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Abstract—Synthetic aperture sonar (SAS) imagery is crucial
for several applications, including target recognition and en-
vironmental segmentation. Deep learning models have led to
much success in SAS analysis; however, the features extracted
by these approaches may not be suitable for capturing certain
textural information. To address this problem, we present a novel
application of histogram layers on SAS imagery. The addition of
histogram layer(s) within the deep learning models improved
performance by incorporating statistical texture information on
both synthetic and real-world datasets.

Index Terms—deep learning, histograms, texture analysis, SAS
imagery

I. INTRODUCTION

Synthetic aperture sonar (SAS) produces high resolution
images of the seafloor [I]. The imagery generated through
SAS can be used to perform important tasks such as automatic
target recognition [2], environmental segmentation [3], and
automated scene understanding [4]. Machine learning methods
have been applied to SAS imagery to improve the accuracy
and efficiency for these different applications. A critical aspect
of the machine learning methods is the representation (i.e.,
features) of the SAS imagery. As a result, several works
investigate feature extraction approaches using a) handcrafted
(5] and/or b) deep learning [6] features. Deep learning models,
particularly convolutional neural networks (CNNs), have led to
great strides in research for processing SAS imagery [2]—{4],
[6]. A main reason for this success is the ability of deep learn-
ing frameworks to automate the feature extraction process and
perform follow-on tasks (e.g., classification, segmentation).
Literature has suggested that CNNs are biased towards texture
features rather than shape , . For SAS-related efforts,
texture information is crucial to represent the data [5]]. CNNs
are biased towards a particular type of texture (i.e., structural
texture) [9]], [10]]. To improve the information extracted within
these deep learning models, other types of texture features can
be incorporated into the network.
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Fig. 1: SAS image example for understanding the environ-
mental context that can be used in different tasks (e.g., object
recognition). The seafloor changes between different textures
types and texture features can help capture this information.
The objects of interest in the image are marked by red
rectangles.

Texture information is a common type of image feature that
has led to much success . For example, texture can be used
to provide environmental context in sonar imagery [12]]-[14]]
that can be used in various tasks such as identifying potential
hazards. In Figure [I] there are several difficult aspects of the
environment that texture features can capture. For example, the
seafloor types blend (e.g., sand ripple patterns change, overlap
between different seafloor types) and texture approaches can
model these gradients and regions of transition that occur
within the SAS imagery. Texture is always present within
images ; therefore, the representation of texture content
within an image is an important component of texture analysis.
Additionally, the need for informative, domain-specific (e.g.,
SAS) texture information has led to several methods for texture
feature extraction, particularly histogram-based approaches

As a result of the success of histogram-based, handcrafted
features, histogram layer(s) have been proposed [9]], [18]-[21].
These methods bridge the gap between handcrafted and deep
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Fig. 2: Examples of different types of structural and statistical
textures. The structural and statistical textures vary along the
vertical and horizontal axis respectively.

Cross

learning approaches to improve the statistical texture context
within the model. Structural textures consist of defining a set
of texture examples and an order of spatial positions for each
exemplar [22]. On the other hand, statistical textures represent
the data through parameters that characterize the distributions
and correlation between the intensity and/or feature values in
an image, as opposed to understanding the structure of each
texture [23[]. Methods that focused on extracting statistical
texture, particularly those computing measures between pairs
of pixels (i.e., second order), have outperformed the other tex-
ture analysis approaches [24]-[26]. To illustrate the difference
between structural and statistical textures, we show an example
in Figure 2] The structural textures are a checkboard, cross,
and stripe displayed along the vertical axis of the figure. The
statistical textures are shown along the horizontal axis where
the foreground pixels values were sampled from a multinomial,
binomial, and constant distributions. CNNs would have diffi-
culty learning weights that could account for both the spatial
ordering of the pixels (i.e., structural changes) and individual
pixel changes (i.e., statistical changes). However, histogram
layer(s) could be used to learn the statistical distributions to
further enhance the features learned by the model to correctly
classify the textures [9].

Inspired by the utility of statistical texture features, his-
togram layer(s) can be used to provide a powerful repre-
sentation of the data more suitable for SAS imagery. We
hypothesize that incorporating histogram layer(s) within deep
learning models will improve performance on SAS-related
tasks. The contributions of this work are the following:

« First application of histogram layer(s) for SAS imagery

o Investigation into model configuration for histogram
layer(s)

o Thorough analysis of statistical and structural textures for
SAS imagery

II. METHOD
A. Histogram Layer Review

We briefly summarize the local, radial basis function (RBF)
histogram layer that was previously introduced [9]. The his-
togram layer can be applied to several data modalities with
spatial information (e.g., grayscale, RGB, and convolutional
feature maps). Histograms generally require three hyperpa-
rameters: bin centers (7q), bin widths (1), and the number
of bins (B). With the histogram layer, the bin centers and
widths are learned by the network instead of setting these
values a priori. Given input data, X € RM*NXD ' here
M and N are the spatial dimensions while D is the feature
dimensionality, the output tensor of the local histogram layer,
Y € REXCOXBXD yith spatial dimensions R and C after
applying a histogram layer with kernel size S x T' is shown
in Equation [T}

S T
1
Y;“cbd = ﬁz Z e_’ygd(mr+5,6+t,d_ubd)2. (1)

s=1t=1

Each input feature dimension is treated independently; there-
fore, BD histogram features maps are extracted (e.g., three
input channels and three bins would result in nine histogram
feature maps). The histogram layer is constructed using pre-
existing layers that add flexibility and ease of implementation.

B. Network Architectures

We implemented a) shallow and b) deep networks to
evaluate the statistical and structural features of the SAS
imagery. Following [9], the shallow models were composed
of a feature extractor (histogram or convolutional layer),
global average pooling layer (GAP), and output classification
layer. The backbone architecture for the deep networks was
Resnet18 (Figure Eh). In this work, we investigated series and
parallel configuration (previously used in [9], [19]) as shown in
Figures [Bp and 3k respectively. The series configuration would
encode only statistical texture information before the output
classification layer. The parallel configuration would consist
of both statistical and structural texture features. As a result,
we are able to observe the impact of structural, statistical, and
combination of these texture features through the performance
of the baseline (i.e., ResNet18), series histogram, and parallel
histogram models respectively for SAS data.

III. EXPERIMENTAL PROCEDURE

A. Dataset Description

a) Statistical PISAS Dataset: The Pseudo Image SAS
(PISAS) dataset [4] contains ten classes of sand ripple and
rocky textures. Instead of the simple structures of cross,
checkerboard, and stripe as shown in Figure 2] one class of
sand ripple and rocky textures were selected to represent more
SAS-related structures. Examples of sand ripple and rocky
textures in the three different statistical classes are shown in
Figure ] The statistical PISAS dataset consisted of 14,208
images.
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Fig. 3: Convolutional backbone and histogram model configurations used for multi-site dataset experiments. Resnet18 was
used as the backbone architecture to extract convolutional features. In Figure [3h, the convolutional, ReLU, and max pooling
layers are represented with the light yellow, orange, and purple colors respectively. The local features maps produced by the
histogram layer are 2 x 2 x 128. The histogram features are reshaped to be the same size (i.e., 1 X 1 x 512) as the feature

vector produced by the global average pooling layer (GAP).

(c) T1_S3

(d) T10_S1 (e) T10_S2 (f) T10_S3

Fig. 4: Example of sand ripple (“T1”) and rocky (“T107)
images from the PISAS dataset with different statistical dis-
tributions. The same statistical classes (multinomial, binomial,
and constant) and two SAS-related structures (i.e., sand ripple
and rocky) were used to generate a total of six distinct
classes. The binomial, multinomial, and constant textures are
referenced as “S17, “S2”, and “S3” respectively. The subset
of PISAS consisted of a total of 14,208 images.

b) Multi-site Dataset: Example images for the multi-site
dataset are shown in Figure 5] The dataset consisted of 94
training, 12 validation, and 12 test images (118 images total)
of pure textures from multiple locations along the seafloor.
Random patches were sampled from the validation and test
splits five times to generate 60 images for each set. A total

(d) Sandripple

(a) Craters

(b) Flat (c) Rocky

Fig. 5: Example of images from multi-site dataset [27]. The
dataset consisted of real-world SAS imagery pure texture
regions from multiple locations on the seafloor. Four seafloor
textures types were identified to train, validate and test the
model: craters, flat, rocky, and sand ripple. The multi-site
dataset contained 118 total images.

of four classes comprised the dataset: flat, rocky, sand ripple,
and craters.

B. Experimental Design

a) Shallow Networks: We followed a similar training
procedure as in [9] for the synthetic dataset experiments
where each model was evaluated as a local feature extractor.
The network architecture consisted of a feature extractor
(convolutional or histogram layer), global average pooling
layer, and fully connected output layer. The “CNN” model
has a convolutional layer with ReL.U as the feature extractor
while the “Hist” model used the histogram layer as the feature
extractor. The experimental settings for each model was the
following: 70/10/20 training, validation, and testing splits, 300
epochs, and early stopping by checking if the validation loss
did not decrease after 10 consecutive epochs. The input image
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Fig. 6: Average confusion matrices for the convolutional and histogram layer models on the PISAS dataset. “T1” and “T10”
are sand ripple and rocky textures respectively. “S17, “S2”, and “S3” are the binomial, multinomial, and constant distributions

respectively.

patches were 128 x 128. The model parameters were adjusted
so that the kernel size was 7 x 7 with a 3 x 3 stride, and a
batch size of 128 was used to train each model. The number
of bins for the RBF histogram layer model (i.e., Hist) and
convolutional kernels for the CNN model were set to three.
The histogram layer bins were initialized to be equally spaced
between the range of the input data (i.e., 0 and 1). A total of
three experimental runs were performed.

b) Deep Networks: The HistRes_B model [9] was ap-
plied to the multi-site dataset, and two configurations were
investigated: parallel and series. The training details were
the following: 100 epochs, learning rate of 0.001, Adam
optimization [28]], mini batch size of 16, 224 x 224 input image
patches, and random crop data augmentation. A total of five
experimental runs of random initialization were completed to
evaluate the stability of each method. The number of bins was
varied from 4, 8, and 16.

C. Results and Discussion

a) CNN vs. Histogram Layer Models: The results of each
shallow network on the PISAS test data are shown in Table
Similar trends in the results follow for the SAS structures
as observed by the simple structures in [9]]. The convolutional
model can easily distinguish the sand ripple and rocky textures,
but struggles with the statistical differences in comparison to
the histogram layer. The histogram layer can be important in
SAS application when the statistics of the data may change due
to environmental conditions such as speckle noise [30]. The

TABLE I: The average test accuracy for each model per
class type is shown. The best average performance is bolded.
The statistical labels relay the classification performance for
predicting the distribution of the foreground pixels, while the
structural labels show each model’s prediction for sand ripple
or rocky textures. Three experimental runs were conducted,
and error values are reported with £1 standard deviation.

Label CNN Hist

Both 55.65+21.0 | 81.11+0.76
Statistical | 57.37+18.8 | 99.90+0.07
Structural | 94.28+7.51 | 81.21+0.73

confusion matrices also highlight the differences between the
two models, as shown in Figure [§] The histogram layer model
has the most difficulty with the structural changes between the
sand ripple and rocky images, since there is equal weighting
on spatial contribution of neighbors due to the average pooling
operation. However, the CNN has more degradation in perfor-
mance when observing statistical changes, particularly for the
rocky texture (“T107).

Interesting observations can also be seen qualitatively in
the t-SNE projection of the training data, shown in Figure
The t-SNE projections used the same initialization and random
seed. The only difference is the features that were projected
into the lower dimensional space (convolutional or histogram
features). For the CNN, the sand ripple and rocky images
are projected near each other. However, the statistical textures
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Fig. 7: t-SNE projections for the convolutional and histogram layer models on the PISAS dataset. The test classification
accuracy is shown in parenthesis. Example images from each class are shown. The frames around each image represent the
statistical class of the PISAS dataset. Red, green, and blue frames represent the multinomial, constant, and binomial distributions
respectively. The CNN model appears to map structural textures near one another in the projected space (i.e., sand ripple images
are grouped to the left region of the projection and the rocky textures are grouped in the right of the projection). On the other
hand, the histogram layer model maps statistical textures close to one another. The binomial statistical textures (blue frames)
are grouped in the left of the projection. The multinomial (red frames) and constant (green frames) statistical textures are
clustered in the center and right of the projection respectively.

(c) Parallel (100.00)

(a) ResNetl8 (95.00) (b) Series (86.67)

Fig. 8: t-SNE projections for the best baseline ResNet18, HistRes_16 Series, and HistRes_16 Parallel. The test classification
accuracy for the model is shown in parenthesis. The baseline ResNetl8 did not have the histogram layer; as a result, the
model will focus on structural textures. The projection of the ResNetl8 features on the test data highlight that images with
similar structures are in the mapped near one another in the lower dimensional space. Sand ripple images are to the left of
the projection while there is a transition to rocky and crater textures in the middle with flat textures projected to the far right.
The contrary is shown for the Series histogram model. Textures with similar statistics (i.e., pixel intensities) are projected near
one another. The parallel model consist of both statistical and structural textures information; therefore, we observe a mix of
the different textures in the projected space.

are mapped to similar regions of the feature space after the
t-SNE projection. The clusters are also appeared tighter for
the histogram layer model, indicating that the histogram layer
may be able to handle small intra-class variations in the data
through the soft binning operations to characterize images in
the same class.

Additional analysis was needed to verify the plausible

conclusions discussed above to ensure the difference is a result
of the higher dimensional structure and not an artifact of the
t-SNE mapping. Therefore, we used a cluster validity metric
to assess the quality of the features learned by each method
with regard to the labels. The Calinski-Harabsz index [29]
considers both intra- and inter-cluster distances. Larger values
indicate more compact and separated classes in the feature



Fig. 9: t-SNE projections of SAS images from various locations of the seafloor passed through the best parallel HistRes_16
model. The colors indicate images collected from different regions. The best parallel model was trained on a small subset
of labelled SAS imagery (i.e., multi-site dataset). The model was able to learn features that generalized to new images from
different regions. In the projected space, we see meaningful groupings such as sand ripple textures in the far right of the
projection. The model was also able to extract features that grouped images containing cross talk, as shown in the bottom

left-hand corner of the projection.

TABLE II: The average Calinski-Harabasz index [29] for each
model per class type is shown. The best average performance
is bolded (larger values indicate better separability and com-
pactness). The statistical labels demonstrate the feature quality
for predicting the distribution of the foreground pixels, while
the structural labels show the feature quality for distinguishing
between the sand ripple or rocky textures. Three experimental
runs were conducted, and error values are reported with £1
standard deviation.

Label CNN Hist

Both 3,333.88+2,163.06 | 26,129.02+236.77
Statistical 40.554+32.50 50,516.00+460.19
Structural | 15,399.12-£9951.00 134.28+3.92

space. We observed that the metrics matched our analysis
of the lower dimensional space, as shown in Table @ The
histogram layer model outperformed the CNN for statistical
textures, while the CNN was superior for structural textures.
Overall, we noted that the histogram features had the best
features across all classes. Experiments on additional SAS
images in the Parallel vs. Series Configuration section further
demonstrated the power of statistical features for deep learning
models.

TABLE III: The average test accuracy for each model on
the SAS dataset is shown. The best average performance is
bolded. The baseline ResNet18 model achieved a test classifi-
cation accuracy of 84.66+11.42. Five experimental runs were
conducted, and error values are reported with +1 standard
deviation.

Configuration HistRes_4 HistRes_8 HistRes_16
Parallel 90.33+4.00 | 82.67+8.27 | 88.331+9.60
Series 77.3345.01 | 73.3345.06 | 81.004+4.03

b) Parallel vs. Series Configuration: The test perfor-
mance on the multi-site dataset for the model configuration
experiments is shown in Table [Tl The parallel and series
models were robust to the number of bins, as there was
not a significant difference in performance (i.e., overlapping
error bars). The parallel model outperformed both the baseline
and series models. This further validated the utility of using
both statistical and structural information to maximize texture
classification. In addition to the overall test performance,
a qualitative analysis was performed using t-SNE (Figure
[B). The convolutional model mapped textures with similar
structures near each other, while the histogram models mapped
points with similar statistics near one another. For the parallel



configuration, there was a mix of similar statistical and struc-
tural SAS images near one another in the projected space.

Once training and evaluation was completed on the subset
of labeled SAS images, the model was applied to hold-out
SAS images from multiple locations on the seafloor. The t-
SNE projection is shown in Figure [9] The model successfully
extracted features from the hold-out images that showed mean-
ingful groupings in the lower dimensional projection space.
The parallel HistRes_16 model can also potentially be used
to identify images with cross-talk (bottom left-hand corner of
Figure [0). The results in this section demonstrated the use
of the histogram layer for various real-world applications for
SAS texture classification.

IV. CONCLUSION

We presented a novel application of histogram layer(s) for
SAS image classification. The results presented in this work
show the impact of statistical texture features within deep
learning frameworks. For SAS imagery, histogram layer(s)
provide a powerful feature representation that can jointly be
tuned with CNNs to optimize performance. Future work in-
cludes exploring other convolutional backbones, investigating
other binning functions, performing semantic segmentation,
and extensive comparisons with other SAS image analysis
approaches.
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