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Abstract—Active learning is of great interest for many practical
applications, especially in industry and the physical sciences,
where there is a strong need to minimize the number of costly
experiments necessary to train predictive models. However, there
remain significant challenges for the adoption of active learning
methods in many practical applications. One important challenge
is that many methods assume a fixed model, where model
hyperparameters are chosen a priori. In practice, it is rarely true
that a good model will be known in advance. Existing methods
for active learning with model selection typically depend on a
medium-sized labeling budget. In this work, we focus on the
case of having a very small labeling budget, on the order of a
few dozen data points, and develop a simple and fast method
for practical active learning with model selection. Our method
is based on an underlying pool-based active learner for binary
classification using support vector classification with a radial
basis function kernel. First we show empirically that our method
is able to find hyperparameters that lead to the best performance
compared to an oracle model on less separable, difficult to classify
datasets, and reasonable performance on datasets that are more
separable and easier to classify. Then, we demonstrate that it is
possible to refine our model selection method using a weighted
approach to trade-off between achieving optimal performance on
datasets that are easy to classify, versus datasets that are difficult
to classify, which can be tuned based on prior domain knowledge
about the dataset.

Index Terms—active learning, model selection, small data
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I. INTRODUCTION

In many applications in science and industry, useful labeled
data are very expensive or difficult to collect, while unlabeled
data are extensively available. A promising and increasingly
popular approach in these cases is to use active learning, which
allows practitioners to choose the most informative data points
to label given a limited budget [1]–[3]. However, it is difficult
to do model selection with such limited data, so methods for
active learning usually use a fixed model. Since it is difficult
to know a priori what model works best for a given problem
and dataset, this can often lead to suboptimal performance,
and represents a significant challenge for practical applications
of active learning in scientific and industrial settings. In this
work, we consider active learning for binary classification
using support vector machines with a radial basis function
kernel, and present a method for active learning with model
selection that is designed to work for very small labeling
budgets of up to a few dozen datapoints. This precludes the
use of many existing methods for model selection currently in
the literature that depend on medium-sized labeling budgets
of up to hundreds of datapoints in order to achieve improved
performance over fixed models. We also propose a variation
of this method that improves performance on datasets that
are more separable and thus easier to classify, and discuss
how it leads to a trade-off in performance on datasets that
are less separable and thus more difficult to classify. When
prior information is known about the expected separability of
the given dataset, we can use it to choose which of the two
methods to apply.

We first present a review of related works in Section II.
In Section III, we introduce our two proposed algorithms for
active learning with model selection. In Section IV we describe
our experiments and in Section V we present the results
of evaluating the proposed algorithms on several benchmark
datasets compared to different baselines. We also examine the
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circumstances under which each of our two model selection
methods is likely to be more or less effective. Finally in
Section VI, we discuss key takeaways and conclusions.

II. RELATED WORK

Active learning has received significant attention in machine
learning for various types of problems, from regression to
classification to reinforcement learning [2], [4], [5]. In active
learning, the key idea is to sample datapoints efficiently to
optimize model performance. Pool-based sampling is one
widely used approach, where the acquisition algorithm queries
for new samples to label from a pool of unlabeled data. Pool-
based active learning using uncertainty sampling and support
vector machine learners is a popular strategy among these
approaches [6]–[9].

While active learning has shown promising results, many
obstacles for its practical application remain which undermines
its effectiveness especially in scientific and industrial applica-
tions. Challenges include the need for a priori knowledge in
order to choose the best active learning method and model
parameters, and the difficulty of handling complex data dis-
tributions that are either not known beforehand and/or make
active learning ineffective (i.e., skewed or imbalanced data,
disjunctive classes) [10], [11]. Our proposed method for model
selection attempts to address the first challenge in the limited
setting of pool-based active learning with uncertainty sampling
using support vector classifiers.

So far in the literature, most active learning studies have
focused on using a fixed active learning method and model.
Model selection as part of the active learning process is
challenging to implement, and only a small number of ap-
proaches have been studied. Sugiyama and Reubens showed
that in active learning for regression problems instead of
using a fixed model, training an ensemble of models leads
to better performance [12]. In another study, Ali et al. [13]
introduced a novel approach for model selection in which
the labeled samples are divided into separate training and
validation sets in order to train the models and select the
best model, respectively. This method is effective as it creates
a validation set to select the best learner but is expensive
to implement. Both approaches also require more data to be
labeled to enable model selection, which is not practical for
very small labeling budgets [13].

Our proposed method for data-efficient model selection
relies on reusing the biased set of datapoints labeled during ac-
tive learning. The reusability of actively sampled data remains
a challenging area of research [14]–[17]. Empirical studies
suggest that sample reusability for a given selector-consumer
combination, where the selector is the algorithm that generates
the actively sampled dataset and the consumer is the algorithm
used to train the final model, is difficult to generalize across
learning problems [16]. It has also been suggested empirically
that support vector machine learners may be preferable to other
classifiers such as k-nearest neighbors and naı̈ve Bayes as the
selector when the consumer is not known beforehand [17].

III. METHODS

In this work, we develop two methods for binary classifica-
tion with model selection in cases where the labeling budget
is very small, on the order of a few dozen datapoints. A key
difficulty when the budget is so small is that any method
that requires a separate validation set would be infeasible. A
small validation set will not be able to effectively distinguish
between the performance of many different models. Instead,
our first method relies on reusing data actively sampled by a
fixed underlying active learning model. We implement model
selection via leave-one-out cross validation (LOOCV) on this
data. Typically, since the actively sampled data is biased, it is
understood that LOOCV will lead to biased estimates of the
generalization error. However, we will show empirically that
when a dataset is inherently difficult to classify, LOOCV is
able to order the models such that a higher performing model
can often be found. When a dataset is easy to classify, we
note that LOOCV underestimates the accuracy of the model
corresponding to the active learner, and use this intuition to
propose a second method that implements a correction. This
correction improves model selection performance for “easy-to-
classify” datasets, at the expense of possibly degrading model
selection performance on “difficult-to-classify” datasets. In
this work, we also develop a methodology for characterizing
whether a dataset is likely to be easy or difficult to classify;
while this characterization would not be known a priori for
a new problem, we can use it to illustrate the trade-off
in performance between different model selection methods
with respect to different types of datasets in our benchmark
experiments. This will enable us to build intuition about which
method to use given prior domain knowledge about a dataset,
which we will discuss further in Section V.

We note that importantly, in both of our proposed methods
model selection takes place after active learning has com-
pleted using a fixed model, rather than attempting to utilize
information about model performance for different models
when acquiring actively sampled datapoints. This prevents
degradation of the performance of the active learner, since
any estimates of model performance will have high variance
especially in the beginning of active learning when the labeled
dataset is very small.

In this work, our underlying active learner uses pool-based
active learning with a support vector classifier (SVC) with
radial basis function (RBF) kernel. The optimization problem
being solved for the SVC can be written in primal form as

min
w,b,ξ

1

2
wTw + C

n∑
i=1

ξi

subject to yi
(
wTφ(xi) + b

)
≥ 1− ξi

ξi ≥ 0, i = 1, ..., n

A radial basis function kernel given by

K(xi, xj) = exp
(
−γ‖xi − xj‖2

)
= 〈φ(xi), φ(xj)〉



is used to learn the nonlinear decision boundary. Our model
selection problem is to choose the optimal hyperparameters
C and γ for the SVC. Hyperparameter C is a regularization
parameter that represents the trade-off between maximizing
the margin and minimizing errors (misclassifications and dat-
apoints within the margin) in soft-margin SVC. Small values
of C correspond to larger margins and thus a simpler decision
function that is less likely to overfit. The intuitive explanation
of hyperparameter γ is that it is inversely proportional to
the spread of the RBF kernel, which encodes the radius
of influence of each training datapoint. Small values of γ
correspond to a large spread for the RBF kernel, and thus
a simpler decision function that is less likely to overfit;
conversely, for very large values of γ the decision function
tends to circle around every datapoint and leads to overfitting.
Commonly used values of SVM hyperparameters are C = 1
and γ = 1

n , where n is the number of features, although
when the dataset is sufficiently large the optimal C and γ
are typically chosen via k-fold cross validation. Unfortunately,
this is nontrivial when combined with active learning because
we need to first choose C and γ before we can acquire new
datapoints for the training set.

Our first proposed algorithm for active learning with model
selection is given in Algorithm 1. The inputs to our algorithm
are the following:
• initial labeled dataset, Dinit
• unlabeled data pool, Dpool
• active learning budget, B
• fixed model Mdefault = (Cdefault, γdefault) for active learning
• set of models {M}mi=1 (including Mdefault) for model

selection
First, we train an SVC with fixed hyperparameters
(Cdefault, γdefault) on an initial set of labeled training data Dinit.
Then, the active learner queries the label for the sample
in the data pool with the shortest distance to the currently
trained model’s decision boundary, as described in [6]–[8].
The acquisition function we use is

x∗ = argminx∈P d(x, θ) (1)

where d(x, θ) is the distance of datapoint x ∈ Rn from the
currently trained model’s decision boundary, denoted by θ.
After labeling this point, it is added to the training data and the
model is retrained with this updated training set. This process
continues until we have reached the active learning budget.
Then, using all of the labeled data sampled from the active
learning process, we use LOOCV to select the model with the
highest accuracy among the set of models {M}mi=1. If two
or more models having the same LOOCV error are tied for
the best model, ties are broken by first checking which model
has the smaller γ parameter, and if they are equal, which has
the smaller C parameter. In practice, due to the small labeling
budget, these tiebreaks are often necessary. Note that smaller
γ and C correspond to simpler decision boundaries that are
less likely to overfit. Due to the nature of the RBF kernel, we
observe empirically that generalization error is typically lower

when we break ties using the γ parameter first rather than the
C parameter first. Larger values of the γ parameter tend to
lead to decision boundaries that encircle datapoints and may
create disjoint regions in feature space with the same class.

Our method can be implemented on a very small labeling
budget which is often the case for practical problems in
industry, so we call our method practical active learning with
model selection (PALMS).

Algorithm 1 Practical Active Learning with Model Selection
(PALMS)
Input: Initial labeled dataset Dinit, unlabeled dataset Dpool,

active learning budget B, fixed model Mdefault for active
learning, set of models {M}mi=1 (including Mdefault) for
model selection

Output: Best-performing model M∗ ∈ {M}mi=1 trained on
labeled dataset from active learning.
Initialization : Set training set T ← Dinit; set data pool
P ← Dpool;

1: for i = 1 to B do
2: Train Mdefault on T ;
3: Compute the next query sample x∗ ∈ P according to

Eqn. 1;
4: Request label y∗ for x∗;
5: Set T ← T ∪ (x∗, y∗);
6: Set P ← P \ (x∗, y∗);
7: end for

Choose the best model M∗ ∈ {M}mi=1 using LOOCV on
T ;
Train M∗ on T ;

The importance of model selection is illustrated on a toy
dataset with two features per datapoint in Figure 1. Here
the dotted line shows the decision boundary of the SVC
model trained using active learning with fixed hyperparameters
Cdefault = 1 and γdefault = 1/2 (DEFAULT). The solid
line is a different model (C∗, γ∗) identified using PALMS.
The PALMS model achieves a test accuracy of 0.9, which
outperforms the DEFAULT model with a test accuracy of
0.75. Visually, we can see that PALMS finds a simpler model
than DEFAULT that is less likely to overfit, leading to higher
performance on the test set.

While PALMS is a simple method for model selection, it
does not take into account that LOOCV generally underesti-
mates the generalization error for the underlying fixed model
used to actively sample the training data. Intuitively, this is due
to the fact that the actively sampled dataset is by construction
biased to be closer to the decision boundary learned using the
fixed model. A reasonably separable dataset (e.g., one that is
easier to classify) will have many datapoints further away from
this decision boundary; the actively sampled dataset undersam-
ples those regions, and so the LOOCV error will be worse than
the true generalization error. Since PALMS uses LOOCV for
all models, it will achieve suboptimal performance when the
true best model is the fixed model. Therefore, we develop a
second algorithm, PALMS with weight-corrected fixed model



Fig. 1. Example of PALMS on a toy dataset with 24 total labeled datapoints
(AL sample), consisting of 4 initial datapoints and 20 requested labels from
active learning. The fixed DEFAULT model generates the dotted decision
boundary, which achieves a test accuracy of 0.75. After model selection
using PALMS, which performs LOOCV on the AL sample, the solid decision
boundary is generated, achieving a test accuracy of 0.9.

(PALMS-fwc) to apply a correction to the LOOCV error
of only the fixed model when doing model selection. We
use a simple heuristic to give actively sampled datapoints
further away from the decision boundary a higher weight
when computing the LOOCV error for the fixed model. All
datapoints on each side of the decision boundary are weighted
by some constant w > 1 if they are more than the median
distance away from the decision boundary. Note that PALMS-
fwc reduces to PALMS when w = 1.

The full algorithm for PALMS-fwc is given in Algorithm 2.
We compute the cutoff distance for which datapoints will be
weighted using the following equations:

di = median({d(x, θ) for (x, y) ∈ T and ŷ = i}) (2)

where T is the current training set, ŷ is the predicted label for
x given by decision boundary θ, and i ∈ [0, 1] represents the
two class labels. Then for a given constant weight w > 1, the
training datapoints (xj , yj) are weighted by wj as follows:

wj =


w if d(xj , θ) ≥ d0 and ŷj = 0

w if d(xj , θ) ≥ d1 and ŷj = 1

1 otherwise
(3)

Note that weighted datapoints are only determined by their
distance from the decision boundary; incorrectly classified
datapoints far away from the decision boundary will also be
weighted. When the data is truly more separable (i.e., easier to
classify), a higher weight w will improve the LOOCV estimate
for the fixed model; conversely, this is not true when the
data are not as separable. Thus, the weighting value used will
impose a tradeoff between these two cases, which is usually
not possible to know a priori.

IV. EXPERIMENTS

We compare the performance of PALMS, our proposed al-
gorithm for active learning with model selection, and PALMS-

Algorithm 2 PALMS with Weight-Corrected Fixed Model
(PALMS-fwc)
Input: Initial labeled dataset Dinit, unlabeled dataset Dpool,

active learning budget B, fixed model Mdefault for active
learning, set of models {M}mi=1 (including Mdefault) for
model selection

Output: Best-performing model M∗ ∈ {M}mi=1 trained on
labeled dataset from active learning.
Initialization : Set training set T ← Dinit; set data pool
P ← Dpool;

1: for i = 1 to B do
2: Train Mdefault on T ;
3: Compute the next query sample x∗ ∈ P according to

Eqn. 1;
4: Request label y∗ for x∗;
5: Set T ← T ∪ (x∗, y∗);
6: Set P ← P \ (x∗, y∗);
7: end for

Train Mdefault on T ;
Compute cutoff distances d0 and d1 according to Eqn 2;

8: for j = 1, . . . , |T | do
9: Set weight wj for datapoint xj ∈ T using d0, d1

according to Eqn 3;
10: end for

Set W ← {wj}|T |j=1;
Choose the best model M∗ ∈ {M}mi=1 on T using
LOOCV ∀Mi ∈ {M}mi=1\Mdefault, and weighted LOOCV
with weights W for Mdefault;
Train M∗ on T ;

fwc, which adds a weight correction for the underlying fixed
model as described above, to three different baseline methods:
• RANDOM First, we use random independent, identi-

cally distributed (IID) sampling with a support vector
classifier (SVC) using a radial basis function (RBF)
kernel. LOOCV is used to choose the optimal model
parameters C rand and γrand from all combinations (C, γ)
in consideration from among the set of models {M}mi=1.
This is a naı̈ve baseline to compare against active learning
with model selection.

• DEFAULT Here we use only pool-based active learning
with SVC using a RBF kernel with fixed model param-
eters C = 1 and γ = 1

n . This is the same as PALMS
without the model selection step.

• ORACLE This is pool-based active learning with SVC
using a RBF kernel with the best possible model parame-
ters Moracle = (Coracle, γoracle) out of all model parameter
combinations (C, γ) in consideration from among the set
of models {M}mi=1. The best model is determined by
its test accuracy. The goal of model selection algorithms
is to find a model that achieves as close as possible to
ORACLE performance.

The range of values for C and γ considered in this work are
[0.01, 1, 100, 104] and 1

n [10
−4, 0.01, 1, 100, 104], respectively.

We evaluate these methods on several benchmark datasets



for binary classification, described in Table I. For each dataset,
first a subset of 50 labeled datapoints per class were randomly
selected and set aside, to create a balanced test data set of
100 points total. Then, an initial sample of 4 datapoints is
randomly selected; to generate this initial sample we use
stratified sampling so that there are 2 datapoints from each
class in order to make leave one out cross validation possible.
While this would not be possible in a real use case scenario,
we initialize our experiments this way in order to enable
comparison of models trained with the same number of total
labeled datapoints; in reality we would need to randomly
sample the unlabeled dataset until datapoints from both classes
are found or the data budget is exhausted. Finally, for each of
our benchmark datasets, the remainder of the data that has not
been assigned to the test set or the initial labeled dataset is
considered to be the pool of unlabeled data. We repeat each
experiment for 50 trials, and record the accuracy on the test
set for an active learning labeling budget (or random sampling
budget in the case of RANDOM) of up to 55 datapoints,
excluding the 4 datapoints selected for initialization.

For each dataset, we also compute what we call the limited
set from the sampled test set. This is a subset of our test
set consisting of points whose nearest neighbors are a mix
of classes, which correspond to uncertain regions in feature
space. We use this to characterize how difficult we should
expect it to be to classify a given dataset. Datasets with large
limited sets are likely to be difficult to classify in comparison
to datasets with small limited sets. We use two parameters to
define the limited set: k, the number of nearest neighbors to
consider, and a cutoff threshold ρ to determine how mixed
the neighborhood must be. The limited set varies as k and ρ
change. In this work, we choose k = 20 and ρ = 0.3. This
pair of parameters means that for a point to be part of the
limited set, more than ρk = 6 of its k = 20 nearest neighbors
are in the minority class.

We illustrate our method for identifying the limited set
for the sample case of k = 10 and ρ = 0.3 in Figure 2.
Three example points are depicted, one in the limited set
(darker colors) and two not in the limited set (lighter colors).
The datapoint in the limited set has four neighbors from
the opposite class. Datapoints in the limited set are usually
expected to be near the decision boundary where greater
uncertainty is expected. However, they may also be located in
other regions in feature space away from the decision boundary
learned by a given model. We note that the limited set is used
only as a tool to characterize how easy or difficult we expect
classification to be on each dataset; it is not available in a
real use case scenario for active learning because we would
not have a labeled test set. We will show empirically that the
performance of PALMS and PALMS-fwc varies with respect
to the size of the limited set.

V. RESULTS

In Figure 3, we show the mean accuracy of each method on
the test set (solid lines) as well as the corresponding standard
deviations σ (dashed lines). For the Tictactoe, Solarflare,

Fig. 2. The limited set is the subset of the test set, consisting of points whose
nearest neighbors are a mix of classes; datapoints in the limited set correspond
to uncertain regions in feature space. Two parameters are used to define which
datapoints belong to the limited set: k, the number of nearest neighbors to
consider, and a cutoff threshold ρ to determine how mixed the neighborhood
must be. In this figure, we illustrate the limited set for k = 10 and ρ = 0.3:
a datapoint whose 10 nearest neighbors have more than 3 datapoints in the
“minority” class is considered part of the limited subset (darker colors). In
Table I, we use k = 20 and ρ = 0.3. Note this limited set is used only as a
tool to characterize each dataset; it is not available in a real use case scenario
for active learning because we would not have a labeled test set. We show
that the performance of PALMS and PALMS-fwc varies with respect to the
size of the limited set.

TABLE I
DATASETS USED IN THIS WORK.a

Dataset features class 0 class 1 total %limited
Tictactoe [18] 9 332 626 958 92%
Solarflare [19] 25 356 171 527 87%
KRvsKP [18] 36 1669 1527 3196 84%
Pima [19] 8 500 268 768 71%
Spinal [20] 12 210 100 310 67%
IBN Sina [21] 92 12880 7842 20722 49%
Heart [19] 13 138 164 302 48%
Phoneme [18] 5 3789 1560 5349 48%
Ionosphere [19] 34 125 225 350 39%
Thyroid [18] 5 65 150 215 20%
a Columns correspond to the number of features, number of datapoints in

each class, the total number of datapoints, and the average proportion
of points that are in the limited subset out of a randomly sampled
balanced test set. Generally, a lower proportion of points in the limited
set corresponds to an easier binary classification problem for which
higher accuracies can be achieved (see Figure 3).

KRvsKP, Pima, and Spinal datasets, we see that PALMS
and PALMS-fwc both outperform RANDOM and DEFAULT,
achieving the closest performance to ORACLE. Note that
these datasets all have a high percentage of datapoints in
the limited set, which means that they are likely difficult
to classify. This is corroborated by the maximum accuracies
achieved after 55 requested labels (59 total labeled datapoints,
including the 4 initial samples). PALMS and PALMS-fwc also
achieve top performance on the Thyroid dataset, which is so
easily separable that all but the RANDOM model were able



Fig. 3. Comparisons of test accuracy for binary classification on five different datasets. The PALMS method achieves the closest performance to ORACLE for
the Tictactoe, Solarflare, KRvsKP, Pima, Spinal, and Thyroid datasets. Note that except for the Thyroid dataset, these datasets all have a high percentage of
datapoints in the limited set (see Table I). For the IBN Sina dataset, the PALMS and PALMS-fwc methods both achieve better performance than DEFAULT
and eventually even outperform ORACLE. The DEFAULT model achieves closer performance to ORACLE for the Heart, Phoneme, and Ionosphere datasets.
For the Ionosphere dataset, the DEFAULT model is often the ORACLE model. Both datasets have a lower percentage of datapoints in the limited set. Note that
when this is the case, the overall performance of the model is higher since a smaller limited set generally corresponds to an easier binary classification problem.
Thus, even though PALMS does not perform as well as DEFAULT in these cases, it is still performing acceptably well. Finally, we see that PALMS-fwc
achieves a tradeoff between improving performance on the datasets with smaller limited sets (Ionosphere, Heart, Phoneme, Thyroid), and slightly decreasing
performance on the datasets with larger limited sets (Tictactoe, Solarflare, KRvsKP, Pima, Spinal, IBN Sina). Note that we typically do not know a priori
which type of dataset we have for a given problem, so PALMS-fwc may be the optimal choice unless domain-specific information is available.

to achieve over 85% accuracy with only 10 datapoints. For
the IBN Sina dataset, the PALMS and PALMS-fwc methods
both achieve better performance than DEFAULT and eventu-
ally even outperform ORACLE. It is possible to outperform
ORACLE because ORACLE relies on a single fixed model
to actively sample datapoints and train the final classifier,
whereas PALMS and PALMS-fwc may select a different
model to train the final classifier from the default fixed model
used to actively sample datapoints. However, we note in
this case that RANDOM outperforms all methods; this is
unfortunately also possible due to the biased sampling in active
learning, which may have difficulty correcting from poor initial
models that may arise with complex data distributions [10].

For the Heart, Ionosphere, and Phoneme datasets, the DE-
FAULT model achieves closer performance to ORACLE. In
fact, for the Ionosphere dataset, the DEFAULT model is often
equivalent to the ORACLE model. However, we note that
these three datasets have a lower percentage of datapoints
in the limited set, corresponding to easier classification and
higher achieved accuracies. Thus, even though PALMS does
not perform as well as DEFAULT in these cases, it is still
achieving acceptable performance if we had decided to use
PALMS rather than DEFAULT in a real use case scenario.

Finally, we see that PALMS-fwc with a weight parameter of
w = 1.5 achieves a tradeoff between improving performance
on the datasets with smaller limited sets (Ionosphere, Heart,
Phoneme, Thyroid), and slightly decreasing performance on
the datasets with larger limited sets (Tictactoe, Solarflare,
KRvsKP, Pima, Spinal, IBN Sina). Since we typically do
not know a priori which type of dataset we have for a
given problem, PALMS-fwc may be the optimal choice unless
domain-specific information is available.

VI. CONCLUSIONS

In this work, we proposed two new approaches called
PALMS and PALMS-fwc for active learning with model
selection that is especially suitable for real world problems
where the labeling budget might be extremely small, up to a
few dozen datapoints. Using pool-based active learning with
SVC using a RBF kernel as the underlying active learning
model, we show with PALMS that model selection for the
optimal hyperparameters (C∗, γ∗) can be implemented as an
additional step after active learning by reusing the actively
sampled data for leave-one-out cross validation (LOOCV).
Even though this actively sampled dataset is inherently biased,



we show empirically that it is still useful for model selection,
especially on difficult to classify datasets.

Furthermore, we demonstrate that one weakness of LOOCV
on the actively sampled data is that the LOOCV error for the
underlying fixed model used for active learning underestimates
performance accuracy on the test set, especially for datasets
that are easier to classify, since by construction there are pro-
portionally more actively sampled datapoints in the uncertain
regions close to the decision boundary compared to in the more
certain regions away from the decision boundary. Therefore,
we developed PALMS-fwc to correct for this by weighting the
actively sampled datapoints when computing LOOCV scores
for the fixed model. We see empirically that for datasets that
are easier to classify, this correction improves model selection
performance; however the tradeoff is that for datasets that are
more difficult to classify, the underlying assumption of how the
actively sampled dataset is biased may not be as correct, and
model selection performance is slightly degraded. Since we
cannot know a priori what kind of dataset we have, PALMS-
fwc with a small weight is recommended in general. When
there is prior information about the dataset, we may instead
choose to use PALMS (when the dataset is likely to be difficult
to classify) or PALMS-fwc with a larger weight (when the
dataset is likely to be easy to classify).

Our method does not require a separate labeled validation
set, which would need to be sufficiently large in order to
effectively distinguish between different models, and thus is
not a feasible approach when the total labeling budget is small.
It also does not try to incorporate model selection in the active
learning process when acquiring new labeled datapoints. Since
our estimates of model performance will have high variance
especially in the beginning of active learning when the labeled
dataset is very small, it is not desirable to use these unreliable
estimates during active sampling since it may degrade the
performance of the active learner. Our method avoids this issue
by implementing model selection after active learning on a
fixed model is complete.

In future work, we will explore the effect of varying the
underlying fixed model that is used to generate the actively
sampled labeled data for model selection, as well as more ad-
vanced methods for determining the optimal weight correction
to use in PALMS-fwc. We will also consider classifiers other
than SVC, problems with imbalanced classes, and multi-class
classification. Finally, since our actively sampled datasets are
so small, we will explore methods to prevent overfitting of the
model selection process when there are a comparatively large
number of models to choose from.
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