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Abstract

The vulnerability of Deep Neural Network (DNN) mod-
els to maliciously crafted adversarial perturbations is a
critical topic considering their ongoing large-scale deploy-
ment. In this work, we explore an interesting phenomenon
that occurs when an image is reinjected multiple times
into a DNN, according to a procedure (called reverbera-
tion) that has been first proposed in cognitive psychology to
avoid the catastrophic forgetting issue, through its impact
on adversarial perturbations. We describe reverberation in
vanilla autoencoders and propose a new reverberant archi-
tecture combining a classifier and an autoencoder that al-
lows the joint observation of the logits and reconstructed
images. We experimentally measure the impact of reverber-
ation on adversarial perturbations placing ourselves in a
scenario of adversarial example detection. The results show
that clean and adversarial examples — even with small lev-
els of perturbation — behave very differently throughout re-
verberation. While computationally efficient (reverberation
is only based on inferences), our approach yields promis-
ing results for adversarial examples detection, consistent
across datasets, adversarial attacks and DNN architectures.

1. Introduction

Deep neural networks (DNNs) are vulnerable to mali-
ciously crafted inputs that visually resembles the learned
data but translate into erroneous predictions, known as ad-
versarial examples [28]. This problem has the potential
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to cause dramatic damages considering the large deploy-
ment of DNNSs, in particular when the predictions involve
real-world decisions (e.g. autonomous cars, banking sys-
tem, flow regulation). In consequence, a variety of defenses
against adversarial examples have been proposed.

The defenses to mitigate adversarial attacks can be
broadly classified into two categories: proactive or reactive
defenses. Proactive defenses intervene before testing time
by modifying the architecture of the attacked model or its
training for it to become more robust against adversarial ex-
amples. For examples, adversarial learning belongs to this
category. Reactive defenses play the part at testing time.
Methods based on inputs transformation to filter out adver-
sarial examples typically belong to this category.

The first range of defenses aims at correctly classifying
the adversarial examples. Some of these methods rely on a
preprocessing of the inputs to reduce or remove the adver-
sarial perturbations, for example as in [11] by using a de-
noising autoencoder. However, most of these defenses were
proved to be ineffective against advanced attackers. A pop-
ular robustness-based defense is adversarial training, which
consists in augmenting the training set with adversarial ex-
amples [9, 21]. Subsequent improvements were proposed
to make the models even more robust to adversarial exam-
ples within a given range [30, 3, 7, 32]. While adversarial
training improves robustness against specific attacks, these
computationally expensive defenses target a limited range
of adversarial perturbations, and the DNNs trained this way
are still vulnerable to counter-attacks.

The difficulty of correctly classifying adversarial exam-
ples shift some of the effort towards detecting them instead.
In the same vein as adversarial training for robustness-based



defenses, learning-based adversarial detection methods uti-
lize adversarial examples during the training phase, but of
the model used as a detector (e.g. [10]). Although both pop-
ular and reliable, these methods suffer from the weaknesses
mentioned above for adversarial training. Another class of
methods is based on extracting some knowledge from a set
of data and use it to differentiate adversarial inputs, for ex-
ample using some statistics [ 1 0], after having added random
noise to the input [24] or transformed it [12]. Other ap-
proaches capitalize on the fact that an adversarial example
may not fool all the classifiers and accordingly pass the in-
put through various models to detect adversarial examples
[19, 27]. Number of adversarial detection methods were
proved not to be robust [4] and adversarial examples detec-
tion is still a challenging topic.

This paper introduces a novel approach to apprehend ad-
versarial perturbations based on a reverberation of the in-
puts through an artificial neural network (ANN) . Reverber-
ation refers to the process of reinjecting an input multiple
times through an ANN by using as inputs the successive
outputs produced by the model. It requires an architec-
ture implementing an autoencoder function for the output
to be used unchanged as input. When going through such
a procedure, we observe that clean and adversarial exam-
ples behave very differently, which allows us to distinguish
one from the other. To characterize the phenomenon, we
place ourselves in an adversarial examples detection sce-
nario to measure the impact of reverberation on adversarial
perturbations. More precisely, we adopt a reactive defense
scenario where we transform the inputs using reverberation
through autoencoders trained with clean data. The principal
contributions of this paper are as follow:

e We present the reverberation procedure as proposed in
cognitive psychology to deal with catastrophic forget-
ting (Section 2.1) and give our motivations to intro-
duce it in the study of adversarial perturbations (Sec-
tion 3.1);

e We detail a way to implement reverberation for adver-
sarial examples detection, in particular by proposing a
new “reverberant” architecture (Section 3);

e We conduct an experiment on different datasets, vary-
ing DNN architectures and adversarial attacks, to pro-
pose a first characterization of the impact of reverber-
ation on adversarial perturbations (Sections 4 and 5).

2. Related work

In this section, we first describe the reverberation pro-
cedure that has been first proposed in cognitive psychology
(Section 2.1) and then present the adversarial examples de-
tection methods that relates to the work presented in this
paper (Section 2.2).

2.1. The reverberation procedure as proposed in
cognitive psychology

In contrast to human brain, ANNs tend to forget their
previous knowledge when learning new information, a well-
known problem called catastrophic forgetting. Research
in cognitive psychology [2], that aims at computationally
modelling human memory in a biologically plausible way,
proposed an original solution to this problem. The core idea
is to reinject several times a noise into an ANN to create
”pseudo-examples” that reflect its current state of knowl-
edge, to be learned with new information. To implement
a "reverberant” architecture into a ANN, Ans and Rousset
add backward connections between some layers besides the
regular forward connections. They found that using these
pseudo-examples along with the new information during
subsequent training benefit the preservation of the anterior
knowledge. In our case this means that a noise that rever-
berates into an ANN converges one way or another towards
the internal information distributed within its parameters
since it enables to capture it. To the best of our knowledge,
nowhere this thinking was applied and reverberation-based
approaches proposed in the study of adversarial perturba-
tions or detection in the broad sense (including detection of
novelty, anomalies and adversarial examples).

2.2. Adversarial examples detection

Adversarial examples detection methods try to catego-
rize inputs as clean or adversarial. Among them, the
learning-based detection methods [10, 8] utilize a network
to detect adversarial examples. For example, the authors
of [22] trained on both clean and adversarial examples a
sub-network classifier to detect adversarial examples for
each adversarial attack considered. The detector sounds
to achieve a good performance when the adversarial ex-
amples to be detected at testing time and the ones used to
train the detector were generated with the same adversar-
ial attack, but the generalization across different adversarial
attacks and attacks parameters is poor. This highlights a
major drawback of these methods: to achieve a proper ac-
curacy, they require to train the detector on adversarial ex-
amples generated using all adversarial attacks in addition to
clean data. Besides being computationally expensive, they
may not be useful against new adversarial attacks. In [5],
MagNet uses detectors, but they are not trained on adver-
sarial examples: they learn the manifold of clean data and
compare the inputs with the manifold at testing time. The
detection scenario in which we explore the impact of rever-
beration on adversarial perturbations (see Section 3.3) also
requires only clean data.

Some methods try to remove the effect of adversarial at-
tacks by adding random noise to the inputs [25, 13] or by
transforming them. In [20], the authors compare the clas-
sification results of the input and its denoised version to



detect adversarial examples. The authors of [31] compare
the predictions of the model for the original input and for
a squeezed version of the same input to detect adversarial
examples. In [12], PCA is used to transform the inputs. In
[23], noises are added to the PCA transformations of the in-
puts which substantially help to detect adversarial examples
which are close to or far from the decision boundary. In this
paper, reverberation is explored as an input transformation-
based procedure that operates the transformation directly
into the detector model as explained in Section 3.2.

DNNs give wrong predictions with high confidence val-
ues to adversarial examples. Some methods try to detect
adversarial examples based on the observation of the logits
(i.e. the absolute logit activation values that usually are the
input of the last, softmax layer in classifiers). In [1], the
authors study how the logits are distributed for adversarial
examples compared to clean data and show that the logits
provide relevant information to differentiate them. Conse-
quently, they train a network that takes the logits as input
and predict if the classification is correct or not. In [25], the
authors observe that robustness of logits to noise depend
on whether the input is clean or adversarial, which allows
them to differentiate the two sorts by using a statistical test.
In this paper, we introduce a new reverberant architecture
that enables us to quantify the change in the logits while the
inputs are reverberated (see Section 3.2.2).

3. Proposed method

In this section, we first reveal our motivations behind in-
troducing reverberation in the study of adversarial perturba-
tions (Section 3.1). Then, we detail the reverberation pro-
cedure and propose a new reverberant architecture (Section
3.2). We finally propose to measure the impact of reverbera-
tion on adversarial perturbations in an adversarial examples
detection scenario (Section 3.3).

3.1. Motivations

Our main source of inspiration is [2], where the authors
propose the reverberation procedure to model the func-
tioning of human memory, and in particular to deal with
catastrophic forgetting. They show that reinjecting multiple
times a noise within an ANN captures a part of its internal
knowledge. Moreover, reinjecting different noises allows
them to sample the learned data distribution to generate syn-
thetic examples diverse enough to reflect the anterior state
of knowledge of the ANN. Since reverberation produces
from noises synthetic data that resembles the learned data,
then it makes the noises to converge one way or another to-
wards the ANN internal knowledge and not all noises con-
verge towards the same part of this knowledge. This in-
spired us this hypothesis: while reverberated, the inputs
converge differently depending on their resemblance with
the learned data distribution, which enables to detect novel

or abnormal data. Accordingly, we expect adversarial data
not to behave the same way as clean data when reverberated,
and that this to translate into a quantifiable difference.

Additionally, several studies proposing defenses against
adversarial examples inspired us to import reverberation to
study adversarial perturbations, in particular the ones fo-
cusing on input transformation and using autoencoders to
remove amounts of the adversarial perturbations. In some
ways, by applying reverberation to study adversarial pertur-
bations, we push the idea of input transformation by multi-
plying inferences in an autoencoder. Moreover, studies that
observe the logits to detect adversarial examples inspired us
the reverberant hybrid model we introduce in Section 3.2.2,
which combines a classifier and an autoencoder and enables
us to observe the displacement of the logits through rever-
beration.

3.2. Reverberant models

We define reverberation as the process of reinjecting an
input into an ANN at least one time. One way to imple-
ment it is to use an autoencoder that reconstructs the input
for the output to be reinjected in the same format. In this
section, we present two reverberant architectures: a vanilla
autoencoder (Section 3.2.1) and a hybrid model combining
an autoencoder and a classifier (Section 3.2.2).

3.2.1 Reverberation through autoencoders

The simplest architecture, inherently reverberant, is the ba-
sic autoencoder. As such, this is one of the two architec-
tures we propose to conduct a first analysis of the effect
of reverberation on adversarial perturbations. Reverbera-
tion into an autoencoder simply consists in using as input of
the model its own output. Figure 1 shows examples of re-
verberated MNIST test set images [ 8] and adversarial ex-
amples generated by using the Fast Gradient Sign Method
(FGSM) [9] (see Section 4.1 for details about the parame-
ters of the attack). We can observe that clean images tend to
remain stable when reverberated through the autoencoder
while adversarial examples change, even for a small level
of perturbation. Figure 2 illustrates a similar phenomenon
for reverberated Fashion-MNIST test set images [29] and
adversarial examples generated by using the L,-norm Pro-
jected Gradient Descent attack (Lo.-PGD) [16].

3.2.2 Reverberation through hybrid models

To study reverberation in more complex datasets, we pro-
pose a hybrid architecture that combines a classifier and an
autoencoder. Figure 3 shows such a vanilla hybrid rever-
berant architecture. The ANN has two outputs: an output
intended for the input replication and an output for the clas-
sification. Besides enabling us to use the logits information,
we propose this hybrid architecture for two reasons. Carlini
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Figure 1: Reverberations through a vanilla autoencoder of
MNIST images and adversarial examples generated by at-
tacking a LeNet model with FGSM attack. We can observe
that while clean images remain stable during reverberation,
adversarial images change. This is particularly the case
when the perturbation size € is high. Measuring the dif-
ference between the original input and the output resulting
from the fifth reverberation is enough to distinguish adver-
sarial examples from clean images, as proved by the exper-
iment presented below (see Section 4).
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Figure 2: Reverberations through a vanilla autoencoder of
Fashion-MNIST images and adversarial examples gener-
ated by using the L,,-PGD attack. We can observe a phe-
nomenon similar to the one observed in Figure 1 for MNIST
images and adversarial examples generated with the FGSM
attack.

et al. [4] find that using a second neural network to identify
adversarial examples is the least effective defense among
ten tested. While we propose in this paper a first study of
reverberation in an adversarial examples detection scenario,
we want the reverberation to possibly be integrated directly
into the attacked model. This a point we will address in
a further paper (while we briefly discuss this point in Sec-
tion 6): the hybrid architecture enables to directly address
the problem of robustness of DNNs to adversarial exam-
ples (i.e. their correct classification) instead of the problem
of detection. As part of the experiment presented in this
paper, to study the impact of reverberation on adversarial
examples generated from CIFAR-10 images [15] we build
a hybrid architecture on a DenseNet classifier (see Section
4.2).

3.3. Adversarial examples detection

We observed that clean and adversarial examples behave
very differently when reverberated. To measure the impact
of reverberation on adversarial perturbation, one can place
himself in an adversarial examples detection scenario (this
is the case in our experiment detailed in Section 4). To de-
tect adversarial examples with a basic autoencoder trained
on clean data, each new incoming input is reverberated sev-
eral times through the model. After n reverberations, an
image similarity metric can be used to measure the differ-
ence between the original input and the last reconstructed
1nput.
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Figure 3: Training and reverberations into a vanilla hybrid
reverberant model for adversarial examples detection. The
inputs are MNIST images (784 pixels, 10 classes). (a) The
training is done by reducing the binary cross-entropy loss
functions for reconstruction and classification. (b) Once the
training is complete, the model can be used in detection
mode. Each new incoming input is reverberated multiple
times, and we measure the discrepancy between the logits
and reconstructed images throughout the reverberation pro-
cess.

The detection is slightly more complex in reverberant
hybrid models. As shown in Figure 3b, this new archi-
tecture allows us to measure the difference between logits
across reverberations besides the image similarity. The his-
togram is Figure 4 shows the average Mean Squared Error
(MSE) between the logits resulting from the first inference
and the logits resulting from the 10*" reverberation for clean
CIFAR-10 images and their adversarial examples counter-
parts generated by attacking our hybrid model (presented
in Section 4.2) with FGSM (detailed in Section 4.1). We
can observe that the MSE between the logits enables to dis-
criminate to a certain extent between clean and adversarial
examples.

4. Experimental setup

We conduct an experiment to measure the impact of re-
verberation on adversarial perturbations by adopting an ad-
versarial examples detection scenario. More precisely, we

Average MSE

s FGSM strength (epsilon)
Figure 4: Average MSE between logits resulting from the
first inference and logits resulting from the 10" reverbera-
tion for clean CIFAR-10 images and adversarial examples
generated from these images with FGSM. Error bars reflect
the Standard Error of the Mean.

set up a reactive defense scheme where the detector is inde-
pendent from the model under attack (i.e. it does not modify
the target model) and from the adversarial attack. Conse-
quently, the proposed models for adversarial examples de-
tection use only clean data (in our case, only the training set
of the considered datasets) to build their knowledge.

4.1. Data and adversarial examples generation

We measure the effect of reverberation on adversarial ex-
amples detection on three datasets: MNIST [ 18], Fashion-
MNIST [29] and CIFAR-10 [15]. For each dataset, we gen-
erate adversarial examples from 10, 000 images of the test
set by attacking classifiers with an untargeted attack (i.e.
to generate adversarial examples misclassified by the clas-
sifier into any class as long as it is different from the true
class). For MNIST, the attacked classifier is a LeNet [17]
that achieves a classification accuracy of 98.76% on the
test set. For Fashion-MNIST, it is a CNN-classifier that
achieves a classification accuracy of 90.91% on the test set.
For CIFAR-10, we vary the architecture of the models un-
der attack to evaluate its impact on the detection rate of our
detector (which is based on a DenseNet architecture [14],
as explained in Section 4.2). Hence we use a DenseNet-
121 and a VGG-13 [26] classifiers, that achieve a very close
classification accuracy on the test set: 94.14% and 94.29%
respectively.

We consider three adversarial attacks: FGSM [9], L .-
PGD [16] and Ly Carlini and Wagner attack (Lo-CW) [6].
Depending of their parameters, not all attacks are always
successful at creating a “true” adversarial example that fool
the classifier under attack. Moreover, some of the test set
images are misclassified by the models before the adver-
sarial attack. We discard these two sorts of images before
adversarial examples detection, retaining only true adver-
sarial examples. Consequently, in each condition tested, the
attacked model obtain a classification accuracy of 0% on
the adversarial examples retained for detection. Note that
this implies a number of true adversarial examples different
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Figure 5: A batch of CIFAR-10 images reconstructed by
our hybrid model.

in each condition, the minimum of all the conditions being
2356 true examples at testing time. Table | provides de-
tails about the parameters of the adversarial attacks in each
experimental condition.

4.2. Reverberant models parameters and training

For MNIST and Fashion-MNIST, we train basic autoen-
coders with the images of the training set of the respec-
tive datasets. As previously mentioned, for CIFAR-10 we
train a hybrid model, combining a classifier and an autoen-
coder, as presented in Figure 3. However, while the figure
presents a vanilla hybrid model for the sake of clarity, we
use a more complex model, based on a DenseNet archi-
tecture augmented with an autoencoder. As illustrated in
Figure 3a, we use two loss functions for the training: the
binary cross-entropy to translate the difference between the
input images and their replications and the cross-entropy
to translate the difference between the outputted labels and
ground truth labels. The total loss function to be minimized
by iteratively updating the model’s parameters was the sum
of these two functions. Our trained hybrid model achieves
a classification accuracy of 92.83% on CIFAR-10 test set.
Figures 5 shows a batch of test set CIFAR-10 images recon-
structed by our hybrid model.

4.3. Metrics and method

At testing time, in each experimental condition the de-
tector model is provided with 10, 000 clean examples from
the test set of the considered dataset and the correspond-

ing true adversarial examples (as defined in Section 4.1).
For MNIST and Fashion-MNIST, each input is reverberated
five times into the autoencoder, then we calculate the MSE
between the original input and the image resulting of the
last inference. For CIFAR-10, we calculate the MSE be-
tween the logits resulting from the first inference and the
logits resulting from the 10t" inference. Note that we use
only MSE for the sake of comparison, while we found other
metrics (such as the Pearson correlation coefficient or Struc-
tural Similarity Index Measure) being occasionally better.
A pretest enabled us to determine that five reverberations
for MNIST and Fashion-MNIST, ten for CIFAR-10, if not
always optimal, is enough to observe a clear divergence in
the behaviour of clean and adversarial examples. Further-
more, for MNIST and Fashion-MNIST, we observed that
the function that associates our metrics and reverberation is
always monotonic during the first five reverberations: the
MSE between the first inference output and the n*” infer-
ence output is always smaller that with the n‘" + 1 output.

To decide if an input is adversarial, a natural way is to ex-
tract some statistical descriptor from clean data to be com-
pared with the inputs during testing time. In our experiment,
we reverberate five times (ten for CIFAR-10) a sample of
the clean data drawn from the considered dataset. Then, we
compute a threshold to decide if the input is adversarial that
depends on the tolerated false positive rate (FPR). We vary
the FPR from 0 to 100 with steps equal to 0.1 and obtain a
threshold 7" for each FPR 7 calculated as follows:

T‘i = max(MSEclean) (1)

with M SFE jcqr being the list of MSE for each of the re-
verberated clean inputs minus the i*" highest MSE values.
For example, for FPR = 1, which means that 1% of false
positives is tolerated, the threshold is equal to the maximum
of the 99% lowest values of the clean MSE list. At testing
time, for each input we compare the MSE calculated after
five (10 for CIFAR-10) reverberations with the threshold of
the corresponding dataset in such a way that, if it is lower,
the detector classifies the input as clean, or as adversarial
otherwise. By varying the FPR, we calculate the Area Un-
der the Receiver Operating Characteristic curve (AUROC).

5. Results

Table 2 shows the results obtained for adversarial exam-
ple detection. The perturbation size e tends to change de-
pending on the considered dataset. We report in the table the
results for attack parameters commonly found in the litera-
ture. The results show that reverberation has an important
impact on adversarial perturbations, as measured through
their detection. This is true for all the considered datasets
and adversarial attacks, while the detection values are lower
for CIFAR-10 and Lo-C&W. This is result one could ex-
pect, however, as CIFAR-10 is the most complex of the



FGSM L..,-PGD Ly-C&W
MNIST e=0.3 €=0.3, @=0.01, nb;te,,=100 c=5, k=0, steps=1000, 1r=0.1
Fashion-MNIST e=0.2 €=0.2, @=0.01, nb;s,=100 c=5, k=0, steps=1000, 1r=0.1
CIFAR-10 €=8/255 || €=8/255, alpha=2/255, nb;+¢,=100 || c=5, k=0, steps=1000, Ir=0.1

Table 1: Parameters of the conducted adversarial attacks.

three datasets considered and Lo-C&W the most powerful
adversarial attack of the three considered with the retained
parameters. Keep in mind, however, that the difference be-
tween attack parameters and reverberant models makes not
all the conditions fully comparable.

As mentioned, our reverberant hybrid model for CIFAR-
10 is built on a DenseNet architecture similar to one of the
classifier under attack — the other classifier having a VGG
architecture. The results show no substantial difference re-
garding detection between the two architectures, which is
consistent with the scenario of a detector fully independent
from the model under attack.

For MNIST and Fashion-MNIST, we additionally tested
a range of perturbation sizes for FGSM and PGD. Figure 6
shows the corresponding ROC curves. We can observe that,
regardless of the dataset or attack, the detection is always
made easier by a greater perturbation size (¢). At a certain
level of perturbation, almost all the adversarial examples are
detected even for low levels of tolerated false positives.

6. Discussion

We proposed a first analysis of the impact of reverbera-
tion on adversarial perturbations through a scenario of ad-
versarial examples detection. Our experiment shows that,
while simple and fast, reverberation has a different effect
on clean and adversarial examples that allows for their dif-
ferentiation to some extent. This is the first characterization
of this phenomenon: there is probably room for improve-
ment. The first thing one could do to maximise the distor-
tions of adversarial examples under the effect of reverbera-
tion is to conduct an extensive study of the parameters that
affect them. Besides obvious parameters that widely affect
ANNE, a list would include: the reverberant ANN architec-
ture (e.g. classification and autoencoding can be realized in
different parts of the network), the size of the bottleneck in
autoencoders, the number of reverberations and the images
and logits similarity measures.

We measured the impact of reverberation on adversar-
ial perturbations thanks to the implementation of an adver-
sarial examples detection-based reactive defense. Another
interesting scenario to explore would be the embedding of
reverberation in a robustness-based defense. This way, one
could measure whether a reverberant DNN under attack bet-
ter classify adversarial examples than its regular counter-
part. If we take a careful look at the Figures 1 and 2, we can

observe that adversarial examples tend to change into some-
thing else that resembles a prototypical image of another
class under the effect of reverberation. It would be inter-
esting to evaluate if adversarial examples converge towards
their true class. As the case may be, a built-in reverberation-
based defense could be simply based on multiple reverber-
ations of the inputs before classification.

7. Conclusion

We introduced reverberation in the study of adversarial
perturbations and proposed a first experimental analysis of
its impact through an adversarial detection scenario. We
also proposed an original reverberant hybrid DNN architec-
ture that combines a classifier and an autoencoder. Our re-
sults show that reverberation has a different impact on clean
and adversarial images. There are a number of unanswered
questions regarding the reasons of this phenomenon, and a
research effort is still to be done to fully benefit from its
implementation. Further research on reverberation may ad-
vance our understanding of adversarial perturbations. Be-
yond this topic, reverberation could bring solutions in other
machine learning tasks. The most obvious are anomaly and
novelty detection tasks. Reverberation has also a natural
potential for data augmentation.
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