, namely, due to the fact that the “data

points” in W are in fact filters used in convolution operations,

the proposed approximation results actually in significantly

higher acceleration ratios for the same quantization error, as

it is going to be demonstrated. This is because, due to the

linearity of the operations performed in the convolutional

layer, the sparse coefficients in Λ need only be applied to the

convolution between the input and the dictionary atoms in D,

instead of the atoms themselves. This endows the proposed

approximation scheme with the flexibility to use a number

of representatives Kdl that is several times larger than Kvq,

while restricting the size of the dictionary (so that Ldl ≪ Kvq)

thus reducing the number of “heavy” convolutions, as it will

become clearer in the following subsection.

B. Computational complexity analysis

Since the core operations of a DNN are ultimately trans-

lated into dot-products between input and kernel vectors, the

computational complexity of a DNN is usually measured in

terms of the number of Multiply and Accumulate (MAC) op-

erations. A MAC is dominated by the involved multiplication

(MUL), which is a significantly “heavier” computation than

the involved addition. As such, in the subsequent analysis, in

order to compare the techniques on a common ground, MAC

and MUL operations are going to be used interchangeably, i.e,

a MAC will be considered equivalent to one MUL, so that the

computational cost is measured as the number of MULs.

Let us first begin by examining the computational complex-

ity of the original layer, where, by arranging the m2 input

sub-vectors of the s-th subspace in the columns of a matrix

X ∈ R
N ′

×m2

, we see that the convolution operation involves

the calculation of a matrix product of the form:

Y = XTW, (8)

where W contains the kernel sub-vectors (as defined in (6)),

followed by the appropriate summation of the dot-products

according to (5). Since calculating Y requires m2p2MN ′ mul-

tiplications, the overall (i.e. for all S subspaces) computational

complexity of the original convolutional layer, measured in

MULs, is obtained as:

To = m2p2M(SN ′) = m2p2MN. (9)



In the VQ case (described by the approximation in (6)), the

approximate Y is obtained as:

Y ≈ (XTC)Γ, (10)

namely, it involves calculating the dot-products between input

sub-vectors and representatives and then “plugging” the results

appropriately, according to the columns of Γ. Calculating

XTC requires only m2N ′Kvq MULs (as kvq ≪ Mp2),

meaning that the overall computational complexity for the

approximate convolutional output is reduced to:

Tvq(Kvq) = m2(SN ′)Kvq = m2NKvq. (11)

Finally, for the DL-based approximation scheme, we can write:

Y ≈
(
(XTD)Λ

)
Γ, (12)

meaning that, in this case, calculating the approximate Y is

a two-stage operation. First, we calculate XTD, i.e., the dot-

products between the input and the dictionary atoms, which

requires m2N ′Ldl MULs, where Ldl denotes the dictionary

size. Subsequently, the results are combined according to the

columns of Λ, which requires αm2Kdl additional MULs

Thus, the overall computational complexity for the approxi-

mate convolutional output in the DL case, is obtained as:

Tdl(Kdl, Ldl, α) = m2(NLdl + αSKdl). (13)

Accordingly, the acceleration ratio (namely, the ratio of

original vs accelerated computational complexities) achieved

by the two rival approaches, can be written as follows:

ρvq≡
To
Tvq

=
p2M

Kvq

(14)

ρdl≡
To
Tdl

=
p2M

Ldl +
α

N ′
Kdl

. (15)

Of great interest is also the relative acceleration between

the proposed DL-based and the VQ approach, which will also

provide rules for selecting the free parameters of the proposed

technique. First, in order to have a better representation error,

we set the number of representatives used by the proposed

technique as a multiple of the representatives used by the VQ

approach, i.e., Kdl = cKvq, c > 1. Then, using (11), (13),

we can see that for the DL-based approximation to achieve

at least the same acceleration with the VQ technique, i.e., for

Tdl(Kdl, Ldl, α) ≤ Tvq(Kvq) to hold, the following inequality

should hold regarding the size of the used dictionary:

Ldl ≤ Kvq

(
1−

α c

N ′

)
. (16)

As we are going to demonstrate in our experimental results

for various combinations of the coefficient c and sparsity level

α, and for (16) holding with equality (i.e., for the two rivals

achieving the same acceleration ratio), the proposed technique

leads to a significantly better approximation of the original

weights, which ultimately translates into better classification

accuracy for the accelerated DNNs.

C. Proposed algorithm

For deriving the matrix factorizations described by the

proposed weight factorization in (7), the quantization error

between the original W and its approximate version is min-

imized. In particular, the following minimization problem is

defined.

min
D,Λ,Γ

||W −DΛΓ||2F (17)

s.t. ||di||
2

2 = 1, i = 1, . . . , Ldl,

||λi||0 ≤ α, i = 1, . . . ,Kdl,

||γi||0 = 1, 1Tγi = 1, i = 1 . . .Mp2,

where || · ||F , || · ||2, || · ||0 denote the Frobenius, l2, and l0
norms, respectively, while the last constraint ensures that the

elements of Γ take values in {0, 1} and each of its columns

has exactly one non-zero element.

In order to solve (17), we follow a strategy of alternating

optimizations over each set of parameters, leading to the

following three sub-problems:

a) Sparse coding: With D, Γ fixed, the loss function in

(17) can be rewritten as follows:

∣∣∣∣

∣∣∣∣W −

Kdl∑

i=1

(Dλi)γ̃i

∣∣∣∣

∣∣∣∣
F

=

Kdl∑

i=1

∣∣∣∣WIi − (Dλi)1
T
∣∣∣∣
F
, (18)

where yi, ỹi is used to denote the i-th column and row of

matrix Y, respectively, Ii = {j|γij = 1} is the set of indices

of the non-zero elements of γ̃i, WIi is the submatrix formed

by the columns of W indexed by Ii, while 1 denotes the

all-ones vector of dimension |Ii|.
Observing (18), due to the l0-norm constraints on Γ, Ii’s,

i = 1, . . . ,Kdl, are a partition of {1, 2, . . . , p2M}, meaning

that the minimization of (18) over Λ is translated into Kdl

separate sub-problems, one for each of Λ’s columns:

min
ζ

||WIi − (Dζ)1T||2F (19)

s.t. ||ζ||0 ≤ α.

In order to solve (19), we follow an Orthogonal Matching

Pursuit (OMP) approach, which builds the support of the

sparse representation (non-zero elements of λi), by adding

one dictionary atom at a time, up to α atoms [34].

This sparse coding sub-problem is outlined in lines 5-12
of Table I. There, S denotes a set of non-zero indices, while

DS and ζS contain the columns of D and the elements of ζ

indexed by S, respectively.

b) Dictionary update: With Λ, Γ fixed, we write the loss

function in (17) as follows:

E = ||W −DG||2F =

∣∣∣∣
∣∣∣∣W −

Ldl∑

i=1

dig̃i

∣∣∣∣
∣∣∣∣
2

F

, (20)

where g̃i denotes the i-th row of G = ΛΓ. Thus, the

dictionary update step translates to minimizing E under the l2-

norm constraint for the dictionary atoms. In order to solve this

problem, we follow the coordinate-descent-based approach



1: procedure DL-based sub-space clustering
2: Input: original sub-vectors W, # of representatives Kdl

dictionary size Ldl , sparsity level α.
3: Obtain initial solution {D0,Λ0,Γ0}
4: repeat

5: for i = 1 : Kdl //Sparse Coding
6: Initialize: E = WIi , S = ∅
7: for j = 1 : α

8: Build new support: S ← S ∪ {k},
where k = argmaxj 6∈S |1

TETdj |.
9: Find new solution: ζS by solving minξ ||WIi −DS ξ 1T||2F .

10: Update residual: E = WIi −DS ζS 1T.
11: end

12: end
13: Initialize: E = W −DΛΓ //Dictionary Update

14: for i = 1 : Ldl

15: Modify error: F = EIi + di g̃i,Ii .

16: Update i-th atom: di =
F (g̃i,Ii

)T

||F (g̃i,Ii
)T||

.

17: Re-compute error: EIi = F− di g̃i,Ii .
18: end

19: for i = 1 : p2M //Assignment Update

20: Update γi solving ji = argminj∈{1,...,Kdl}
||wi − c̃j ||2.

21: end

22:Until: a maximum number of iterations is met.
23:Return: D, Λ, Γ.
24:end procedure

TABLE I: Proposed algorithm for solving (17)

outlined in Algorithm 3.5 of [34]. This sub-problem is de-

scribed in lines 13-18 of Table I.

c) Assignment update: With D, Λ fixed, the loss function

in (17) takes the following form:

E = ||W − C̃Γ||2F =

p2M∑

i=1

||wi − C̃γi||
2

2 (21)

where C̃ = DΛ is the N ′ × Kdl matrix of representatives.

Taking into account the special structure of Γ, updating γi is

equivalent to determining the position ji of its non-zero (unity)

element, which simply assigns wi to its closest representative.

This sub-problem is described in lines 19-21 of Table I.

D. Initial Solution and Parameter Selection

In order to provide an initial solution D0, Λ0, Γ0, to the

proposed acceleration technique, we work as follows:

1) We obtain a clustering of the original kernel sub-vectors

into Kdl clusters by minimizing ||W − CΓ||F under

the constraints on the assignment matrix Γ stated in

(17). This problem can be solved by using the k-means

algorithm.

2) We then obtain a sparse representation of the cluster

centroids in C as C ≈ D0Λ0, by using a dictionary

of size Ldl and target sparsity α. This problem can be

solved with standard DL techniques such as the ones

described earlier.

3) Finally, we obtain the initial assignment matrix Γ0 by

assigning each of the sub-vectors in W to its closest

representative in C̃ = D0Λ0.

There are four free parameters in the proposed technique,

namely, the subspace dimension N ′, the number of represen-

tatives Kdl, the size of the dictionary Ldl, and the sparsity

level α. For a target acceleration ρ, we first determine the

number of representatives Kvq required by the VQ technique

in order to achieve ρ, by using (14). This provides a lower

bound for the number of representatives Kdl required by the

proposed technique. We set Kdl = cKvq , c > 1. Then, for

a target sparsity α, we use (16) with equality in order to

determine the dictionary size required to achieve ρ. Typical

ranges for the parameter values are c = 2, . . . , 5, α = 1, 2, 3,

and N ′ = 4, . . . , 8.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed technique is

evaluated and compared against the conventional VQ approach

defined in (6) (and used in [27]). A two-fold performance

evaluation is presented here. Specifically, in Experiment I, we

evaluate the representation power of the rivals by means of

the achieved quantization error, namely the error between W

and its approximations defined in (6) and (7), respectively, for

a range of target accelerations. This experiment is performed

on the basis of individual-layer kernel approximations.

As expected, the less the per-layer quantization error, the

less the anticipated accuracy loss of the accelerated model.

Measuring this loss is the topic of Experiment II, where we

perform full-range acceleration for selected modern DNNs,

and compare the achieved accuracy of the accelerated models.

In this case, the acceleration is limited to conv layers which are

responsible for the vast majority of the DNN’s computational

complexity.

Our experiments are based on pre-trained versions of three

state-of-the-art DNNs for image classification, namely, VGG-

16 [7], SqueezeNet [11], and ResNet18 [15], using the training

and validation datasets of ILSVRC2012 [35], for fine-tuning

and accuracy evaluation purposes, respectively.

A. Experiment I. Quantization error in individual layers

In the first experiment, we evaluate the quantization error

of the proposed technique for a range of target accelera-

tions and compare the results against the conventional, k-

means-based, VQ technique. To this end, we approximate the

kernels of individual convolutional layers from the VGG16,

SqueezeNet, and ResNet18 networks, using (6) and (7), and

measure, in each case, the mean error between the original and

approximated weights. For the target acceleration ratios, the

number of representatives Kvq required by the VQ technique

was calculated via (11). Then, by setting the number of

DL representatives as Kdl = cKvq, c > 1, the dictionary

size Ldl was obtained so that (16) holds with equality. We

then calculated the quantization error versus the achieved

acceleration for various selections of the coefficient c and the

sparsity level α. The subspace dimension was set to N ′ = 8,

which is a typical value used in the relevant bibliography.

A representative instance of Experiment I involving three se-

lected conv layers from the used models, namely, (a) conv4−1
of VGG16 (512 kernels of size 3×3×256), (b) res4a-branch2b

of ResNet18 (256 kernels of size 3 × 3 × 256), and (c)

fire8-expand3x3 of SquezeNet (256 kernels of size 3×3×64),



is shown in Fig. 2 (top row). As shown in Fig. 2, (and will

become more apparent in the Experiment II), the proposed

technique clearly outperforms its rival with respect to quanti-

zation error, achieving a better approximation of the original

weights, for the same acceleration. Equivalently, this superior

performance is translated into a significant acceleration gain

for the same quantization error, as quantified by the respective

plots on the bottom row of Fig. 2.

B. Experiment II. Accuracy loss

In this experiment, we apply the rival techniques to the

three DNN models in a “full-model” acceleration scenario. It

involves accelerating multiple (or all) convolutional layers of

the original models and measuring the achieved classification

accuracy of the accelerated networks.

It is stressed here that, although full-range acceleration

depends heavily on the performance of the technique used

for the acceleration of each layer, it also involves experi-

mentation over the strategy used for accelerating the layers

and the involved fine-tuning (re-training) of the accelerated

model. Here, we follow a stage-wise acceleration approach (as

proposed in [27]) with each stage involving accelerating (and

fixing) one or more layers of the network, and subsequently,

fine-tuning (i.e., re-training) the remaining original layers. The

starting point for each stage is the accelerated and fine-tuned

version of the previous stage. The process begins with the

original network, and it is repeated until all target layers are

accelerated. For fine-tuning and performance assessment we

use the training and validation datasets, respectively, from

ILSVRC2012. Since, in each stage, only a small fraction of

the network is affected and in order to expedite the process,

we divided the initial training dataset into smaller subsets and

used these smaller sets for fine-tuning purposes.

a) Accelerating VGG16: VGG16 consists of 13 3 × 3
convolutional and 3 fully-connected (fc) layers and it is (by

far) the most computationally intensive network of the three

used in our experiments. Of the total 15.5×109 MACs/MULs

required for inference, over 99% are consumed by the conv

layers, meaning that the acceleration of the conv layers is

practically equivalent to the acceleration of the entire network.

The conv layers of VGG16 are organized in 5 groups of

consecutive conv layers, which is why we accelerate VGG16

in 5 stages, with the i-th group being accelerated at stage i. The

stage-by-stage results of our VGG16 acceleration experiment,

using the procedure describe in the previous paragraph for

three different acceleration ratios, namely ρ = 20, ρ = 30,

and ρ = 40, are shown in the top row of Fig. 3.

b) Accelerating ResNet18: ResNet18 is based on the

concept of residual learning and follows the architecture of

other bigger ResNet variants (e.g. ResNet34, ResNet50, etc.).

Its building block comprises of two consecutive 3 × 3 conv

layers, with the block’s output being summed to its input using

a “bypass” connection (hence, the block is required to only

learn the residual representation). ResNet18 consists of 8 such

blocks (plus an input conv layer and an fc layer), that, similarly

to the VGG16 case, are responsible for roughly 99% of the

total 1.8× 109 MACs/MULs required by the network. In our

experiments with ResNet18 we accelerated its building blocks

in a one-block-per-stage fashion leading to 8 total acceleration

stages. The acceleration results using ratios ρ = 10, ρ = 20,

and ρ = 30, are shown in the middle row of Fig. 3.

c) Accelerating SqueezeNet: SqueezeNet is a fully con-

volutional CNN that employs a special architecture managing

to drastically reduce its size while still remaining within the

state-of-the-art performance territory. Its building block is the

“fire” module that consists of a “squeeze” 1 × 1 conv layer

with the purpose of reducing the number of input channels,

followed by 1×1 and 3×3 “expand” conv layers that are con-

nected in parallel to the “squeezed” output. SqueezeNet con-

sists of 8 such modules, connected in series. Since SqueezeNet

constitutes an already “streamlined” network, in our accelera-

tion experiments we followed a moderate acceleration strategy

only targeting the 3×3 “expand” layers that are responsible for

roughly 53% of the total 3.9× 108 MACs/MULs required by

the network. Acceleration was performed in a one-module-per-

stage fashion for a total of 8 acceleration stages. The results for

acceleration ratios ρ = 10, ρ = 15, and ρ = 20, corresponding

to a total acceleration of the network by 91%, 98%, and 101%,

respectively, are shown in the bottom row of Fig. 3.

As a general comment regarding the result presented in

Fig. 3, it could be stated that the “before fine-tuning” error

values (shown in bars) at each stage, reveal the sensitivity

of the network with respect to accelerating/approximating

the kernels of the layers involved at that particular stage,

but also, the performance of the technique used to achieve

the acceleration. As such, it is evident by the shown plots,

that the proposed technique achieves a universally superior

performance compared to its rival.

On the other hand, the corresponding “after fine-tuning”

error values reflect the capacity of the remaining (original)

layers to “adapt” to the newly accelerated part. Here we see

that, by offering a better starting point to the fine-tuning

process, the proposed technique still manages to outperform

its rival by a safe margin in all cases, although, as it is to be

expected, fine-tuning compresses the difference between the

compared techniques to a great extent.

In summary, both the comparative analysis of the results

shown in Fig. 3, and also, the final Top5 error figures

achieved by the accelerated networks, reveal a very promising

performance by the proposed technique, whose application

results in significantly accelerated CNNs, with limited loss

of their classification power. It should be finally noted that the

shown results could be further improved by following a more

targeted acceleration strategy (e.g. experimentation over the

acceleration sequence, the acceleration ratio per layer, using a

more extensive fine-tuning process, etc.), which acts as further

confirmation of our conclusion.

VI. CONCLUSIONS

A new clustering-based weight-approximation technique for

the acceleration of DNNs was proposed in this paper. The

technique exploits the particularities of the problem at hand
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Fig. 2: Mean quantization error (top row) and acceleration gain (bottom row) of DL vs VQ techniques as a function of the

acceleration ratio for layers: (a) layer conv4−1 of VGG16, (b) layer res4a-branch2b of ResNet18, and (c) layer fire8-expand3x3

of SquezeNet. In all cases, the subspace dimension was N ′ = 8.

in order to increase the number of used centroids for the

same target acceleration, as compared to the conventional k-

means technique. This is achieved using a Dictionary Learning

framework, by imposing a special structure to the centroids

that reduces the overall computational complexity of the

accelerated layer. The superior performance of the technique

was validated via a number of experiments on three well-

known state-of-the-art pre-trained DNN models.
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