
Robo-Advising: Enhancing Investment with Inverse Optimization
and Deep Reinforcement Learning

Haoran Wang Shi Yu

{haoran wang, shi yu}@vanguard.com
The Vanguard Group, Inc.

Malvern, PA, USA

Abstract

Machine Learning (ML) has been embraced as a powerful tool
by the financial industry, with notable applications spreading
in various domains including investment management. In this
work, we propose a full-cycle data-driven investment robo-
advising framework, consisting of two ML agents. The first
agent, an inverse portfolio optimization agent, infers an in-
vestor’s risk preference and expected return directly from his-
torical allocation data using online inverse optimization. The
second agent, a deep reinforcement learning (RL) agent, ag-
gregates the inferred sequence of expected returns to formulate
a new multi-period mean-variance portfolio optimization prob-
lem that can be solved using deep RL approaches. The pro-
posed investment pipeline is applied on real market data from
April 1, 2016 to February 1, 2021 and has shown to consis-
tently outperform the S&P 500 benchmark portfolio that repre-
sents the aggregate market optimal allocation. The outperfor-
mance may be attributed to the the multi-period planning (ver-
sus single-period planning) and the data-driven RL approach
(versus classical estimation approach).

Keywords: Robo-advising, mean-variance portfolio alloca-
tion, reinforcement learning, risk aversion, inverse optimiza-
tion, empirical study

1 Introduction

Machine learning (ML) has been widely applied to various do-
mains in the recent decades. Particularly in the finance domain,
supervised learning, unsupervised learning and reinforcement
learning, the three constituent components of ML, have led to
innovative methodologies. For example, financial time series
forecast can benefit from supervised learning methods, with
or without the use of deep neural networks ([1, 2]). Unsuper-
vised learning approaches, such as clustering, have been ap-
plied to portfolio selection and optimization ([3]). The recent
ground-breaking achievements of reinforcement learning (RL)
in games playing (e.g., AlphaGo, see [4, 5]) also raised signif-
icant attention to solving dynamic decision making problems
in quantitative finance, including optimal trading ([6]), option
hedging and pricing ([7]) and portfolio optimization ([8, 9]).

1.1 Challenges of applying ML to investment
management

Application of ML to the investment management is partic-
ularly promising, in view of the plentiful retail and institu-
tional investors with increasing inflows into the asset manage-
ment industry ([10]). However, applying ML techniques to in-
vestment management has several challenges. Different from
high-frequency trading where microstructure data is affluent,
the available data for training ML algorithms in asset man-
agement industry is relatively limited, especially for long-term
low-frequency (monthly or quarterly) rebalancing investments.
Another challenge, particularly for advising retail clients, is to
understand the investment objectives and the risk profiles of
investors, a primary step of extreme importance. In the clas-
sical single-period mean-variance (MV) portfolio optimization
setting ([11]), this amounts to learning the risk-return tradeoff
parameter, also known as the risk aversion/tolerance (or equiv-
alently, the target return, or the target variance). A good eval-
uation of the client’s risk preference will lead to an effectively
constructed portfolio that fulfills the client’s risk-return trade-
off, whereas a wrongly estimated objective may lead to dis-
astrous deviations from the client’s life-long investment goals
([12]).

Classical procedure for estimating the risk profile is
through a carefully designed questionnaire ([13]), an approach
also used by robo-advising systems ([14]). Such a procedure is
usually challenging because of the ambiguity, bias, and noise
in practice ([15, 16, 17]). In particular, the subjective answers
clients provide in imaginary scenarios may not truly reflect
their inherent risk preferences. Another more quantitatively
based, systemic approach to learning clients’ risk profiles is
using online inverse optimization ([18]). By directly collecting
and analyzing historical portfolio holdings of a client, it is pos-
sible to infer a rational client’s risk preference through solving
a dual problem. This innovative approach allows continuous
monitoring and evaluation of embedded portfolio risks and fa-
cilitates the automated decision process of portfolio adjustment
when necessary to ensure that real portfolio risk is aligned with
the investor’s true risk preference. Such a method is developed
based on two fundamental methodologies: convex optimization
based MV framework and learning decision making schemes
through inverse optimization (IO). Clients are assumed to be

ar
X

iv
:2

10
5.

09
26

4v
1 

 [
q-

fi
n.

PM
] 

 1
9 

M
ay

 2
02

1



rational and their portfolio decisions are near-optimal (in the
sense that the portfolio is approximately on the single-period
MV efficient frontier). Consequently, their decisions are af-
fected by the risk preference factors through the MV portfolio
allocation model. The inverse optimization framework then in-
fers the risk preference factor, such as the risk aversion param-
eter or the expected target return, that must have been in place
for those decisions to have been made.

Once the client’s risk preference is estimated, traditional
investment managers can build the portfolio that lies on the
MV efficient frontier at the point corresponding to the client’s
risk-return tradeoff profile. Such an efficient allocation in turn
depends on reliable estimates of the investment opportunity
parameters, including the mean return vector and variance-
covariance matrix of the underlying assets. However, in prac-
tice, the notorious difficulty of estimating the mean return has
raised the third challenge for applying ML techniques to asset
management. Indeed, the validity of the MV solution has been
challenged for a long time ([19, 20]), and various econometric
methods have been proposed to mitigate the effects of an in-
accurate estimate of the mean return ([21, 22, 23, 24, 25]). In
contrast to those classical estimation-based methods for solv-
ing the MV problem, the reinforcement learning (RL) field has
brought completely new ideas into the MV world, particularly
for the multi-period problem. Given the historical price data
set, RL algorithms can learn the optimal (or near-optimal) dy-
namic allocation directly through trial and error in an end-to-
end way, without resorting to estimating the mean return vec-
tor and the variance-covariance matrix. Combing exploration
(learning) and exploitation (optimizing), RL algorithms can be
flexible enough (model-free or almost model-free) to gradually
find the optimal allocation strategies based on repetitive inter-
actions with the unknown black-box investment environment.
For more details on RL applications for the MV problem, we
refer the interested readers to the recent works [9, 26].

1.2 Our main contributions

Inspired by the above two new ML approaches (IO and RL),
in this paper, we propose a full-cycle, end-to-end, data-driven
investment robo-advising framework, consisting of two ML
agents at its core. The first IO agent collects the client’s his-
torical allocation data and solves the online inverse optimiza-
tion problem to infer the risk preference. The underlying as-
sumption is that the client’s allocation is approximately on the
efficient frontier of a single-period MV problem with some im-
plicit decision parameters (i.e., risk aversion and expected re-
turn). The IO agent’s mission is to estimate the investment
goal, known as portfolio-level expected return, based on histor-
ical market price and existing portfolio holdings. The second
agent, an RL agent, then aggregates the time-varying portfolio-
level expected returns to formulate a new multi-period MV
problem and solves it using deep RL techniques. The multi-
period MV optimal allocation will be the output of our full-
cycle robo-advising pipeline. In practice, such a strategy can
be returned back to the original client as an improved, person-
alized and sophisticatedly designed portfolio rebalancing strat-

egy.
Although our proposed robo-advising framework is mainly

intended for assisting retail and/or institutional investors, due
to the strict restrictions on client data disclosure in the asset
management industry, we choose to work with public market
portfolio data in this paper. Such a market level aggregation
has been commonly adopted in finance and economics litera-
ture, including the notable Black-Litterman model ([21]), the
Capital Asset Pricing Model ([27, 28, 29, 30]), and the mutual
fund theorem ([31]), to name a few. The common assumption
underlying these models is that every rational market partici-
pant will choose the same allocation weights on risky assets at
equilibrium, and hence the market portfolio can be seen as the
overall efficient portfolio with its weights determined by the
assets market values (i.e., capitalization). This paper takes the
S&P 500 portfolio as an efficient market portfolio, following
the existing literature’s standard practice.

We conduct empirical analysis using S&P 500 Index data
and the constituent stock price data to demonstrate the effi-
ciency of the proposed robo-advising model. The historical
S&P 500 allocation data and market price data of constituent
stocks are used by the IO agent to infer the overall market risk
preference profile and expected return. For a more robust es-
timation, the IO agent samples the historical market allocation
data at different frequencies and ensembles the estimated re-
sults to get an annualized market target return. The second
agent, the RL agent, then solves the multi-period MV problem
over a one-year horizon with daily rebalancing, using the an-
nualized market return as the investment target. To ensure fair
comparisons with the S&P 500 portfolio, we design a deep RL
algorithm to solve the multi-period MV problem under the no-
shorting, no-borrowing constraint (i.e., allocation weights be-
ing non-negative and summing up to one). It is well known
that explicit solution for such a constrained MV problem is
not available to date, for either single-period, multi-period or
continuous-time MV problems. We hence adopt deep neural
networks as function approximators in our RL algorithm, to-
gether with a special form for the input data motivated by MV
theory, to learn an efficient rebalancing strategy. It turns out,
empirically, that our learned strategy consistently outperforms
the S&P 500 portfolio over the out-of-sample test data that cov-
ers the period from April 1, 2016 to February 1, 2021. It is
also worth noting that, due to the aforementioned limited data
challenge for training ML algorithms in asset management, the
classical batch (off-line) RL training methods can easily lead to
serious overfitting and produce non-robust strategies that would
fail on out-of-sample data sets. This is particularly relevant in
our current setting, where only the daily closing price data for
the S&P 500 stocks were used to train the deep RL algorithm.
To mitigate the overfitting issue and enhance robustness, we
adopt the universal training method recently proposed in [26] to
train our deep RL algorithm. Such a training method addition-
ally brings the extra benefit: even a randomly selected subset
of stocks from the S&P 500 stocks pool can have superior per-
formance against the S&P 500 return with high probability, as
long as these stocks are allocated according to the multi-period
rebalancing strategy generated by our deep RL algorithm.



The empirical findings in this work demonstrate a promis-
ing ML-based investment advising pipeline. Its success can
be attributed to the two innovative and automated ML agents.
Both agents make their decisions in a purely data-driven, end-
to-end fashion, reducing human labor costs and decision er-
rors. In particular, the need to seek subjective answers from
individual clients has been greatly reduced, which in turn di-
minishes the ambiguity and uncertainty that may arise when
clients express their risk profiles to investment advisers in the
classical way (e.g., through surveys or questionnaires). More-
over, by solving a multi-period investment optimization prob-
lem instead of a myopic single-period one at each time, the new
investment advising pipeline has demonstrated more robust and
consistent performance over a longer period in our tests. In-
deed, the benefits of long-term investment have been well noted
in the asset management industry. It has also been empirically
observed that investors tend to have counter-cyclical risk pref-
erences ([32, 33, 34]), making their investment performance
more vulnerable in a volatile market.1 The multi-period re-
balancing approach, in contrast, commits to a longer-term in-
vestment goal that is set for multiple periods ahead and, hence,
greatly reduces the variability in the portfolio performance as
well as the turnover rate (see Section 4). This is supported by a
further comparison between our RL based multi-period rebal-
ancing strategy and two other approaches: a single-period MV
strategy that is obtained for each quarter and a buy-and-hold
strategy for the full-year horizon.

2 Machine Learning Agents
This section discusses the two ML agents: the inverse portfolio
optimization agent and the deep reinforcement learning agent.
We start with the problem formulations that the two ML agents
aim to solve, followed by the general methodologies and the
specific adaptations we propose.

2.1 The inverse portfolio optimization (IPO) agent

2.1.1 Portfolio optimization problem

We mention that our method is generally applicable to convex
portfolio optimization models. Besides the MV model adopted
in this paper, our method is also applicable to other extended
formulations proposed in literature, such as portfolio selection
model with transaction cost [36]. Without loss of generality, we
consider the Markowitz mean-variance portfolio optimization
problem [11]:

min
x∈Rn

1
2 xTQx− rcT x

s.t. Ax ≥ b,
PO

where Q ∈ Rn×n < 0 is the positive semi-definite covariance
matrix, x is portfolio allocation where each element xi is the

1Due to the fact that both investor’s risk preference and market
Sharpe ratio are counter-cyclical, solving a myopic (single-period)
MV problem may lead to a withdraw of investment in risky assets,
in the midst of better investment opportunity. See a more in-depth
discussion in [35] from a robo-advisor modeling perspective.

holding weight of asset i in the portfolio, c ∈ Rn is the ex-
pected asset-level portfolio return, r > 0 is the risk tolerance
factor, A ∈ Rm×n(n ≤ m) is the structured constraint ma-
trix, and b ∈ Rm is the corresponding right-hand side in the
constraints.

In this paper, we have xi ≥ 0 for each i = 1, 2, . . . , n, as
we do not consider shorting position. In general, x represents
the portfolio optimized for n assets. Thus, n is around 500 for a
S&P 500 portfolio. We further assume each element of x takes
finite value.

In PO, the coefficient r is assigned to the linear term, and
thus it represents risk tolerance and larger r indicates more
preferable to profit. In literature, some formulations assign r
to the quadratic risk term in the objective as risk aversion coef-
ficient, in which larger values lead to more conservative portfo-
lios. Throughout the remainder of this paper, we assign r to the
linear term, and the learning task is to estimate risk tolerance.
In fact, the propensity for accepting risk regarding investments
can be considered on a continuum [37], thus risk aversion and
risk tolerance are antonyms.

In PO, if variables Q, r, c, A,b are given, the optimal solu-
tion x∗ can be obtained efficiently via convex optimization. In
financial investment, the process is known as finding the opti-
mal portfolio allocations, and we call it the Forward Problem.

Now lets consider an Inverse Problem where Q,A,b,x∗
are given, but the risk tolerance r and expected return c are
unknown. In literature, solutions have been developed to learn
c [38] and r[18] separately via inverse optimization, assuming
the other parameter is known. However, when both r and c
are unknown, to learn them simultaneously is difficult because
learning the product rcT is a non-convex problem. Thus, we
propose an alternative minimization framework to learn r and c
alternatively based on the convex inverse optimization solution
proposed by [39].

Remark 2.1 In our experiments we also explored a non-
convex formulation using non-convex solver (e.g., BARON
[40]) directly but was not successful. The solver was often
stalled searching for solutions on some simple toy problems.

Based on our earlier work [18], the derivations of learning
risk tolerance r and expected portfolio-level return c are given
by:

Learning time-varying risk tolerance r

min
r,x,u,z

1
2‖r − rt‖2 + ηt‖yt − x‖2

s.t. Ax ≥ b,
u ≤Mz,
Ax− b ≤M(1− z),
Qtx− rct −AT u = 0,
x ∈ Rn,u ∈ Rm

+ , z ∈ {0, 1}m,

IPO-Risk

where z is a vector of binary variables used to linearize KKT
conditions, and M is an appropriate number used to bound the
dual variable u and Ax − b. Clearly, IPO-Risk is a mixed
integer second order conic program (MISOCP), and referred to
as the Inverse Portfolio Optimization of Risk Tolerance.



Learning time-varying expected return

min
c,x,u,z

1
2‖c− ct‖2 + ηt‖yt − x‖2

s.t. Ax ≥ b,
u ≤Mz,
Ax− b ≤M(1− z),
Qtx− rtc−AT u = 0,
x ∈ Rn,u ∈ Rm

+ , z ∈ {0, 1}m,

IPO-Return

and results in another MISOCP problem, and referred to as the
Inverse Portfolio Optimization of Expected Return.

Remark 2.2 In IPO-Risk and IPO-Return, u, z, ηt,M are
hyper-parameters specified respectively in the two different In-
verse Problems, and they represent different variables in their
own formulations. To avoid having too many symbols, we use
the same variable names.

2.1.2 Learning time-varying risk preferences and
expected returns together

Our strategy is to optimize expected returns c and risk pref-
erences r iteratively (the same spirit as the alternative mini-
mization algorithm optimizing the latent variables iteratively).
We combine IPO-Risk and IPO-Return together in a bi-level
optimization procedure. In the first phase, we learn the opti-
mal c according to IPO-Return, keeping r fixed. In the second
phase we learn the optimal r according to IPO-Risk, keeping
the learned c fixed. Algorithm 1 illustrates the process of ap-
plying inverse optimization to learn rt and ct.

The learned risk preference rt and expected returns ct

represents time-varying estimations driven by a sequence of
(price, portfolio) pairs from the start of observation till time
t. Multiplying the learned asset-level expected return ct with
observed portfolio yt, we obtain the portfolio-level expected
return zt, which is required for the RL agent to learn the in-
vestment strategy.

Algorithm 1 Learning Risk Tolerance and Asset-level Ex-
pected Return

Input: (time-series portfolio and price data) Yt, Pt

Initialization: r0 (guess), c0 (guess), λ, M (hyper-parameter)

1: for t = 1 to T do
2: receive (Yt, Pt)
3: Qt ← pt

4: ct ← (Qt, rt−1,yt) Solve ct as equation IPO-Return
5: rt ← (Qt, ct,yt) Solve rt as equation IPO-Risk
6: end for

Output: Estimated rt, ct

Remark 2.3 Another approach to learn expected portfolio re-
turn directly is to formulate the mean-variance problem with-

out explicit r, given by

min
x∈Rn

1
2 xTQx

s.t. Ax ≥ b,
cT x ≥ e

PO-alternative

We can simply learn e, and combine the two constraints
together as:

Â = [cT ;A], b̂ = [e; b] PO-constraints

and rewrite PO-alternative as:

min
x∈Rn

1
2 xTQx

s.t. Âx ≥ b̂
PO-b

Then the inverse problem becomes

min
b̂,x,u,z

1
2‖b̂− b̂t‖2 + ηt‖yt − x‖2

s.t. Âx ≥ b̂,
u ≤Mz,
Âx− b̂ ≤M(1− z),
Qtx− ÂT u = 0,
x ∈ Rn,u ∈ Rm

+ , z ∈ {0, 1}m,

IPO-b

and in b̂ we simply need to treat the first element as a learn-
able variable, which indicates the lowerbound of portfolio level
return.
We have compared this alternative approach with Algorithm 1
and the results are very similar when proper upper-bounds and
lower-bounds are set for e as well as c. However, formulation
PO-b does not treat risk tolerance as an explicit parameter, so
it is not adopted in our earlier work [18] which focuses the
problem of learning risk tolerance.

2.2 The deep reinforcement learning (DRL) agent

2.2.1 The multi-period MV problem

Once the IPO agent has estimated the time-varying expected
returns Z = {z1, z2, . . . , zk}, k ≥ 1, over k subperiods within
a year, the DRL agent can obtain the annualized return through
discrete time compounding, i.e., z = Πk

i=1(1+zi)−1. This an-
nualized return represents the overall risk-return profile during
the period where the returns sequence Z was originally learned
by the IPO agent. Consequently, a new multi-period MV prob-
lem can be formulated as following. Denote by N ≥ 1 the
number of rebalancing periods within a one-year horizon, and
by n ≥ 1 the number of stocks in the portfolio to be con-
structed. We assume that N ≥ k, since one of our goals is
to compare the performance of the multi-period MV strategy
with that of the single-period MV strategy.

Let the discrete rebalancing times be fixed at i =
0, 1, 2, . . . N − 1. In this paper, our focus is on daily rebalanc-
ing within a one-year horizon, thereforeN = 252. In an invest-
ment universe with n stocks and one riskless asset (i.e., cash),



the dynamics of the portfolio value process (i.e., the wealth pro-
cess), under the self-financing condition and zero interest rate
assumption for the riskless asset, follows

Wi+1 =
n∑

j=1
vj

i

Sj
i+1

Sj
i

+Wi −
n∑

j=1
vj

i , i = 0, 1, . . . , N − 1.

(1)
Here, Wi represents the wealth at the i-th trading day, while Sj

i

represents the daily closing price of stock j at date i. The vec-
tor vi = (v1

i , v
2
i , . . . , v

n
i )T gives the dollar value allocations

among all the n stocks in the portfolio at each rebalancing day
i. The goal of the multi-period MV problem is to find the best
dynamic rebalancing strategy {v0, v1, ..., vN−1} that, when
implemented over the investment horizon, can achieve minimal
variance while targeting a pre-specified return z. The precise
mathematical formulation is given by

min
vi,i=0,...,N−1

Var[WN ],

s.t. E[WN ] = 1 + z. (2)

It is assumed above that the initial capital W0 = 1. Notice
that, to connect with the single-period MV problem in Section
2.1, we have used the learned and compounded return z as the
target in (2).

Given the complete knowledge of the underlying stocks
mean return vectors and variance-covariance matrices at all re-
balancing times i = 0, 1, 2, . . . , N − 1, the multi-period MV
problem (2), as well as its variant in continuous time, have
been solved rather completely with explicit solutions (see, e.g.,
[41, 42]). The solution technique is first to transform (2) into
an unconstrained minimization problem using a Lagrange mul-
tiplier 2ω,

min
vi,i=0,...,N−1

E[(WN − ω)2]− (ω − 1− z)2. (3)

Such a problem can be solved based on classical dynamic pro-
gramming principle (i.e., backward induction in discrete time)
to obtain the optimal solution v∗i , i = 0, . . . , N−1 that depends
on the Lagrange multiplier. One can then apply the constraint
E[WN ] = 1 + z to determine ω and hence the explicit optimal
solution v∗i , i = 0, . . . , N − 1.

However, as noted in the Introduction, for both single-
period and multi-period MV problems, it is extremely chal-
lenging to estimate the mean return vectors accurately. More-
over, the solution process involves the inversion of typically
ill-conditioned variance-covariance matrices, making the allo-
cation strategy rather sensitive to the input data. The valid-
ity of the Markowitz solution is in even greater doubt when
it comes to a large amount of stocks with limited historical
data, a challenging situation that is commonly referred to as
the “Markowitz’s curse” (see Section 7.4 of [3]).

In the next section, we will introduce a purely data-driven,
DRL-based solution to learn the optimal rebalancing strategy,
without trying to estimate any of the model parameters, includ-
ing the mean return vectors and variance-covariance matrices.
With the help of a deep neural network approximator for the op-
timal rebalancing strategy, our approach can be easily extended

to high dimensions, thereby devoid of the aforementioned curse
of dimensionality encountered for the MV problem. Another
reason for adopting deep neural networks is that MV optimal
solutions under constraints are typically not in closed form. In
particular, to handle the no-shorting, no-borrowing constraint,
we combine a deep neural network approximation with a spe-
cial input data format that is motivated by existing results for
MV analysis. Our novel structure turns out to be effective when
backtested on real data (see Section 3).

2.2.2 Deep reinforcement learning

Deep reinforcement learning is a powerful technique to solve
multi-period decision making problems arising in quantitative
finance. Such a machine learning method has several ad-
vantages compared to classical analytic or econometric ap-
proaches, including it being model-free, data-driven, end-to-
end and amenable to high-dimensional problems, among oth-
ers.

In this work, we use one of the most common RL al-
gorithms for continuous spaces, the deep deterministic pol-
icy gradient (DDPG) algorithm. It was first introduced in
[43] and soon became the baseline approach for solving high-
dimensional RL problems with continuous states and actions.
The multi-period MV problem (2) clearly belongs to such a
class of problems. Indeed, to cast the MV problem (2) into the
proper RL formulation, we take the (wealth, allocation) as the
continuous (state, action) pair in applying DDPG. Moreover,
in the original DDPG algorithm, the authors heuristically used
Gaussian exploration (specifically, OU process) to balance the
tradeoff between exploitation and exploration, while recent the-
oretical results have proved the optimality of Gaussian explo-
ration for linear-quadratic problems with both infinite and finite
horizons ([44, 9]). The well-known linear-quadratic structure
of the MV problem (see, e.g., [42, 9]) hence makes it more
appropriate for us to work with DDPG rather than other DRL
algorithms.

2.2.3 DDPG adaptations for constrained MV problem

Applying DDPG to solve the multi-period MV problem (2) is
however not straightforward, as DDPG was mainly designed
for classical RL problems without the variance term in the ob-
jective function. Notice that the variance term is a nonlinear
function of the expectation operator, a fact that has imposed
great difficulties for borrowing most RL methods into MV
analysis ([45]). Moreover, there exist additional challenges in
applying RL approaches to the multi-period MV problem (2),
or to quantitative finance problems in general. In the follow-
ing, we list each of the main challenges and also provide adap-
tations of the original DDPG algorithm to tackle these chal-
lenges. Some of the following solutions have been applied to
solve the MV problem (2) without constraints in [9] and [26].

Non-classical objective. As noted above, the variance
term, which does not exist in classical RL problems, breaks
the Bellman’s dynamic programming principle that underlies
most RL algorithms including DDPG. Nonetheless, inspired



by the analytic approach in Section 2.2.1, we can use the new
unconstrained criterion (3) for DDPG. The criterion (3) would
then still contain the unknown parameter ω that corresponds to
the Lagrange multiplier, making the criterion itself not fully
known during learning. For that, we further adopt a sepa-
rately ongoing scheme to learn ω, based on the target constraint
E[WN ] = 1+z in (2) and stochastic approximation ([46]). The
latter suggests the following updating rule to learn ω,

ωk+1 = ωk + αk(WN − 1− z), (4)

where αk > 0 is the learning rate. The terminal wealth WN

can be replaced by a sample average of a few recently observed
terminal wealth values during training to reduce fluctuations in
the updating rule (4). With this separate learning process for
ω, we can treat the objective (3) as almost being stationary, by
updating ω at a much slower frequency.

Sparse, long-delayed reward. Similar to some challeng-
ing DRL applications, including the notable AlphaGo, the cur-
rent MV problem (2) has sparse reward. Indeed, only one ter-
minal wealth value can be obtained for each training episode,
and although this sparse signal can be backpropagated to previ-
ous time periods through the Q function update in DDPG, such
a long-delayed terminal reward makes the training process less
efficient and more time consuming. In order to account for this
challenge, we propose to apply prioritized experience replay to
DDPG rather than the original experience replay. Specifically,
the new DDPG algorithm selects the terminal training experi-
ence (i.e., the terminal state-action pair) with higher probability
from the replay buffer while correcting for the selection bias
([47]). Without prioritization, all the historical training out-
comes would have been selected with equal probability (i.e.,
1/N ), leading to a small probability of choosing the informa-
tive signals if the number of decision making periods is large.

Constrained actions and target tracking. The multi-
period MV problem (2) can take various constraints on alloca-
tion strategies. To handle the no-shorting, no-borrowing con-
straints

vj
i ≥ 0 and

n∑
j=i

vj
i = Wi, for i = 0, 1, . . . , N − 1,

(5)
we use a softmax output layer in the actor network to automati-
cally generate allocations. In order to better track the difference
between the target return and the realized return, we also take
the actor network’s input data to be Wi − ωk, rather than just
Wi, at the i-th decision making time, and ωk is the most re-
cently learned Lagrange multiplier using (4). This adaptation
is motivated by the analytic solutions of various MV problems.
Indeed, given just the no-shorting constraint (but borrowing is
allowed) or given no constraints at all, the theoretical optimal
allocation depends on the difference between current wealth
and the true unknown ω ([42, 48, 9]). Such a new form of input
data also relates the current allocation decision to previously
observed wealth values in a feedback loop, through the inclu-
sion of the Lagrange multiplier.

Limited data for training. DRL algorithms, including
DDPG, often require extensive data for training in practice,

due to their typical structures consisting of multiple deep neural
networks. The prevailing daily, monthly or quarterly data in in-
vestment management industry would not be sufficient to train
DRL algorithms. Ad hoc training using limited data would cer-
tainly lead to serious overfitting on in-sample data, causing the
learned strategy to fail when tested on real out-of-sample data
(i.e., live trading). To handle this challenge, we adopt the uni-
versal training method proposed in [26]. The idea is to arti-
ficially generate randomness during training; specifically, we
randomly select n stocks from the S&P 500 stocks pool to
train each episode, rather than repeatedly using the same his-
torical data for a fixed pre-selection of n stocks. Such a training
method has generated more robust long-short MV strategies in
unforeseen market turmoils, when compared with the classical
batch (off-line) RL training approach ([9, 26]). Note that, with
long enough training episodes, the universal training yields a
rebalancing strategy that converges to the equal-weight strat-
egy, which in itself has been proven to outperform most ex-
isting allocation strategies on out-of-sample data ([49]). How-
ever, it is also possible to obtain other strategies with early stop-
ping, thanks to a hyper-parameters tuning process discussed
below.

Extensive hyper-parameters tuning. Besides the sam-
ple inefficiency of most DRL algorithms, the large number of
hyper-parameters to be tuned poses another challenge. The
current DDPG algorithm has more than 20 hyper-parameters,
including the number of hidden layers and hidden units of
the two deep neural networks, training episodes, learning
rates as well as initial values of different parameters, among
others. To greatly reduce the workload, we distribute the
DDPG training tasks over multiple CPUs via parallelization.2

Each DDPG model corresponds to a specific combination of
hyper-parameters and the performance of all models are eval-
uated on the same validation data set. The best-performing
DDPG model is then selected as the final model and its hyper-
parameters are considered to have been best tuned. Among
all the hyper-parameters, the number of training episodes de-
termines if an early stopping is desirable for the current market
period and, hence, occasionally gives rise to rebalancing strate-
gies that outperform the equal-weight strategy generated by the
longest possible training episodes.

3 Results

In this section, we provide details on the performance of the
IPO-DRL investment strategies, generated collaboratively by
the inverse portfolio optimization agent and the deep reinforce-
ment learning agent. The data and the implementation details
are delegated to the appendix, together with the description of
several evaluation metrics in the results reported in this section.

First of all, the IPO agent learns the expected market target
return at different frequencies and ensembles the estimates to
obtain the expected annual target return. Specifically, we con-
sider learning the quarterly and yearly market expected returns

2We trained all models on a computing platform with 36-Core
CPUs and 72 GB RAM. The training time for a single experiment
reduces from several days to around five hours.



over the same period, while for the former, a simple discrete
time compounding is applied to get the annualized expected
return. The final ensembling step amounts to averaging the
annual returns that are learned at different frequencies. Table 1
shows the learned expected returns across different time scales.

Table 1: Learned expected market returns across different time
periods.

Period Quarterly Return Yearly Return Average
Apr.-June July-Sept. Oct.-Dec. Jan.-Mar.

04-2016 to 03-2017 3.34% 3.33% 3.52% 3.48% 14.6% 14.5%
04-2017 to 03-2018 3.55% 3.49% 3.55% 3.54% 17.6% 16.3%
04-2018 to 03-2019 3.55% 3.64% 3.51% 3.51% 18.5% 16.8%
04-2019 to 03-2020 3.57% 3.50% 3.52% 3.68% 20.9% 18.0%

The expected portfolio returns learned by the IPO agent are
illustrated in Figure 1. The time-varying expected returns zt

are calculated as the product of the estimated expected asset-
level return and the observed portfolio cT

t yt. The initial guess
of risk preference r0 has impact on the final estimation of port-
folio expected return, as shown in Figure 2 by the estimation
intervals of zt produced from five initial risk preference values
(r0 = 1, 2, 3, 5, 10).

Figure 1: Time-varying annualized expected portfolio return
learned by IPO agent. The estimation intervals are produced
by changing the look back period w of historical price.

The DRL agent then adopts the ensembled annual return in
Table 1 as the target return z for the multi-period MV problem
(2). The training and validating (model selection) of DDPG
models are conducted using the two-year data before each of
the one-year period in Table 1. The DRL agent then tests the se-
lected DDPG model over these one-year periods, each of them
representing an independent backtest period.

Figure 2 reports the backtest performance of the IPO-DRL
strategy over the test period from April 1, 2016 to February 1,
2021, with one-year forward rolling windows. We also report
the S&P 500 Index as the benchmark, and two other commonly
used investment strategies. The first one is the buy-and-hold
strategy that only makes one-time allocation at the beginning
of each one-year test period. Its allocation is computed by
solving a single-period MV problem with the target being the
daily return (1 + z)1/252 − 1, given the target annual return
z in the multi-period MV problem (2). To solve the single-
period MV problem under the same no-shorting, no-borrowing
constraint, we use the standard built-in optimizer SLSQP (Se-
quential Least SQuare Programming) of Scipy/Python. The in-
puts are the mean return vector and variance-covariance matrix
estimated from the same two-year daily data proceeding each

Table 2: Statistics of investment strategies performance for dif-
ferent number of stocks over the period from April 1, 2016 to
February 1, 2021.

Number
of stocks Strategy Return

(cost-adjusted)
Standard
deviation

Sharpe
ratio

Turnover
rate

Transaction
cost

Maximum
drawdown

IPO-DRL 17.51% 13.48% 1.30 1.05% 1.21% −41.17%
n = 5 Buy-and-hold 18.05% 19.38% 0.93 − − −40.12%

Quarterly MV 19.30% 22.12% 0.87 89.62% 0.2% −38.20%
IPO-DRL 19.71% 19.32% 1.02 1.07% 1.15% −43.10%

n = 10 Buy-and-hold 20.98% 23.84% 0.88 − − −40.68%
Quarterly MV 19.95% 21.59% 0.92 91.33% 0.3% −40.14%

IPO-DRL 18.32% 18.97% 0.97 1.25% 1.06% −41.97%
n = 20 Buy-and-hold 20.14% 24.08% 0.83 − − −38.71%

Quarterly MV 17.89% 20.62% 0.87 98.24% 0.2% −40.22%
IPO-DRL 19.25% 17.30% 1.11 1.13% 1.04% −41.19%

n = 50 Buy-and-hold 21.68% 20.43% 1.06 − − −40.99%
Quarterly MV 20.69% 24.81% 0.83 109.96% 0.3% −39.59%

IPO-DRL 19.72% 18.66% 1.06 1.09% 1.11% −41.97%
n = 100 Buy-and-hold 20.39% 21.03% 1.00 − − −39.01%

Quarterly MV 21.26% 22.38% 0.95 112.18% 0.3% −37.21%
IPO-DRL 18.35% 16.49% 1.11 1.48% 1.35% −41.10%

n = 200 Buy-and-hold 22.39% 22.92% 0.97 − − −38.58%
Quarterly MV 19.51% 21.87% 0.89 111.24% 0.4% −40.11%

backtest period as in the IPO-DRL case.
The second strategy is a sequential MV problems with

quarterly rebalancing. Within each one-year backtest period,
we solve four single-period MV problems that are connected
back to back, with the portfolio value rolling from the end of
previous quarter to the start of the next. The target quarterly
return is hence (1 + z)1/4 − 1. Similar to the buy-and-hold
strategy, we impose the same no-shorting, no-borrowing con-
straint and apply the same SLSQP optimizer, but unlike in the
previous case, we adopt the rolling-window estimation on quar-
terly basis. To better present the results, we choose to only plot
S&P 500 Index and the performance for the IPO-DRL strategy
in Figure 2. We also include the 95% confidence band. The
results for all the strategies are based on 100 independent port-
folios with random selection for the constituent stocks from the
S&P 500 pool. A summary of the performance for each strat-
egy is presented in Table 2.

4 Discussions

Portfolio concentration and diversification.
The IPO-DRL strategy consistently demonstrates a high level
of diversification among the underlying stocks in our empiri-
cal tests. Indeed, some (but not all) finally selected IPO-DRL
allocations after training and validation have converged to the
equal-weight allocation, thereby effectively avoiding the con-
centration of allocations. In contrast, both the buy-and-hold
and the quarterly MV solutions have shown the tendency to
concentrate positive holdings on a small subset of stocks. For
instance, in the case where n = 5, the two classical MV strate-
gies often generate positive holdings for two or three stocks,
whereas when n = 10, the number of invested stocks typically
increases to four or five. Moreover, for the quarterly rebalanced
MV problem, a high turnover rate is prevailing in our experi-
ments (see Table 2. This is mainly due to the fact that the pur-
chased stocks change significantly from quarter to quarter; we
observe that the previously longed stocks are often liquidated
at each rebalancing time while some new stocks are included
in the portfolio for the current quarter . Such a higher turnover
rate leads to a higher standard deviation for the classical MV
solutions, but not a higher transaction cost due to the low re-



(a) n = 5 (b) n = 10 (c) n = 20

(d) n = 50 (e) n = 100 (f) n = 200

Figure 2: Test of investment strategies for different number of stocks over the period from April 1, 2016 to February 1, 2021.

balancing frequency over the whole investment horizon.

Rebalancing frequency and performance
Specifically in terms of standard deviation and Sharpe ratio, the
IPO-DRL strategy consistently outperforms the other two clas-
sical MV strategies, as shown in Table 2. This may suggest
that, with a multi-period MV formulation (2), the IPO-DRL
strategy can benefit from a closer track of ongoing performance
based on the current wealth and the target related Lagrange
multiplier. The buy-and-hold strategy (with no intermediate re-
balancing) and the MV strategy with quarterly rebalancing may
fail to reduce uncertainty of returns due to delayed responses.

Although the IPO-DRL strategy rebalances daily, the re-
sulting turnover rate is surprisingly small for all of our experi-
ments in Table 2. This indicates that the selected stocks remain
almost unchanged during the whole investment horizon (just
as the buy-and-hold strategy), while the allocation weight on
each stock is only very mildly tuned from day to day. In ad-
dition, it is worth noting that, although with daily rebalancing,
the IPO-DRL strategy has accrued small cumulative transac-
tion cost throughout the investment horizon in all our experi-
ments, demonstrating its feasibility for investment practice.

Data-driven learning versus classical estimation
In addition to the multi-period formulation, the IPO-DRL strat-
egy differs fundamentally from the other two classical MV
strategies in that the expected returns and variance-covariance
matrices do not need to be estimated a priori. Recall that
the DDPG algorithm generates the IPO-DRL strategy directly
based on evaluating and improving the allocation strategies us-
ing the raw price data, without any explicit estimation of model
parameters. On the other hand, the other two classical MV
strategies require model estimations as the input in order to
generate allocation decisions. Consequently, it is shown in Ta-

ble 2 that the uncertainty of the estimations has led to the high
turnover rates and frequent changes of selected stocks for the
quarterly MV strategy which, in turn, amplifies the standard
deviation of the portfolio returns.

5 Related Works

Our work is related to the general inverse optimization prob-
lem, in which the learner seeks to infer the missing information
of the underlying decision model from observed data, assum-
ing that the decision maker is rationally making decisions [50].
Among others, [39] develops an online learning algorithm to
infer the utility function or constraints of a decision making
problem from sequentially arrived observations of (signal, de-
cision) pairs. Their formulation is particularly relevant to the
time-varying nature of risk preferences and expected returns
considered in this paper.

Also related to our work is [38], which creates a novel re-
formulation of the Black-Litterman (BL) framework by using
techniques from inverse optimization. There are two main dif-
ferences between [38] and our approach. First, the problems
we study are essentially different. [38] seeks to reformulate the
BL model while we focus on learning specifically the investor’s
risk preferences together with expected portfolio returns. Sec-
ond, [38] considers a deterministic setting in which the parame-
ters of the BL model are fixed and uses only one portfolio as the
input. In contrast, we believe that investor’s risk preferences
and expected returns are time-varying and propose an inverse
optimization approach to learn them in an online setting with
as many historical portfolios as possible. Such a data-driven
approach enables the learner to better capture the time-varying
nature of risk preferences and better leverage the power and
opportunities offered by “Big data”.



The applications of RL for investment management are not
as plentiful as in other domains, such as games and robotics,
partly due to the scarcity of the available data in the financial
domain. Recently, [9] proposes a data-efficient RL algorithm
to solve the MV problem in continuous time and space, while
[26] develops a more efficient way of using limited real data
to train the RL algorithm in high-dimensional action space.
Both works focus on training allocation strategies either with-
out constraints or with gross leverage constraint. Our work
handles the no-shorting, no-borrowing constraint using deep
neural network approximations with a special structure for the
input data. A similar investment optimization problem under
Dirichlet policies has been recently studied in [51]. It is inter-
esting to note that their algorithm also generates equal-weight
strategy in most cases, although the algorithm is trained using
firm-level data rather than just market data.

6 Conclusion

We have proposed a full-cycle, data-driven (model-free) invest-
ment robo-advising framework that leverages both inverse op-
timization and deep reinforcement learning techniques. Such
an automated investment advising model can naturally lead
to a personalized robo-advisor who can help the retail or in-
stitutional investors automatically determine their risk profiles
and portfolio allocation decisions in real time. Our approach
learns the unknown risk profile of an investor using a two-layer
iterative scheme, capturing both the risk preference and tar-
get return. A downstream multi-period portfolio optimization
problem is further formulated based on the learned risk pro-
file. With deep reinforcement learning and quantitative analy-
sis, we can obtain a dynamic rebalancing strategy catered for
the investor . Our learned investment strategy, when applied to
the overall market as a whole, has demonstrated superior per-
formance against other comparative strategies over the period
from April 1, 2016 to February 1, 2021.

Interesting future research may relate to other model-based
robo-advising frameworks (e.g., [35]). Our framework can also
be useful to learn other types of investment strategies, for ex-
ample, a dynamic index-tracking strategy if the investor prefers
passive investment rather than active investment.

References

[1] N. K. Ahmed, A. F. Atiya, N. E. Gayar, and H. El-
Shishiny, “An empirical comparison of machine learn-
ing models for time series forecasting,” Econometric Re-
views, vol. 29, no. 5-6, pp. 594–621, 2010.

[2] G. Bontempi, S. B. Taieb, and Y.-A. Le Borgne, “Ma-
chine learning strategies for time series forecasting,” in
European business intelligence summer school, pp. 62–
77, Springer, 2012.

[3] M. M. López de Prado, Machine Learning for Asset Man-
agers. Elements in Quantitative Finance, Cambridge Uni-
versity Press, 2020.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al., “Mastering the
game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[5] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, et al., “Mastering the game of Go without hu-
man knowledge,” Nature, vol. 550, no. 7676, pp. 354–
359, 2017.

[6] Y. Nevmyvaka, Y. Feng, and M. Kearns, “Reinforcement
learning for optimized trade execution,” in Proceedings of
the 23rd international conference on Machine learning,
pp. 673–680, 2006.

[7] H. Buehler, L. Gonon, J. Teichmann, and B. Wood, “Deep
hedging,” Quantitative Finance, vol. 19, no. 8, pp. 1271–
1291, 2019.

[8] J. Moody and M. Saffell, “Learning to trade via direct
reinforcement,” IEEE Transactions on Neural Networks,
vol. 12, no. 4, pp. 875–889, 2001.

[9] H. Wang and X. Y. Zhou, “Continuous-time
mean–variance portfolio selection: A reinforcement
learning framework,” Mathematical Finance, vol. 30,
no. 4, pp. 1273–1308, 2020.

[10] T. Thomas and S. Grewal, “Morningstar U.S. fund flows:
Equity funds’ pain mounts in July,” tech. rep., Morn-
ingstar, 2020.

[11] H. Markowitz, “Portfolio selection,” The Journal of Fi-
nance, vol. 7, no. 1, pp. 77–91, 1952.

[12] J. C. Cox and G. W. Harrison, “Risk aversion in experi-
ments: An introduction,” in Risk aversion in experiments
(J. C. Cox and G. W. Harrison, eds.), Research in Experi-
mental Economics, Bingley, UK: Emerald, 2008.

[13] G. Charness, U. Gneezy, and A. Imas, “Experimental
methods: Eliciting risk preferences,” Journal of Eco-
nomic Behavior & Organization, vol. 87, pp. 43–51,
2013.

[14] M. Beketov, K. Lehmann, and M. Wittke, “Robo advi-
sors: Quantitative methods inside the robots,” Journal of
Asset Management, vol. 19, no. 6, pp. 363–370, 2018.

[15] R. B. Barsky, F. T. Juster, M. S. Kimball, and M. D.
Shapiro, “Preference parameters and behavioral hetero-
geneity: An experimental approach in the health and re-
tirement study,” The Quarterly Journal of Economics,
vol. 112, no. 2, pp. 537–579, 1997.

[16] K. C. Yook and R. Everett, “Assessing risk tolerance:
Questioning the questionnaire method,” Journal of Finan-
cial Planning, vol. 16, no. 8, p. 48, 2003.



[17] C. A. Holt and S. K. Laury, “Risk aversion and incen-
tive effects,” American Economic Review, vol. 92, no. 5,
pp. 1644–1655, 2002.

[18] S. Yu, Y. Chen, and C. Dong, “Learning time varying
risk preferences from investment portfolios usinginverse
optimization with applications on mutual funds,” arXiv
preprint arXiv:2010.01687, 2020.

[19] M. J. Best and R. R. Grauer, “On the sensitivity of mean-
variance-efficient portfolios to changes in asset means:
Some analytical and computational results,” The Review
of Financial Studies, vol. 4, no. 2, pp. 315–342, 1991.

[20] V. K. Chopra and W. T. Ziemba, “The effect of errors in
means, variances, and covariances on optimal portfolio
choice,” The Journal of Portfolio Management, vol. 19,
no. 2, pp. 6–11, 1993.

[21] F. Black and R. Litterman, “Global portfolio optimiza-
tion,” Financial Analysts Journal, vol. 48, no. 5, pp. 28–
43, 1992.

[22] E. F. Fama and K. R. French, “Common risk factors in
the returns on stocks and bonds,” Journal of Financial
Economics, vol. 33, pp. 3–56, 1993.

[23] D. Goldfarb and G. Iyengar, “Robust portfolio selection
problems,” Mathematics of operations research, vol. 28,
no. 1, pp. 1–38, 2003.

[24] R. C. Merton, “On estimating the expected return on the
market: An exploratory investigation,” Journal of Finan-
cial Economics, vol. 8, no. 4, pp. 323–361, 1980.

[25] J. G. Kallberg and W. T. Ziemba, “Mis-specifications
in portfolio selection problems,” in Risk and Capital,
pp. 74–87, Springer, 1984.

[26] H. Wang, “Large scale continuous-time mean-variance
portfolio allocation via reinforcement learning,” Avail-
able at SSRN: https://ssrn.com/abstract=3428125, 2019.

[27] J. L. Treynor, “Market value, time, and risk.” Unpublished
manuscript dated 8/8/61, No. 95-209, 1961.

[28] W. F. Sharpe, “Capital asset prices: A theory of market
equilibrium under conditions of risk,” The Journal of Fi-
nance, vol. 19, no. 3, pp. 425–442, 1964.

[29] J. Lintner, “The valuation of risk assets and the selection
of risky investments in stock portfolios and capital bud-
gets,” Review of Economics and Statistics, vol. 47, no. 1,
pp. 13–37, 1965.

[30] J. Mossin, “Equilibrium in a capital asset market,” Econo-
metrica (pre-1986), vol. 34, no. 4, p. 768, 1966.

[31] J. Tobin, “Liquidity preference as behavior towards risk,”
The Review of Economic Studies, vol. 25, no. 2, pp. 65–
86, 1958.

[32] A. Bucciol and R. Miniaci, “Financial risk propensity,
business cycles and perceived risk exposure,” Oxford Bul-
letin of Economics and Statistics, vol. 80, no. 1, pp. 160–
183, 2018.

[33] A. Cohn, J. Engelmann, E. Fehr, and M. A. Maréchal,
“Evidence for countercyclical risk aversion: An experi-
ment with financial professionals,” American Economic
Review, vol. 105, no. 2, pp. 860–85, 2015.

[34] L. Guiso and M. Paiella, “Risk aversion, wealth, and
background risk,” Journal of the European Economic as-
sociation, vol. 6, no. 6, pp. 1109–1150, 2008.

[35] A. Capponi, S. Olafsson, and T. Zariphopoulou, “Per-
sonalized robo-advising: Enhancing investment through
client interactions,” Available at SSRN 3453975, 2019.

[36] M. S. Lobo, M. Fazel, and S. Boyd, “Portfolio optimiza-
tion with linear and fixed transaction costs,” Annals of
Operations Research, vol. 152, no. 1, pp. 341–365, 2007.

[37] M. Roszkowski, G. Snelbecker, and S. Leimberg, “Risk
tolerance and risk aversion,” The Tools and Techniques of
Financial Planning, pp. 213–225, 01 1993.

[38] D. Bertsimas, V. Gupta, and I. C. Paschalidis, “Inverse
optimization: A new perspective on the Black-Litterman
model,” Operations Research, vol. 60, no. 6, pp. 1389–
1403, 2012.

[39] C. Dong, Y. Chen, and B. Zeng, “Generalized inverse op-
timization through online learning,” in NeurIPS, 2018.

[40] N. V. Sahinidis, BARON 17.8.9: Global Optimization
of Mixed-Integer Nonlinear Programs, User’s Manual,
2017.

[41] D. Li and W.-L. Ng, “Optimal dynamic portfolio selec-
tion: Multiperiod mean-variance formulation,” Mathe-
matical finance, vol. 10, no. 3, pp. 387–406, 2000.

[42] X. Y. Zhou and D. Li, “Continuous-time mean-variance
portfolio selection: A stochastic LQ framework,” Applied
Mathematics and Optimization, vol. 42, no. 1, pp. 19–33,
2000.

[43] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control
with deep reinforcement learning,” in International Con-
ference on Learning Representations, 2017.

[44] H. Wang, T. Zariphopoulou, and X. Y. Zhou, “Reinforce-
ment learning in continuous time and space: A stochas-
tic control approach,” Journal of Machine Learning Re-
search, vol. 21, no. 198, pp. 1–34, 2020.

[45] S. Mannor and J. N. Tsitsiklis, “Algorithmic aspects
of mean–variance optimization in Markov decision pro-
cesses,” European Journal of Operational Research,
vol. 231, no. 3, pp. 645–653, 2013.



[46] H. Kushner and G. G. Yin, Stochastic Approximation and
Recursive Algorithms and Applications, vol. 35. Springer
Science & Business Media, 2003.

[47] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prior-
itized experience replay,” in International Conference on
Learning Representations, (Puerto Rico), 2016.

[48] Y. Hu and X. Y. Zhou, “Constrained stochastic LQ con-
trol with random coefficients, and application to portfolio
selection,” SIAM Journal on Control and Optimization,
vol. 44, no. 2, pp. 444–466, 2005.

[49] V. DeMiguel, L. Garlappi, and R. Uppal, “Optimal versus
naive diversification: How inefficient is the 1/N portfolio
strategy?,” The Review of Financial Studies, vol. 22, no. 5,
pp. 1915–1953, 2009.

[50] R. K. Ahuja and J. B. Orlin, “Inverse optimization,” Op-
erations Research, vol. 49, no. 5, pp. 771–783, 2001.

[51] E. André and G. Coqueret, “Dirichlet policies for re-
inforced factor portfolios,” Available at SSRN 3726714,
2020.

[52] AlphaVantage, “AlphaVantage API Documen-
tation.” https://www.alphavantage.co/
documentation/. Accessed: 2020.

[53] A. Frazzini, R. Israel, and T. J. Moskowitz, “Trading
costs,” Available at SSRN 3229719, 2018.

https://www.alphavantage.co/documentation/
https://www.alphavantage.co/documentation/


A Implementation

This section provides the details on the data collected by the
IPO agent and the DRL agent. We also elaborate on how the
data has been used in our experiments, in addition to the imple-
mentation details.

A.1 Implementation for IPO agent

A.1.1 Price data and portfolio data

We collect asset-level holdings of S&P 500 portfolio from
quarterly reports publicly available on the SEC website. Start-
ing from March 2010, we collect portfolio Yt in each quarter t
till March 2020. The total number of observations is T = 40.
In a mutual fund portfolio, assets excluded or newly included
in the 10-year duration are all included, and if at a specific time
t an asset does not appear in holding, its weight is 0.

We query twenty years of historical asset-level price data
from January 1, 2000 to March 31, 2020 using AlphaVantage
API [52]. The yearly profit of individual asset pi,t is calculated
as a ratio. We use a moving window of 252 days (correspond-
ing to the number of trading days per year) on the daily price
sequence data. For each rolling window, the closing price at the
last day of the window is the numerator, and the denominator is
the closing price of the first trading day of the window. In this
way we obtain the rolling yearly profit at day level. We then
further aggregate this day-level rolling yearly profit to month
level by averaging the profit values of all trading days in the
same month. Thus, we denote by pt the vector of yearly profit
ratio, where each element corresponds to each individual asset
at month t. We let Pt = [p1, ...,pt].

At each month t, we consider the backward history of w
months as the observation of market signals. The covariance
matrix is calculated as

Qt = cov([pt−w, ...,pt], [pt−w, ...,pt]). (6)

The initial expected asset-level return c0 is set to be the sim-
ple mean of historical profits during the observation period
[pt−w, . . . ,pt]. The initial risk preference r0 is usually set to
a small constant value such as 1 or 2.

A.1.2 Time-varying Observations

As illustrated in Figure 3, we align portfolio Yt and price Pt

on the same timeline. We start our learning from March 2015,
which corresponds to t = 183 for Pt and t = 20 for Yt. At
the first learning point, if we use the entire observed price his-
tory, then w = t − 1. We use price data from January 2000 to
December 2014 to estimate the covariance matrix Qt and the
initial asset-level return guess c0. Then, we use historical port-
folio observations y1, ...,yt (starting from March 1, 2010) to
learn rt, ct. For the next learning point, we shift forward three
months. The number of portfolio observations increases by 1 as
t increases by 1. For example, when t = 20, we use y1, ...,y20
to estimate rt, ct. When t = 21, estimation is done by observ-
ing y1, ...,y21. So the more recent estimations of rt, ct have

Figure 3: Time-varying observations for risk preference and
expected return learning.

more observations of yt. When t changes, the algorithms re-
set the initial guess of r0 and c0, and we use the same initial
guess r0 at different t, and c0 is the simple average of the new
sequence [p1, ...,pt]. In other words, at different t, the esti-
mations obtained from previous observation time t− 1, known
as rt−1, ct−1, have no impact on the current rt, ct. Each time
when t changes, the learning restarts from the first element till
the last element of the sequence (y1, ...,yt) again.

A.2 Implementation for DRL agent

The DRL agent relies on historical daily price data of all the
S&P 500 constituent stocks to train, validate and test the DDPG
algorithm. In particular, the test periods are from April 1, 2016
to February 1, 2021, separated into multiple one-year moving
windows.

For each one-year test period, we use the previous two-year
daily data to train and validate the DDPG algorithm. Based on
the validation using the second year price data, we choose the
DDPG model that generates the highest average Sharpe ratio
(among 100 validating portfolios) as the best model, and its
performance is then tested on the subsequent one-year testing
data. For all the tests, we randomly select 100 portfolios each
consisting of n stocks and provide investment outcomes regard-
ing their performance, including the average wealth (i.e., port-
folio value) process and the 95% confidence bands as shown
in Figure 2. In addition, we also calculate the performance
statistics, such as the cost-adjusted return, standard deviation,
Sharpe ratio, cumulative traction cost, turnover rate and max-
imum drawdown, for the learned portfolio rebalancing strate-
gies, provided in Table 2. All these statistics are based on the



average results of 100 randomly selected portfolios. Specifi-
cally, for a single portfolio, the daily turnover rate is computed
using the following definition from [49]

Turnover rate = 1
N − 1

N−2∑
i=0

n∑
j=1

∣∣∣vj
i+1 − v

j
i+

Wi+1

∣∣∣× 100%. (7)

Here, vj
i+1 is the dollar value to be invested in stock j at the

(i + 1)-th rebalancing time, while vj
i+ is the holding value in

stock j right before the (i + 1)-th rebalancing happens. The
transaction cost is related to the turnover (7); it is generated
by the accumulative turnover within the test period, using a
proportional transaction cost rate c, i.e.,

Transaction cost = c

W0

N−2∑
i=0

n∑
j=1

∣∣vj
i+1 − v

j
i+

∣∣× 100%. (8)

This formula computes the total cost incurred from each trans-
action order (including both buy and sell orders) within the in-
vestment horizon during test. To comply with recent empiri-
cal studies (see, e.g., [53]), we choose c to be 5 basis points
per transaction of the underlying S&P 500 stocks in our ex-
periments. Finally, the maximum drawdown is defined as the
maximum observed loss from a peak to a trough of a portfolio,
before a new peak is attained, i.e.,

Maximum drawdown = max
0≤i1≤i2≤N−1

Wi1 −Wi2

Wi1

, (9)

where Wi is the portfolio value at date i.


	1 Introduction
	1.1 Challenges of applying ML to investment management
	1.2 Our main contributions

	2 Machine Learning Agents
	2.1 The inverse portfolio optimization (IPO) agent
	2.1.1 Portfolio optimization problem
	2.1.2 Learning time-varying risk preferences and expected returns together

	2.2 The deep reinforcement learning (DRL) agent
	2.2.1 The multi-period MV problem
	2.2.2 Deep reinforcement learning
	2.2.3 DDPG adaptations for constrained MV problem


	3 Results
	4 Discussions
	5 Related Works
	6 Conclusion
	A Implementation
	A.1 Implementation for IPO agent
	A.1.1 Price data and portfolio data
	A.1.2 Time-varying Observations

	A.2 Implementation for DRL agent


