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Abstract—Hierarchical Agglomerative Clustering (HAC) algo-
rithms are extensively utilized in modern data science, and seek to
partition the dataset into clusters while generating a hierarchical
relationship between the data samples. HAC algorithms are
employed in many applications, such as biology, natural language
processing, and recommender systems. Thus, it is imperative
to ensure that these algorithms are fair– even if the dataset
contains biases against certain protected groups, the cluster
outputs generated should not discriminate against samples from
any of these groups. However, recent work in clustering fairness
has mostly focused on center-based clustering algorithms, such as
k-median and k-means clustering. In this paper, we propose fair
algorithms for performing HAC that enforce fairness constraints
1) irrespective of the distance linkage criteria used, 2) generalize
to any natural measures of clustering fairness for HAC, 3) work
for multiple protected groups, and 4) have competitive running
times to vanilla HAC. Through extensive experiments on multiple
real-world UCI datasets, we show that our proposed algorithm
finds fairer clusterings compared to vanilla HAC as well as the
only other state-of-the-art fair HAC approach.

Index Terms—Clustering, Hierarchical Agglomerative Cluster-
ing, Fairness in Clustering

I. INTRODUCTION

Hierarchical Agglomerative Clustering (HAC) refers to a
class of greedy unsupervised learning algorithms that seek to
build a hierarchy between data points while clustering them
in a bottom-up fashion. HAC algorithms are widely utilized
in modern data science– such as in genetics [1], genomics
[2], and recommendation systems [3]. These algorithms also
possess two distinct advantages over non-hierarchical or flat
clustering algorithms: 1) they do not require the number of
clusters to be specified initially, and 2) they output a hierarchy
among all samples in the dataset.

The machine learning community has realized the im-
portance of designing fair algorithms. Traditional machine
learning algorithms do not account for any biases that may
be present (against certain minority groups) in the data, and
hence, may end up augmenting them. Machine learning is
being increasingly utilized in societal applications such as loan
defaulter prediction [4], recidivisim rate prediction [5], and
many more. Owing to the sensitive nature of these applications
and their far reaching impact on human lives, ensuring that
these algorithms are fair becomes of paramount importance.
However, work in designing fair clustering algorithms has
mostly been focused either on the center-based or graph-based

clustering objectives like [6]–[11]. Despite all the advantages
of HAC algorithms, there has been little work that proposes
fair variants to HAC. In this paper, we seek to bridge this gap
by making the following contributions:

• The proposed fair HAC algorithm (Section III) works for
multiple protected groups, and we provide results on all the
widely used linkage criteria (single-linkage, average-linkage,
complete-linkage) for real datasets (Section IV). Our algorithm
can also generalize to any natural analytical notions of fairness
for HAC (Section III).

• Our algorithm achieves an asymptotic time complexity
of O(fn3) (f is the number of protected groups), which is
comparable to O(n3) for traditional HAC as f is a small
number for most applications (Section III).

• We provide experimental analysis for different fairness
costs for our algorithm, and show that it is more fair than
vanilla HAC (Section IV-B), and the only other fair HAC
algorithm proposed by [12] (Section IV-C). Also, the algorithm
of [12] cannot generalize to any arbitrary notion of fairness.

• We undertake an experimental analysis of cluster quality
between our proposed algorithm, vanilla HAC, and the algo-
rithm of [12], using the Silhouette Coefficient [13] and find
that our algorithm generally obtains higher quality clusters
with improved fairness (Section IV-D).

Motivating Example. We provide an example similar to
the job shortlisting example given in [14], but tailor it to
shortlisting households/individuals for bank credit promotions.
A dataset, e.g., the creditcard dataset [15], is used by the
marketing division of a bank to reach out to prospective cus-
tomers and offer them loans and available credit opportunities.
The dataset contains information on the potential customer’s
age, education level, weekly work hours, and capital gains per
month. The bank utilizes a hierarchical clustering algorithm
to find target audiences for promotional offers, using the
aforementioned attributes as input features. On running the
algorithm, they obtain hierarchical clusters of people. The
bank then chooses an appropriate k number of clusters based
on available credit offers. A small number of clusters are short-
listed for a particular promotion using chosen metrics, (e.g.
education and wages-earned) to represent clusters and select a
few of them. However, people-of-color (POC) and women tend
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to earn lower wages than Caucasian males1, and that POC face
more adversities that lead to disparities in their education level
as opposed to white demographics2. Considering these facts
on the racial education divide and the wage gap, a clustering
algorithm using these attributes will inherently group white
households and men as better candidates. As a result, this
marketing clustering algorithm has disparate impact on POC
as well as women. In this case, race/ethnicity and gender can
be considered as protected groups and the objective of the fair
hierarchical clustering algorithm is to ensure that each group
gets a certain minimum representation. Moreover, no group
should be overwhelmingly preferred, meaning there should be
a cap on the maximum representation allowed. This example
demonstrates how bounded representation mitigates disparate
impact in the context of clustering. Our goal is to develop a
hierarchical clustering algorithm to output trees that abide by
this notion of fairness.

The rest of the paper is organized as follows: Section II
discusses related work in the field, Section III details our
proposed algorithm for performing fair HAC, Section IV
describes our results on real data, and Section V concludes
the paper and discusses the scope of future work.

II. RELATED WORKS

Recently, many works have focused on providing clustering
algorithms with fairness guarantees [16]. However, most of
this work has studied center-based clustering (such as k-
means, k-center, and k-median) [6]–[8], [17], [18], and spectral
methods [10], [18]. This line of work seeks to impose some
fairness constraints along with the original clustering distance
based objective. Chierichetti et. al were the first to propose fair
clustering via fairlet decomposition for k-center and k-median
clustering [7] using a fairness definition based on disparate
impact [19]. They ensured that in the case of two protected
groups, each cluster had points of both groups, measured using
a metric known as balance. Numerous works have followed
that improve upon these ideas such as better approximation
rates [8], [6], allowing for multiple protected groups [6],
extending to other clustering objectives [10].

Other than our work and Ahmadian et al’s Fair Hierarchical
Agglomerative Clustering (AFHAC) [12], no work has inves-
tigated fairness in the context of hierarchical clustering so far.
The key difference between our work and AFHAC is that we
work with the greedy HAC algorithms and AFHAC works
with hierarchical clustering objectives. In particular, Ahmadian
et al’s work considers objectives for hierarchical clustering
that have been proposed following Dasgupta’s seminal work
[20], such as [21], [22]. However, none of these objectives
are approximated well-enough by any general distance linkage
criteria that are typically used in HAC (except for average-
linkage). Moreover, greedy HAC algorithms, despite being
ad-hoc and heuristic approaches, are widely utilized in many

1https://www.pewresearch.org/fact-tank/2016/07/01/
racial-gender-wage-gaps-persist-in-u-s-despite-some-progress/

2https://www.brookings.edu/blog/brown-center-chalkboard/2016/06/06/
7-findings-that-illustrate-racial-disparities-in-education/

application areas like biological sciences. For these reasons,
we wanted to ensure fairness for these algorithms specifically,
and provide a fair variant to the HAC problem, irrespective of
the choice of distance linkage criteria. In the results section,
we compare the fairness achieved by our algorithms to the
AFHAC algorithms (for both the revenue [21] and value [22]
hierarchical clustering objectives) on a number of datasets.
Through extensive experiments we find that our proposed
algorithm achieves better fairness than AFHAC.

III. PERFORMING FAIR HAC

First, we need to define the vanilla HAC process formally.
Let X ∈ Rn×m be our dataset. Then the HAC on X
denoted by HC(X) is a hierarchical partitioning of X that
is represented by a binary tree T (also called a dendogram),
where each level of T represents a set of disjoint merges
between subclusters. Each node of T at any level represents
a subcluster of points. An HAC algorithm first considers each
of the n samples of X to be singleton subclusters, and then
chooses sets of two subclusters to merge together. A point
from X can only belong to any one subcluster at any particular
level. The lowest level of T are leaves, and comprise of all
the n points of X . The root of T is a single node/cluster that
contains all of X . Let C1, C2, ..., Cs be the subclusters at any
level of T . Then C1 ∪ C2 ∪ ... ∪ Cs = X . The choice of
which two subclusters should be merged is made by finding
two subclusters Ci and Cj such that they minimize a linkage
criterion denoted by D(Ci, Cj). There are many linkage crite-
ria that can be used. For example, single-linkage is defined as
D(Ci, Cj) = minxi∈Ci,xj∈Cj d(xi, xj) and complete-linkage
is defined as D(Ci, Cj) = maxxi∈Ci,xj∈Cj d(xi, xj). In this
paper we assume d(x, y) is the Euclidean distance between
two points x and y, but other distance metrics can also be used.

Next, we need to define our proposed notion for fairness.
In this work we consider data points to only belong to
one protected group, that is, multiple assignments to many
protected groups for the same point are not allowed. In most
works of fairness in clustering, the notion of balance [7] is
used to ensure that clusters contain each protected group in
desired proportions. We work with a similar notion, but frame
this metric as a fairness cost that will naturally align with fair
hierarchical clustering. We also introduce an input parameter
called the ideal proportion (ϕg) for each group g. This value
is the desired proportion of points for each group in each
cluster. Thus the ideal proportion of points from protected
groups in each cluster can be set depending on the application
context. In accordance with the disparate impact doctrine,
we let the ideal proportion of each protected group be the
proportion of the group in the entire dataset X [17]. Thus,
for a protected group with s members, the ideal proportion
would be s/n. This can be easily altered for when all groups
should be equally balanced in each cluster– if we have f
protected groups, we can replace the ideal proportion for each
group with 1/f . Finally, the only other existing work on fair
hierarchical clustering [12], employs a definition of fairness
where the fairness of all protected groups is upper-bounded

https://www.pewresearch.org/fact-tank/2016/07/01/racial-gender-wage-gaps-persist-in-u-s-despite-some-progress/
https://www.pewresearch.org/fact-tank/2016/07/01/racial-gender-wage-gaps-persist-in-u-s-despite-some-progress/
https://www.brookings.edu/blog/brown-center-chalkboard/2016/06/06/7-findings-that-illustrate-racial-disparities-in-education/
https://www.brookings.edu/blog/brown-center-chalkboard/2016/06/06/7-findings-that-illustrate-racial-disparities-in-education/


by the same value. Our definition is thus more general, since
we can define different ideal proportions for each group.

Definition 1: (α-Proportional Fairness) Let F ∈ Rf×n be
the set of all protected groups where each protected group
g ∈ F is {0, 1}n. Thus, if data sample j from X = {xi}ni=1

belongs to a particular group g then at the j-th index g contains
a 1, otherwise a 0. Moreover, a cluster C = {xi|i ∈ I} where
C ⊂ X , and I is the index set containing indices of the
points in X which belong to cluster C. The proportion of
group g members in C is denoted by δCg = 1

|C|
∑

xi∈C gi and
the ideal proportion ϕg = 1

n

∑
xi∈X gi. Then α-Proportional

Fairness for cluster C and protected group g is maintained if
the following condition holds: |δCg − ϕg| ≤ α.

Definition 2: (Max Fairness Cost (MFC)) Let HC(X)
be the output of some hierarchical clustering on X . Then the
fairness cost on some level with k clusters of the HC(X) tree
measures how close each cluster of points at this level (denoted
by Ci, where i = {1, 2, .., k}) is to the ideal proportion ϕg

for each protected group g in F . Mathematically, the Max
Fairness Cost can then be defined as: maxi∈[k],g∈F |δCi

g −ϕg|.
Minimizing the MFC minimizes the cumulative maximum

deviation of groups from the ideal proportion, for all k clusters
and all g groups. As a result, all clusters have proportions of all
protected groups as close as possible to the ideal proportions.

We also include analysis for the balance metric. Below, we
define the multiple-group version of balance, initially defined
by [7] for the 2-group case, and then generalized by [17]:

Definition 3: (Multi-Group Balance [17]) Following from
the notation established above, the balance of a clustering can
be defined as: mini∈[k] min{ δ

Ci
g

ϕg
,

ϕg

δ
Ci
g

}, ∀g ∈ F .
Balance needs to be maximized to improve fairness. The

obtained balance will always lie between [0, 1], where a value
of 0 is a completely unbalanced clustering (least fair) and a
value of 1 is a perfectly balanced clustering (most fair). In
the next subsection, we delineate how fairness metrics such
as the MFC or balance can be optimized for HAC using our
proposed algorithm.

A. Fair HAC: The FHAC Algorithm

Thus, the goal for our fair algorithm is to minimize the
fairness cost by ensuring that at each level of the tree, we have
at least maintained some α′-Proportional Fairness where α′ is
some constant. We run the algorithm till some k clusters are
remaining, and return after that. To enforce these constraints,
we keep tightening the bound on proportional fairness while
simultaneously loosening the bound on minimizing distance,
as we start getting closer to k clusters. The greedy Fair
Hierarchical Agglomerative Clustering (FHAC) algorithm is
described as Algorithm 1 (which works irrespective of the
choice of linkage criteria). Algorithm 1 resembles vanilla
HAC with some key distinctions that allow it to be fairer.
The key difference is foregoing the minimum distance linkage
criterion constraint to allow for the selection of fairer clusters
that can be merged, leading to a fairer output tree. It is
important to note that throughout, we maintain a distance

matrix D ∈ Rn×n (line 2) between clusters to improve the
runtime of the algorithm; this can be done by computing
the distances using the linkage criterion provided as input.
Also, dmin (line 5) signifies the initialization of the distance
(computed using the linkage criterion) between the clusters
chosen to be merged for this level.

Algorithm 1 functions as follows: it tightens the fairness
constraint (and loosens the distance constraint) as we keep
constructing the clustering tree from bottom to top. The
fairness constraint tightening is achieved using the function
Zα : R → R and the distance constraint loosening is achieved
using the Zβ : R → R function. Zα and Zβ are both monoton-
ically increasing functions and are parameterized appropriately
for the dataset X . We compute the actual constraint bounds
α and β using Zα(|C| − k) (line 6) and Zβ(n − |C|) (line
7), respectively, where C in each iteration of the while loop
(line 3) denotes the current state of clusters at some level
of the tree. Intuitively– if both functions are monotonically
increasing, then α reduces as we get closer to k clusters,
tightening the fairness constraint, whereas β increases as we
get closer to k clusters, loosening the distance constraint.

Algorithm 1 Proposed FHAC Algorithm
Input: X , F , k, D(., .),Zα : R→ R,Zβ : R→ R
Output: Fair HAC tree Tfair

1: set C ← X
2: compute Dn1,n2 = D(n1, n2), ∀(n1, n2) ∈ X ×X
3: while |C| ≥ k do
4: Pg = 0, ∀g ∈ F
5: dmin ←∞
6: α← Zα(|C| − k)
7: β ← Zβ(n− |C|)
8: for each (ci, cj) ∈ C × C, s.t. ci ̸= cj do
9: for each g ∈ F do

10: δ
ci+cj
g ← δ

ci
g |ci|+δ

cj
g |cj |

|ci|+|cj |

11: if |δci+cj
g − ϕg| ≤ α then P ′

g = 1, else P ′
g = 0

12: end for
13: if

∑
g∈F P ′

g ≥
∑

g∈F Pg then
14: if dmin + β > Dci,cj then
15: dmin ← Dci,cj

16: Pg ← P ′
g,∀g ∈ F

17: (cm1 , cm2 )← (ci, cj)
18: end if
19: end if
20: end for
21: merge cm1 ← cm1 + cm2
22: update C with newly merged clusters
23: recompute Dc1,c2 = D(c1, c2),∀(c1, c2) ∈ C × C
24: update Tfair with merge
25: end while
26: return Tfair

Unlike traditional HAC algorithms, we maintain the pro-
portion of protected group g members for each possible
cluster pair to be merged (line 10). Another distinction is the
Pg ∈ {0, 1}f and P ′

g ∈ {0, 1}f vectors, that help us keep
track of how many protected groups for a potential cluster
merge have met the proportional fairness constraints. If P ′

g = 1
we have met the proportionality condition for group g in this
iteration, otherwise P ′

g = 0. Pg is the same but maintains
global state– that is, it keeps track of the same condition



but for the best cluster merge pair found so far. In line 11,
we check to see if we have met α-Proportional Fairness if
clusters ci and cj were to be merged, and then appropriately
set the value for P ′

g . Next, once we have done this for all the
groups (lines 9-12), we compare the current cluster pair with
the best cluster merge pair found so far (line 13). If the current
cluster pair is a better choice, we check whether the minimum
distance constraint is improved (relaxed using β) on line 14,
and update variables accordingly. Gradually we build up the
HAC tree and return it as Tfair.

Note. As is evident, Algorithm 1 achieves an asymptotic
time complexity of O(fn3) which is comparable to vanilla
HAC (O(n3)) since f is usually small for real-world appli-
cations. We can further speed-up the clustering process by
making locally optimal cluster merges if they meet the fairness
(and distance) criteria, as opposed to searching the entire space
for possible cluster pairs to merge. Furthermore, the benefit of
employing Algorithm 1 for fair HAC, is that it can be utilized
to minimize any cost function that is required for ensuring
fairness of the hierarchical clustering process. In the previous
section, we defined the MFC and balance for the level with
k clusters, which can be minimized by Algorithm 1 through
appropriate parameterization of Zα and Zβ . In the results
section, we present experimental results for both these fairness
metrics, demonstrating the generality of our approach.

Calculation of hyperparameters. For our empirical results
we let Zα(x) = eθ1x+α0 and Zβ(x) = eθ2x+β0 but any
monotonic functions can be used. Thus, we have to estimate
the parameters α0, β0, θ1, and θ2 that minimize MFC or
balance. For the results in the paper, we utilize a simple
grid-search and then choose parameters based on the values
obtained for the choice of fairness cost. Alternatively, any
black-box hyperparameter search algorithm could be utilized
for this purpose.

B. Results on Toy Data

We generate two-dimensional data from a uniform distribu-
tion ([0, 250]) for our toy example and there are 25 points in
total (n) and k = 4. Clusters are denoted in Figure 1 using 4
colors (red, green, blue, and yellow).

There are two protected groups, denoted by ◦ and ×, with
ideal proportions denoted by ϕ◦ = 0.56 and ϕ× = 0.44,
respectively. Therefore, a fair distribution of protected groups
across clusters should be to (more, or less) balance them, as
ϕ◦ ≈ ϕ× ≈ 0.5. Also, Zα(x) = θ1x + α0 and Zβ(x) =
θ2x+ β0. As mentioned above, we run FHAC (Algorithm 1)
iteratively and estimate hyperparameters, and then compare
how fair the final clusters are for vanilla single-linkage HAC
and single-linkage FHAC. The values of the parameters are
as follows: α0 = 1.0, θ1 = 5.0, β0 = 11.031, θ2 = 0.1826.
Moreover, MFC for vanilla HAC with single-linkage is 1.12,
and for FHAC with single-linkage is 0.38. Thus, we find that
the fairness achieved by our algorithm is much better, and we
obtain proportionally fair clusters as a result. The clusters for
traditional HAC are shown in Figure 1(a), and for our proposed
FHAC are shown in Figure 1(b). Visually, it is easy to see that
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(a) Vanilla HAC clusters
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(b) FHAC clusters

Fig. 1: Toy Dataset Results

clusters in Figure 1(b) are more well-balanced than in Figure
1(a), where the red cluster has a large number of points, and
the yellow cluster has only 1 point. Figure 1(b) instead has
all points from each of the two protected groups distributed
according to their ideal proportions.

IV. RESULTS

We utilize three real-world datasets to demonstrate the
working of FHAC (Algorithm 1) and show that it computes
fairer (or equivalently fair) hierarchical clustering solutions
compared to vanilla/traditional HAC (for average, complete,
and single linkage criteria) in Section IV-B, as well as the
algorithms of Ahmadian et al for fair hierarchical cluster-
ing [12] (for both value and revenue clustering objectives)
in Section IV-C. Furthermore we also analyze the quality
of the fair clustering outputs obtained (using the Silhouette
Coefficient [13] clustering performance metric) between these
algorithms in Section IV-D, and find that our algorithms
compute clusters of comparable quality. For Algorithm 1, we
have Zα(x) = eθ1x and Zβ(x) = eθ2x for all experiments
(that is we also set α0 = β0 = 0).

A. Datasets Used

We utilize three datasets obtained from the UCI ML respos-
itory. We subsample datasets (n = 1000) much like previous
work [7] [23]. We let merges occur up to k = 4 (that is, we
start 1000 singleton clusters and merge them till we have 4
clusters and we have obtained a hierarchical cluster tree) for
all experiments and all datasets. These datasets are utilized in
most research to evaluate fair clustering algorithms [7], [17]:

• Creditcard Clients Dataset [15]: Consists of customers’
default payments in Taiwan, denoted as creditcard. The
features used are age, bill-amt 1 — 6, limit-bal, pay-amt 1
— 6. The sensitive attribute used is education with protected
groups graduate school (ϕ0 = 0.25), university (ϕ1 = 0.25),
high school (ϕ2 = 0.378), others (ϕ3 = 0.122).



• Bank Marketing Dataset [24]: Consists of telephonic
marketing campaigns of a Portuguese bank, denoted as bank.
The features used are age, balance and duration. The sensitive
attribute is marital status, with protected groups married
(ϕ0 = 0.334), single (ϕ1 = 0.334), divorced (ϕ2 = 0.332).

• Census Income Dataset [25]: Contains 14 attributes of
adults obtained via a 1996 census survey, denoted as census.
The features used are age, education-num, final-weight,
capital-gain, hours-per-week. The sensitive attribute is sex
with protected groups male (ϕ0=0.376), female (ϕ1=0.624).

B. Comparing FHAC (Algorithm 1) and Vanilla HAC

The fairness results (including parameter values) for running
Algorithm 1 and vanilla HAC over all the aforementioned
datasets for different linkage criteria for MFC as the fairness
metric are shown in Table I. The lower the MFC, the more fair
the obtained clustering is. The results when balance is selected
as the fairness metric are shown in Table II. Here, the higher
the balance, the fairer the clustering obtained. Clearly, Algo-
rithm 1 achieves fairer solutions to vanilla HAC on real data.

TABLE I: (MFC Results) Vanilla HAC and FHAC (Ours)

Dataset Linkage θ1 θ2 MFC (Vanilla) MFC (FHAC)
census Average 0.001 0.001 0.0853 0.0853
census Complete 0.001 0.001 0.1806 0.0853
census Single 0.001 0.65 1.248 0.752

creditcard Average 0.00005 0.005 1.2439 1.0
creditcard Complete 0.00005 0.005 0.744 0.60
creditcard Single 0.0075 0.5 1.5 0.778

bank Average 0.0001 0.05 1.332 0.6679
bank Complete 0.5 0.05 1.332 0.4457
bank Single 0.001 0.65 1.332 0.6653

TABLE II: (Balance Results) Vanilla HAC and FHAC (Ours)

Dataset Linkage θ1 θ2 Balance(Vanilla) Balance(FHAC)
census Average 0.001 0.001 0.8865 0.8865
census Complete 0.001 0.001 0.7599 0.8865
census Single 0.0005 1.0 0.0 0.9385

creditcard Average 0.05 0.1 0.0 0.427
creditcard Complete 0.0005 1.0 0.0 0.7105
creditcard Single 0.0005 1.0 0.0 0.7959

bank Average 0.045 0.09 0.0 0.5567
bank Complete 0.5 0.05 0.0 0.3327
bank Single 0.0005 1.0 0.0 0.8099

C. Comparing FHAC (Algorithm 1) and AFHAC

In this subsection, we compare the performance of our
proposed algorithm FHAC with AFHAC using the fairness
metrics MFC and balance defined in Section III. AFHAC
works with the following hierarchical clustering objectives:
Cohen-Addad et al’s value objective [22] and Moseley et
al’s revenue objective [21]. Experiments were run to calculate
MFC and balance of the clusters formed by AFHAC optimiz-
ing revenue (AFHAC-R) and value (AFHAC-V).

The AFHAC algorithm proposed by Ahmadian et al utilizes
average-linkage HAC as part of their clustering process [12].
Thus, for comparisons to be justifiable, we compare their
algorithm with our proposed FHAC algorithm with average-
linkage as the linkage criterion. Another important consider-
ation is the difference in fairness enforcement. The AFHAC
algorithms aim to ensure that all clusters (and their merged

sub-clusters) should have each protected group’s proportion
upper-bounded by some value α provided at runtime. Extrap-
olating for the level with k clusters, it is then evident that their
algorithms cannot accommodate different ideal proportions
for each group as they attempt to use only the same α for
each group. Mathematically, they aim to ensure that δCi

g ≤ α,
∀g ∈ F, i ∈ [k]. Therefore, to make comparisons fair, we set
α = maxg∈F {ϕg} for our experiments using their algorithms.

TABLE III: (MFC Results) FHAC, AFHAC-R, and AFHAC-V

Dataset MFC (FHAC) MFC (AFHAC-V) MFC (AFHAC-R)
creditcard 1.0 2.8505 1.5825
census 0.0853 4.0 4.0
bank 0.6679 0.03648 2.0027

We calculated MFC values for AFHAC-R and AFHAC-V
on all the datasets mentioned in Section IV-A and compare
with Algorithm 1. These results are shown in Table III. We
do similar experiments for balance and show the results in
Table IV. Observing both Table III and Table IV, we can
see that we outperform both AFHAC-V and AFHAC-R for
both the MFC and balance metrics for the creditcard
and census datasets. For the bank dataset, we outperform
AFHAC-R for both MFC and balance, but AFHAC-V obtains
better fairness utility. Despite this, we believe in the merits of
our approach due to the lack of generalization capability of
the AFHAC algorithms to arbitrary fairness notions, and their
overall inconsistent performance on the other datasets.

TABLE IV: (Balance Results) FHAC, AFHAC-R, AFHAC-V

Dataset Balance(FHAC) Balance(AFHAC-V) Balance(AFHAC-R)
creditcard 0.427 0.0 0.416
census 0.8865 0.2 0.0
bank 0.5567 0.9474 0.0

D. Comparing Clustering Performance of Fair Clusters

As a result of enforcing fairness constraints on a clustering,
we are reducing the clustering quality compared to the original
optimal clustering. This happens because we opt for more
fair cluster merges over ones that minimize distance between
clusters in Algorithm 1. That is, as we are improving fairness
(either in terms of balance or MFC) for our proposed FHAC al-
gorithm, we are reducing clustering performance compared to
vanilla HAC. In our approach, this directly relates to increasing
the β relaxation of the distance criterion while finding pairs
of clusters to merge together. Similarly, even for the AFHAC
algorithms (and other fair algorithmic variants), clustering
performance decreases at the cost of finding fairer solutions.

Thus, we wish to analyze the clustering performance of our
FHAC algorithm to the AFHAC algorithms. Considering the
vanilla HAC clustering performance as the optimal, we obtain
results to observe the extent to which clustering performance
worsens and how it compares to the AFHAC algorithms. To
measure clustering quality, we utilize the Silhouette Coeffi-
cient/Score [13] which is a widely used clustering performance
metric. It aims to capture intra-cluster similarity and inter-
cluster dissimilarity and gives an output between [−1, 1] for
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(c) Silhouette Scores for census

Fig. 2: Clustering Performance Analysis

a given clustering as input. A score of: −1 indicates an
incorrectly assigned clustering, 1 indicates a dense and well-
separated clustering, and 0 indicates overlapping clusters. We
use the Silhouette Score as it is easier to interpret compared
to other unbounded cluster performance metrics.

Since we are comparing Silhouette Coefficients for fair
clusters obtained via Algorithm 1 and the AFHAC algorithms,
it does not make sense to compare clustering solutions that
are explicitly unfair, i.e., solutions that have balance equal
to 0. Therefore, for any solutions such as these, we denote
their Silhouette Score as −1 (incorrect clustering). The results
comparing the Silhouette Scores for Algorithm 1 with average-
linkage for MFC (denoted as FHAC(MFC)), Algorithm 1
with average-linkage for balance (denoted as FHAC(Balance)),
AFHAC-V, and AFHAC-R, on the creditcard, bank,
and census datasets are shown in Figure 2(a), Figure 2(b),
and Figure 2(c), respectively. Quite evidently, FHAC achieves
competitive clustering performance to the other algorithms.

V. CONCLUSION

In this paper, we have proposed the FHAC algorithm
(Algorithm 1) for performing HAC (Section III). Our
algorithm works for multiple protected groups, generalizes
to natural fairness notions for HAC, and for any linkage
criterion used. We provide results on UCI datasets such as
bank, creditcard, and census comparing our approach
to vanilla HAC as well as the only other fair hierarchical
clustering approach of [12], for both the MFC fairness cost
and the balance fairness metric of [7] (Section IV). The
results demonstrate that our proposed algorithm achieves
better fairness and is more robust than the other clustering
approaches. We further compare the clustering performance
of our approach and show that it outputs clusters of quality
comparable to the optimal as well as other related approaches.
For future work, alternate approaches to making HAC fair
(for e.g. post-processing approaches) can be explored.
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