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Abstract—Mixed-precision (MP) arithmetic combining both
single- and half-precision operands has been successfully applied
to train deep neural networks. Despite its advantages in terms
of reducing the need for key resources like memory bandwidth
or register file size, it has a limited capacity for diminishing
further computing costs, as it requires 32-bits to represent
its output. On the other hand, full half-precision arithmetic
fails to deliver state-of-the-art training accuracy. We design
a binary tool SERP based on Intel Pin which allows us to
characterize and analyze computer arithmetic usage in machine
learning frameworks (Pytorch, Caffe, Tensorflow) and to emulate
different floating point formats. Based on empirical observations
about precision needs on representative deep neural networks,
this paper proposes a seamless approach to dynamically adapt
floating point arithmetic. Our dynamically adaptive methodology
enables the use of full half-precision arithmetic for up to
96.4% of the computations when training state-of-the-art neural
networks; while delivering comparable accuracy to 32-bit floating
point arithmetic. Microarchitectural simulations indicate that our
Dynamic approach accelerates training deep convolutional and
recurrent networks with respect to FP32 by 1.39× and 1.26×,
respectively.

Index Terms—Reduced Precision, bfloat16, Mixed Precision
(MP), Binary Analysis Tool, Dynamic Precision.

I. INTRODUCTION

The use of Deep Neural Networks (DNNs) is becoming
ubiquitous in areas like computer vision [1] or language trans-
lation [2]. DNNs display remarkable pattern detection capa-
bilities. In particular, Convolutional Neural Networks (CNNs)
are able to accurately detect and classify objects over large
image data sets [1], and Recurrent Neural Networks (RNNs)
using encoder-decoder models are capable of solving tasks like
Neural Machine Translation (NMT) [3]. However, to achieve
the desired levels of accuracy, a large amount of samples needs
to be exposed to the models for tens or even hundreds of times
during training. This fact drives training costs up in terms of
resources like power, memory storage or compute time.

Several proposals successfully mitigate training costs by
replacing the use of standard floating point 32-bit (FP32) arith-
metic with alternative approaches that employ non-standard
low precision data representation formats [4]–[6]; reducing
memory storage, bandwidth requirements, and compute costs.
Hardware vendors have incorporated half-precision data for-
mats [7], [8] like the BFloat16 (BF16) format [8] and have
implemented mixed-precision (MP) instructions, which aim at
reducing memory bandwidth and storage consumption.

MP relies on Fused Multiply-Add (FMA) instructions that
involve 16-bit inputs for the multiplier, and an FP32 accumula-
tor that generate an FP32 output. Therefore, MP does not fully
deliver the potential benefits of reduced precision arithmetic
since it requires writing back to memory a 32-bit output,
limiting the computational throughput of data-level parallelism
techniques like vectorization; heavily used in mathematical
and DNN libraries. MP constitutes an intermediate approach
between the widely used 32-bit arithmetic and a full 16-bit
approach. The latter can deliver larger performance improve-
ments, but suffers from significant accuracy degradation when
training state-of-the-art (SoA) neural networks.

We design a binary instrumentation tool named SERP
(Seamless Emulation of Reduced Precision Formats), which is
based on Intel Pin and allows us to characterize and analyze
computer arithmetic usage in machine learning frameworks
(e.g., Pytorch, Caffe and Tensorflow), as well as to emulate
any different floating point formats. We analyze multiple SoA
CNN and an RNN models and find that over 98,15% of the
total floating point instructions are FMAs. To better analyze
network behavior from a computer arithmetic perspective,
we observe the network’s requirements in terms of floating
point precision in various phases of the training algorithm and
learning epochs.

Based on our empirical observations about precision needs
in representative DNNs, this paper proposes a seamless ap-
proach that dynamically adapts floating point precision arith-
metic. Our Dynamic approach enables the use of true half-
precision arithmetic for most of the training process, achieving
performance improvements and comparable training accuracy
with respect to FP32 and MP. Our proposal employs simple
heuristics based on the evolution of the training loss function to
decide the adequate precision to use for a number of batches.

Our evaluation with SERP shows that the Dynamic approach
is able to obtain comparable accuracy w.r.t FP32 and MP
training for CNN and RNN models over the same number of
iterations. For all evaluated CNNs, over 94.6% of the FMAs
are performed entirely in half-precision (BF16), demonstrating
that it is possible to use half-precision computations for a
large portion of the training process without incurring in any
accuracy degradation. In addition, we show that our heuristics
are sensitive to the network requirements, increasing the
amount of MP (or FP32) computations when half-precision is
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Fig. 1: Alternatives when computing a Fused Multiply-Add (FMA) instruction.

TABLE I: SoA FMAs for training.

Training Inputs Output Multiply Accum.
A,B C D

Tensor cores FP16/BF16 FP32 FP32 FP16/BF16 FP32
Google TPU v3 BF16 FP32 FP32 BF16 FP32
AVX512-BF16 BF16 FP32 FP32 FP32 FP32

Full BF16 BF16 BF16 BF16 BF16 BF16

not enough in terms of accuracy. Finally, we use the Sniper [9]
architectural simulator to evaluate the performance benefits
of our approach, since there is no real hardware supporting
full BF16 FMA instructions. Our evaluation shows that the
Dynamic approach accelerates training by 1.39× and 1.26×
over FP32 for CNN and RNN, respectively; while keeping the
same accuracy levels.

II. BACKGROUND IN MIXED-PRECISION TRAINING AND
MOTIVATION

MP diminishes training costs by reducing the data represen-
tation size of certain network components. Weights, activations
and gradients are stored in half-precision. Importantly, some
phases of the training process like computing weight updates
(WU) and batch normalization (BN) layers require full FP32
precision, which requires representing the weights in 32-bits.

Nvidia GPUs support MP training by leveraging their tensor
cores, which combine the floating point 16-bit (FP16) and
FP32 [7] formats in FMA instructions. Figure 1a displays a
MP FMA instruction, which computes D = A ·B +C. Input
parameters A and B are represented in FP16 and the result is
added to the third input C, typically a 32-bit weight. The final
output D is also represented in FP32. This approach requires
applying a scaling factor when converting FP32 values to FP16
to avoid range representation issues.

Similarly, hardware vendors [8], [10] propose combining
the BF16 and FP32 formats in a single FMA instruction,
which Figure 1b shows. Conversion from FP32 to BF16
does not require a scaling factor as both types have the
same representation range and, therefore, the conversion just
requires applying Round to Nearest Even (RNE) rounding.

MP FMA instructions bring significant benefits since they
require less memory bandwidth and register storage than
FP32 FMAs. However, using a full BF16 FMA like the one
represented in Figure 1c provides even larger benefits. In
terms of memory bandwidth, BF16 FMAs require moving 50%
and 33% less data than FP32 and MP FMAs, respectively.
Similarly, BF16 FMAs require one half and two thirds of FP32
and MP FMAs register storage, respectively.

Table I summarizes the input/output data types and the
precision employed during the arithmetic operations in three
SoA MP approaches. Both Nvidia GPUs (tensor cores) and
Google TPUs [11] take multiplication inputs in half-precision
format while the accumulator and accumulation arithmetic use
FP32, producing an FP32 output. Recent Intel Xeon CPUs
implement the new AVX512-BF16 extensions [12], which also
feature half-precision multiply inputs but convert them to FP32
before the arithmetic operations, i.e., the FMA is entirely

performed using FP32. Finally, we propose to use full BF16
FMA operations to train DNNs, which can provide significant
savings in register storage, bandwidth, functional unit logic,
and performance improvements by better leveraging data-level
parallelism via vectorization.

To date, the implementation of full BF16 FMAs has not
been adopted by hardware vendors, as training DNNs using
BF16 FMAs does not provide SoA convergence properties,
leading to lower accuracy with respect to MP and FP32
training. In this paper we describe a Dynamic approach that
enables using BF16 FMAs for almost the entire training
process while keeping the same convergence properties as
FP32 and MP training. We apply all SoA FMA approaches
to train four relevant models in Section III, and we analyze
the reasons why a full 16-bit approach does not provide
enough accuracy. Based on these observations, we describe
our Dynamic precision approach in Section IV.

III. ANALYSIS OF STATE-OF-THE-ART APPROACHES

We analyze the different SoA approaches to perform FMA
instructions on three CNN models: AlexNet [1], Inception
V2 [13], [14], and ResNet-50 [15]; and an RNN model [3],
[16] that solves the NMT task, referred in this work as
sequence to sequence (seq2seq) model. Section VI contains
the details regarding the configuration of each evaluated model
and the methodology we follow.

A. Instruction Counts

Figure 2a shows the instruction mix for one batch on each
network. We observe that floating point instructions constitute
a large portion of these workloads. For example, they represent
58.44%, 60.93%, 62.95% and 56.44% of the total count for
AlexNet, Inception V2, ResNet-50, and seq2seq, respectively.
The amount of non-FMA FP instructions remains below 1.10%
for the four networks. Therefore, FMA instructions constitute
a large portion of the whole training workload. These mea-
surements justify the focus on FMA instructions.

Prior research [7], [8] describes the need to use FP32
arithmetic in WU routines and BN layers when using training
approaches based on MP arithmetic. We run an experimental
campaign to confirm their observations and to measure the
number of instructions devoted to WU and BN. In the case
of ResNet-50, this instruction count is around 30 million
instructions per batch, that is, just 0.04% of the total FP
instructions. AlexNet and Inception V2 present similar results.
In the case of the seq2seq model, this instruction count remains
low, 1.60% of the total FP instructions. In conclusion, this data
motivates our efforts to reduce the cost of FMA instructions
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Fig. 2: Analysis for evaluated DNNs

for DNN training, since WU calculations and BN layers,
which must be computed using FP32 arithmetic, represent a
negligible portion of the training workload.

B. Static Approaches for Training

SoA training methods [8] employ the same data repre-
sentation format for a certain variable throughout the whole
training process, hence the term static. Similarly, we also
evaluate a static approach that performs all FMA instructions
in full BF16 except for WU calculations and BN layers, which
are performed in FP32. Figure 2b shows the three different
static training techniques on ResNet-50. The methodology we
use to generate Figure 2b is described in Section VI. We
observe that MP achieves very similar accuracy as FP32. In
contrast, the BF16 approach does not deliver the desired level
of accuracy with a significant drop, around 3%, w.r.t FP32 and
MP. Figure 2c shows the same three techniques on the seq2seq
model. Further details on the model appear in Section VI.
Again, FP32 and MP present similar validation loss curves,
while the BF16 approach fails to deliver comparable results.

An FMA entirely relying on BF16 precision can potentially
provide large performance improvements. However, as Fig-
ures 2b and 2c illustrate, full BF16 training fails to deliver
competitive levels of accuracy.

C. FMAs Data Representation Requirements

We analyze FMA data representation requirements using
ResNet-50 training in order to explain the accuracy drop of
full BF16 in Figures 2b and 2c.

Since the addition step of FMA instructions requires right-
shifting the smaller of the two operands by the difference
of the exponents, it is possible to completely eliminate the
smallest number if the exponent difference is larger than the
amount of mantissa bits. In the case of BF16, there are 7
mantissa bits. This issue is called swamping [6].

Figure 3 shows the exponent differences for all FMA in-
structions involved in ResNet-50 training on different epochs.
It represents the percentage of FMAs (y-axis) that avoid
entirely losing one of the two operands in the addition for a
determined number of mantissa bits (x-axis). During the first
epoch, just around 60% of the FMA instructions would not
entirely lose one of the two addition operands when using
the BF16 data representation. For epochs 8, 16, and 32, this
percentage is slightly lower. In contrast, 23 mantissa bits,

i.e., the standard FP32 representation, allows to keep the two
addition operands of near 100% of the FMAs.

This analysis clearly shows the reasons behind the lower
accuracy observed when using BF16 FMA instructions. Con-
sequently, blindly applying BF16 FMA across the training
process of DNNs is not a viable training strategy, as it leads
to widespread swamping issues.

IV. DYNAMIC PRECISION TRAINING

We propose to dynamically switch floating point precision
during training to obtain the same accuracy as FP32 or MP
while reducing training costs by employing full BF16 FMAs
for as many batches as possible. Our strategy for DNN training
uses BF16 FMAs as long as the training loss improves. When
we detect training loss stagnation, we switch to a higher
precision approach such as MP or FP32 for a number of
batches, until training loss improves again. The use of reduced
precision helps with the generalization capabilities of the
model [5]. To detect training loss stagnation we calculate
its Exponential Moving Average (EMA) [17] for a moving
window of batches. We compare this EMA value with a
threshold parameter to determine if training is progressing with
the currently employed FMA format. The EMA is updated
throughout the training process, guiding the decisions to switch
between full BF16 and MP precision.

Algorithm 1 shows the high level pseudo-code of our
Dynamic precision training strategy. The algorithm starts the
training process using the SoA MP training [8] for several
batches, defined by numBatchesMP parameter. Then, it
computes the EMA of the training loss and, if its reduction
is above a certain threshold (emaThreshold parameter), it
computes the next numBatchesBF16 using BF16 train-
ing. Once training has processed these numBatchesBF16
batches, our algorithm updates the EMA value and compares
it against the emaThreshold parameter again. If the EMA
reduction is not large enough, the algorithm switches back
to MP training. Otherwise, it keeps using BF16 training for
numBatchesBF16 batches before updating the EMA value
and comparing against it once again.

This method is applied during the entire training and it is
able to dynamically adapt the way each batch handles its
FMA instructions depending on the training loss progress.
If such progress stagnates, the FMAs are computed using a
more expensive higher-precision method like the MP or FP32
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Fig. 4: BF16 training process for a layer.

Algorithm 1: Dynamic Precision Training

1: numBatchesMP ← 10 // Number of consecutive MP batches
2: numBatchesBF16← 1000 // Number of consecutive BF16 batches
3: emaThreshold← 0.04 // Defines EMA reduction threshold
4:

5: precisionModeBF16← False // Indicates current precision mode, True means BF16
6: countBatchesBF16← 0 // Counts how many numBatchesBF16 have been executed
7: numBatchesTrain← numBatchesMP // Number of batches per training loop iteration
8:

9: for i = 0 to niter do
10: train.step(numBatchesTrain) // numBatchesTrain batches precisionModeBF16
11: trainingLoss[i]← train.trainingLoss
12: if i = 5 then // Initial history to calculate EMA
13: EMA← average(trainingLoss)
14: if i > 5 then
15: EMAprev ← EMA
16: EMA← emaCalculation(trainingLoss, EMAprev) // Each numBatchesMP
17: if (precisionModeBF16! = True) then
18: if ((EMAprev − EMA) > emaThreshold) then // If training loss goes down
19: precisionModeBF16← True
20: changeToBF16() // Switch precision to BF16
21: else
22: countBatchesBF16← countBatchesBF16 + numBatchesTrain
23: if (countBatchesBF16 = numBatchesBF16) then
24: if ((EMAprev − EMA) > emaThreshold) then // If training loss goes down
25: countBatchesBF16← 0 // Stay in BF16 precision
26: else // If training loss stagnates
27: precisionModeBF16← False
28: changeToMP() // Switch precision to MP
29: countBatchesBF16← 0

techniques. If training progresses well, the algorithm dynam-
ically switches the way FMAs are computed and chooses the
full BF16 approach. Figure 4 illustrates the implications of
processing one batch using BF16 FMAs. Similar to MP: (i)
weights, activations, and gradients are stored in BF16 format;
(ii) an FP32 master copy of the weights is maintained and
updated with the weight gradients during the optimizer step
(e.g., in the Stochastic Gradient Descent solver); and (iii)
reduction operations present in BN layers use FP32 arithmetic.
In contrast, all arithmetic operations within the forward and
backward passes are performed using full BF16 arithmetic.
Section VII demonstrates that dynamically switching the pre-
cision of batch execution between full BF16 and MP FMAs
provides the same training convergence than FP32 or MP
FMAs during the whole training achieving performance gains.

V. SERP: SEAMLESS EMULATION OF REDUCED PRECISION
FORMATS

Due to the lack of available hardware implementing full
BF16 FMAs, software emulation is required to study their
numerical behavior. Several approaches have been used in
the past to emulate BF16 arithmetic, most notably via
highly-tuned low-level libraries that truncate floating point
operands [8], [18]. However, such approaches require to access
the mathematical library upon which the training relies. And
this should be done for all potentially different implementation
frameworks such as Tensorflow, PyTorch, or Caffe. With
the aforementioned approaches these arithmetic modifications
must be done on the source code or at compile time. Besides
the effort that code modifications or recompilation of complex
frameworks requires, this methodology is not applicable to
closed-source mathematical libraries, like Intel MKL. Since
computer arithmetic is highly sensible to the implementation,

not instrumenting the true executed binary sequence of instruc-
tion can lead to wrong interpretation [19].

To overcome these limitations we developed SERP, a dy-
namic binary instrumentation tool based on Pin 3.7 [20].
SERP captures and instruments the dynamic instruction flow
at runtime, which enables modifying the instruction operands
to the targeted numerical data format without changing the
application source code, effectively emulating lower preci-
sion numerical formats. Our approach seamlessly works on
complex frameworks like PyTorch, Tensorflow, or Caffe, with
interpreted languages, and is able to instrument instructions
inside dynamically linked libraries.

SERP performs the following steps: First, it checks the
current FMA operation mode, which for the purposes of this
paper can be FP32, MP, or BF16 (see Figure 1). Additional
numerical formats can be easily emulated. Second, it deter-
mines whether we are executing routines that belong to WU
calculations or BN layers. If yes, computation proceeds in
FP32. Third, the tool intercepts all floating point instructions
of the workload, including FMAs. For each FMA instruction,
SERP rounds off all operands that need to be converted to
BF16 using an accurate round to nearest even algorithm.
Finally, SERP can dynamically change its FMA operation
mode via a simple inter-process communication method that
can be invoked from the Python high-level DNN framework
code were Algorithm 1 is implemented.

To mitigate the overhead of SERP, we implement two
optimizations: First, we vectorize the truncation and rounding
routines via AVX512 instructions. Second, we avoid redundant
rounding and truncation operations by identifying instructions
that: (i) belong to the same basic block, and (ii) share input
operands already stored in the register file with the BF16
format. These two optimizations keep the overhead of SERP
below 25× with respect to a native run.



VI. EXPERIMENTAL METHODOLOGY

A. Experimental Setup

Our experiments are performed on Intel Xeon Platinum
8160 processors, which implement the AVX512 ISA exten-
sion. To train and test the CNN implementations we use
the Intel-Caffe [21] framework (version 1.1.6a). We use the
Intel MKLDNN [22] (version 0.18.0) Deep Neural Network
library, and the Intel MKL library(version 2019.0.3) to run
numerical kernels since both libraries are optimized to run on
our testing infrastructure. To define and run the experiments
we use the pyCaffe python interface, which takes care of
loading the data and orchestrating the execution. Finally, to
perform the RNNs experiments we use PyTorch [23] (version
1.4.0), Intel MKLDNN (version 0.21.1), and the Intel MKL
library (version 2019.4). We use torchtext to manage the pre-
processing steps needed in the seq2seq model.

B. Neural Network Models

To evaluate our proposals we consider three representative
SoA CNN models: AlexNet [1], Inception V2 [13], [14] and
ResNet-50 [15]. These models are the backbone of recently
published highly successful models [24].

We use the ImageNet database [25] as training input. To
keep execution times manageable when using SERP, we run
the experiments using a reduced ImageNet Database, similar to
the Tiny ImageNet Visual Recognition challenge data set [26].
Therefore, we use 256,000 images divided into 200 categories
for training, and 10,000 images for validation. The images
have no modifications in terms of size. All the evaluated CNN
models remain unmodified.

AlexNet is selected due to its simplicity in terms of structure
and amount of required computations. To train AlexNet we
consider a batch size of 256 and the base learning rate is
0.01, which is adjusted every 20 epochs taking into account a
weight decay of 0.0005 and a momentum of 0.9. This model
is trained for 32 epochs.

Inception V2 is a model conceived to reduce computational
costs via cheap 1× 1 convolutions. To train it we use a batch
size of 64 and a base learning rate of 0.045, which is updated
every 427 steps (0.11 epochs). The gamma, momentum and
weight decay are set to 0.96, 0.9, and 0.0002, respectively.
The training process is executed for 16 epochs.

ResNet-50 is a network that delivers good accuracy and
avoids the vanishing gradients issue by using residual blocks.
We train it using a multi-step approach. The batch size is 64
and the base learning rate is 0.05, which is updated every 30
epochs. The gamma hyperparameter, momentum value, and
weight decay are set to 0.1, 0.9, and 0.0001, respectively. The
training process runs for a total of 32 epochs.

Finally, to test the performance of our approach over RNNs
we selected a seq2seq model to solve the NMT task [3]. This
model is trained using the Multi30K dataset [27]. This dataset
has 30,000 multilingual English-German sentences. We take
29,000 sentences as the training set and 1,000 for validation
purposes. The model has 20,000,000 parameters in total, we

use a batch size of 256, and the Adam Optimizer to do the
training process. The model was built using Gated Recurrent
Units (GRU). Training is done over 10 epochs.

C. Static and Dynamic Schemes

This paper considers two types of training techniques: static
schemes and dynamic schemes. When using static schemes,
training uses the same data representation form for a given
parameter during its complete execution. For example, Fig-
ures 2b and 2c display results obtained using static schemes.
We employ the following schemes:
• MP: This scheme replicates prior work on MP. FMA

instructions that belong to WU calculations and BN layers
always use FP32 precision. The remaining FMA instructions
use the MP approach represented in Figure 1b.

• BF16: FMA instructions that belong to WU calculations
and BN layers always use FP32 precision. The remaining
FMA instructions use BF16 operands to multiply and to
accumulate (Figure 1c).
The Dynamic scheme we propose in this paper switches

between the MP and BF16 static techniques during training,
as explained in Section IV and detailed in Algorithm 1.
This dynamic method aims to retain the favorable training
convergence properties of MP, while relying on BF16 FMAs
for a large portion of the execution.

To generate the results we show in Sections VII-A, VII-B,
and VII-D we set parameters emaThreshold,
numBatchesBF16, and numBatchesMP to 0.04,
1000, and 10, respectively, when training AlexNet, Inception
V2, and ResNet-50. The seq2seq model employs a different
data set, Multi30K, which requires adapting emaThreshold,
numBatchesBF16 and numBatchesMP to the number
of batches per epoch of the Multi30K training process. We
set them to 0.06, 15 and 1, respectively. In addition, we run
an experimental campaign considering different parameter
configurations in Section VII-C.

D. Emulating BF16

There is no real hardware supporting full BF16 FMAs,
which Figure 1c represents. To evaluate the numerical behavior
of BF16 FMAs, we use our SERP tool, which is described in
Section V. To evaluate performance improvement when using
Dynamic, we attach the Sniper simulator [9] to SERP. Since
both tools are based on Pin, combining them is natural.

Sniper is a high-speed and accurate x86 computer architec-
ture simulator. We extend Sniper to support the AVX512 ISA,
including its FMA instructions. We simulate a standard Xeon
processor by considering the hardware parameters that Table II
displays. We simulate with Sniper the execution of one training
batch of ResNet-50 and seq2seq using FP32, MP and BF16
FMAs. Since SERP provides the percentage of batches that
are computed in BF16 and MP during the whole training, we
extrapolate the overall performance by using the performance
metrics that Sniper provides. This approach is equivalent to
the widely used SimPoints method [28] and makes it possible
to estimate the performance of the whole training workload.
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Fig. 5: Test accuracy of evaluated training strategies.

TABLE II: Sniper Parameters
Component Description

CPU 2.1 GHz, Out-of-Order
ITLB 128-entries, 4-associativity
DTLB 64-entries, 4-associativity
STLB 512-entries 4-associativity

L1 ICache 32 KB, 4-associativity, 1-shared cores
L1 DCache 32 KB, 8-associativity, 1-shared cores
L2 Cache 1 MB, 8-associativity, 1-shared cores
L3 Cache 32 MB, 16-associativity, 24-shared cores
Bandwidth 30 GB/s per core

TABLE III: Accuracy and percentage of FMAs executed in BF16 precision.

Model Epoch FP32 MP Dynamic BF16

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 BF16FMA Top-1 Top-5 BF16FMA

AlexNet 32 60.79% 84.50% 60.18% 84.43% 60.32% 84.02% 94.60% 57.80% 82.56% 99.93%
Inception 16 74.01% 92.36% 73.73% 92.67% 72.80% 92.02% 95.55% 72.03% 92.05% 99.90%
ResNet-50 32 75.96% 93.37% 75.70% 93.20% 74.20% 92.70% 96.40% 72.97% 92.30% 99.91%

VII. EVALUATION

A. Convolutional Neural Networks

Figure 5 shows the validation accuracy of the three con-
sidered CNN models for the different training strategies. The
x-axis represents the epochs of the training process while the
y-axis shows the accuracy reached by the model over the
validation set. In addition, Table III shows the Top-1 and Top-
5 validation accuracies reached on the three network models
for each training strategy, along with the percentage of FMA
instructions fully computed with BF16 operands. We consider
the FP32, MP, and BF16 static strategies and our Dynamic.

Figure 5a shows that BF16 displays worse accuracy than
Dynamic or MP. Table III shows that FP32, MP, Dynamic, and
BF16 reach Top-5 accuracies of 84.50%, 84.43%, 84.02% and
82.56% respectively after 32 epochs. Importantly, Dynamic
reaches comparable accuracy with respect to FP32 and MP
while performing 94.60% of the FMA instructions in full BF16
precision. In contrast, BF16 training does 99.93% of the FMAs
in full BF16 precision (0.07% are in WU and BN layers), but
the accuracy drops by almost 3% in Top-1 and 2% in Top-5.
This significant drop in accuracy takes place by performing
an additional 5% of BF16 FMAs compared to Dynamic. This
shows that our proposal successfully achieves SoA accuracy
levels while still relying mostly on BF16 FMAs.

Figure 5b shows validation accuracy over 16 epochs for
the Inception V2 model. Accuracy fluctuates initially due
to its structure and recommended hyperparameters. Dynamic
responds in a robust way to these changes, which highlights its
general applicability. Table III shows that FP32, MP, Dynamic,
and BF16 reach Top-5 accuracies of 92.36%, 92.67%, 92.02%,
and 92.05% respectively after 16 epochs. BF16 training is able
to achieve SoA accuracy since this network is designed to be
robust to noise and tolerates lower precision.

The evaluation on ResNet-50 (Figure 5c) demonstrates that
Dynamic training is effective when applied to deeper CNNs. In
this case, the accuracy of the model reaches SoA levels while

using BF16 for 96.40% of the FMA instructions. Table III
displays the accuracy numbers we obtain from our evaluation
after 32 epochs. BF16 training fails to deliver SoA Top-1
accuracy with a drop of 2.99% with respect to FP32. Dynamic
is able to close the accuracy gap between FP32 and BF16
training by performing a large percentage of FMA instructions
in BF16 precision.

In summary, Dynamic is able to achieve comparable accu-
racy with respect to FP32 and MP training while performing
≥ 94.60% of the FMA instructions in BF16 precision.

B. Sequence to Sequence RNN Model

Figure 6 shows the seq2seq validation loss achieved over
10 epochs for all the considered strategies. Table IV contains
the final numbers for training and validation loss, and the
percentage of BF16 precision FMAs.

While FP32, MP, and Dynamic perform similarly for
seq2seq, BF16 is not able to yield comparable validation loss.
Table IV shows that Dynamic achieves SoA accuracy in terms
of both validation loss (Val-Loss) and training loss (Tr-Loss)
while performing 66.0% of the FMA instructions fully using
BF16. In addition, the loss function values for validation data
slightly improve in MP and Dynamic with respect to FP32.
This behavior has been studied [29].

C. Sensitivity Analysis for Dynamic Precision Algorithm

We perform a sensitivity analysis of the parameters em-
ployed in Algorithm 1. We consider numBatchesBF16 = {500,
1000, 2000}, and emaThreshold = {0.02, 0.04, 0.08}, while
numBatchesMP is set to 10. Figure 9 shows, for a number
of ResNet-50 epochs, the accuracy obtained for each of the
9 tested configurations. In addition, we include the accuracy
values of BF16, MP, and FP32. The accuracy of all Dynamic
configurations is above BF16. The most relevant parameter is
emaThreshold, as it decides when to switch between different
FMA approaches. As long as this parameter is reasonably set
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TABLE IV: Loss and FMAs executed in BF16 precision for seq2seq

Model Epoch FP32 MP Dynamic BF16

Tr-Loss Val-Loss Tr-Loss Val-loss Tr-Loss Val-Loss BF16FMA Tr-Loss Val-Loss BF16FMA

seq2seq 10 2.019 3.290 2.008 3.235 2.122 3.285 66.0% 2.392 3.410 99.5%

TABLE V: Performance results

Model Batch execution time (s) Training Speed-up w.r.t FP32

FP32 MP BF16 FP32-BF16 MP-BF16

ResNet-50 23.80 22.15 17.11 1.38× 1.39×
seq2seq 45.73 41.17 34.40 1.22× 1.26×
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to detect training loss improvement or degradation, Dynamic
achieves SoA accuracy.

Figure 7 shows the sensitivity analysis for the seq2seq
model. We consider numBatchesBF16 = {10, 15, 20}, and
emaThreshold = {0.04, 0.06, 0.08}, while numBatchesMP
is set to 1. Bars show the percentage of FMAs run using
BF16 format per each parameter configuration, and the line
represents its corresponding validation loss. We find that vali-
dation loss improves the FP32 value for some configurations.
This is due to the numerical noise injected by reduced data
representation formats, which may help the training processes
in some scenarios. Previous work has also observed this
effect [29]. Multiple Dynamic training configurations obtain
SoA validation loss with up to 66% BF16 FMAs.

D. Dynamically Switching Between FP32 and BF16

The evaluation of Sections VII-A, VII-B, and VII-C con-
siders a Dynamic approach that switches between MP and
BF16 FMAs. However, the Dynamic technique can also switch
between FP32 and BF16. Figure 8 shows validation loss evolu-
tion while training seq2seq considering a Dyn FP32 approach,
which switches between FP32 and BF16. Results obtained
with Dyn FP32 do not present any noticeable deviation to
the ones obtained with Dynamic in terms of accuracy and
percentage of BF16 FMA instructions. A similar behavior
is observed with the CNN models. This certifies that our
proposal can be applied in machines that support FP32 and
BF16 FMAs, without needing MP.

E. Sniper Results

We evaluate the performance of BF16 training by attaching
the SERP tool to the Sniper simulator. Table V shows the
training time of one batch using FP32, MP, and full BF16
FMAs. In addition, we show the speed-up of Dynamic (MP-
BF16) and Dyn FP32 (FP32-BF16) w.r.t FP32 training. We
use ResNet-50 and seq2seq as example models.

As can be seen in the table, the execution time of one batch
using BF16 is significantly faster than FP32 or MP. This is
due to lower memory bandwidth requirements and doubling
the FMA vectorization (AVX512) throughput, as having all
input and output operands in 16 bits enables more data level
parallelism. The speed-ups achieved for the entire training
process with the Dynamic approach reach 1.39× and 1.26×
for ResNet-50 and seq2seq, respectively.

VIII. RELATED WORK

Reducing training requirements via lower precision data
types has been an active topic in recent years. Numerous
proposals use non-standard data formats with ad-hoc bit widths
for exponent and mantissa, which lack hardware support but
enable going as low as 8-bits for some computations. The use
of stochastic rounding (SR) techniques also proves effective
but can be costly to implement in hardware and software.

For example, prior work indicates that dynamic fixed-point
is sufficient to train DNNs with low precision multipliers [4].
This approach obtains SoA results by uniformly applying
the dynamic fixed point format with different scaling factors
driven by the overflow rate displayed by the fixed-point
numbers. Applying SR to 16-bit fixed-point multiply and add
operators has been proven to be beneficial [5]. Other proposals
train DNNs using 8-bit floating point (FP8) numbers by relying
on a combination of 8-bit and 16-bit arithmetic and using SR to
obtain SoA results [6], or propose a multi-precision approach
also using SR to keep DNN training accuracy [30]. Finally,
there is a newer approach that does not require SR [31];
however, a quantization step and two newly defined FP8
numerical data types are needed.

Other proposals focus on leveraging available hardware
support to achieve the same objectives. This is the case of



the MP proposals that employ half-precision formats such
as FP16 and BF16 for tensors [7], [8]. The BF16 numerical
format has been used in specific-purpose hardware targeting
DNNs [32], and will soon be supported by off-the-shelf
hardware from Intel and Arm. Our dynamic training approach
falls under this category. As we demonstrate, it can be applied
on top of FP32 or MP training to reduce memory bandwidth
and computational requirements, while delivering comparable
accuracy. Furthermore, SERP and the Dynamic approach we
proposed can be adapted and used to explore and validate other
existing and future encodings.

IX. CONCLUSIONS
This paper analyzes the instruction mix of DNN training

workloads. We show that FMA instructions represent the
60% of these workloads. While MP training can deliver SoA
accuracy, training schemes that rely on half-precision FMAs,
like BF16 training, fail to deliver comparable accuracy levels.
We propose a Dynamic training technique that can perform
a large portion of FMAs in full half-precision, lowering
training requirements without hurting accuracy. We achieve
this by training in BF16 mode and identifying when training
convergence stagnates, at which point we switch to a higher
precision strategy like MP or FP32 until stagnation dissipates.

We evaluate our proposal considering three SoA CNNs
and one RNN model. We use SERP to instrument all FMA
instructions and modify operands to the targeted numerical
data type. We demonstrate that half-precision BF16 can be
used extensively on ≥ 94.6% of all FMAs during the train-
ing of deep CNN models, and on 66.0% of FMAs in our
evaluated seq2seq model, while reaching comparable accuracy
levels with respect to FP32 and MP training. Finally, our
performance evaluation shows that the Dynamic approach can
achieve speed-ups of up to 1.39× with respect to FP32.
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