
Bootstrap Advantage Estimation for
Policy Optimization in Reinforcement Learning

Md Masudur Rahman, Yexiang Xue
Department of Computer Science

Purdue University, West Lafayette, Indiana, USA
{rahman64, yexiang}@purdue.edu

Abstract—This paper proposes an advantage estimation ap-
proach based on data augmentation for policy optimization.
Unlike using data augmentation on the input to learn value and
policy function as existing methods use, our method uses data
augmentation to compute a bootstrap advantage estimation. This
Bootstrap Advantage Estimation (BAE) is then used for learning
and updating the gradient of policy and value function. To
demonstrate the effectiveness of our approach, we conducted ex-
periments on several environments. These environments are from
three benchmarks: Procgen, Deepmind Control, and Pybullet,
which include both image and vector-based observations; discrete
and continuous action spaces. We observe that our method
reduces the policy and the value loss better than the Generalized
advantage estimation (GAE) method and eventually improves
cumulative return. Furthermore, our method performs better
than two recently proposed data augmentation techniques (RAD
and DRAC). Overall, our method performs better empirically
than baselines in sample efficiency and generalization, where the
agent is tested in unseen environments.

Index Terms—Deep Reinforcement Learning, Advantage Esti-
mation, Generalization in Reinforcement Learning

I. INTRODUCTION

The policy gradient method directly involves learning policy
function, which enjoys performance improvement in function
approximation settings [1]. The policy gradient theorem gives
a rather simple formulation of the gradient estimation, which
gives an unbias estimation [2]. However, it requires the re-
turn estimation of the entire trajectory, leading to very high
variance. A commonly used technique to reduce variance is
to use a baseline, which can help reduce variance without
introducing bias. Several effective methods originated from
this concept [3], [4]. An effective way is to use the value
function as a baseline to indicate whether the action taken
by the current policy is better than the average action taken in
that state, which can be formulated as an advantage estimation.
However, based on a single trajectory, the estimate can be local
and have high variance. Thus we can add a truncated scenario
where the value function can potentially give a global estimate.
Combining these two is the Generalized advantage estimation
[5] which shows strong empirical results [6].

However, due to procedural style content generation, the
value estimation can be erroneous and give different advantage
estimates even when the observation context changes. At the
same time, the semantic meaning remains the same. As the
procedural scenario can exist in a real-world scenario and
might cause agent to perform sup-optimally [7], [8], thus this

advantage estimation can be problematic in those scenarios,
resulting in poor sample efficiency. This issue might exist
partly due to difficulty in reducing policy estimation (policy
loss) and value function estimation (value loss).

This paper proposes Bootstrap Advantage Estimation
(BAE), which calculates the advantage estimation by comput-
ing advantage estimation on the original and its transformed
observations. We assume the transformation to be a semantic
invariant; the reward semantic remains the same, but the
contextual information can be changed. For example, if the
background of a game is not relevant, then changing the
background color from red to green can be a semantic invariant
transformation. The ultimate goal is to train an agent to be
robust against any such background change, which performs
well in the blue background in this example. The transformed
observation can be of any form; we experimented with data
augmentation-based observation transformation (e.g., random
crop, amplitude scaling). The intuition is that taking advantage
of estimate over augmented data forces the advantage estimate
to consider the error over many variations of the observations.
We demonstrate our BAE on the policy gradient method (i.e.,
PPO [3]) and show a comparison over GAE-based estimation.
We observed that our method BAE achieved better sample ef-
ficiency and zero-shot generalization in Procgen environments
(starpilot and miner) with image-based observation.

In recent times, data augmentation demonstrated an effective
choice in improving sample efficiency in high-dimensional ob-
servation space and improving generalization [9]–[11]. Though
this process sometimes generates empirical success [10], such
methods might lead to detrimental performance [11] as we
observed in our experiments. To mitigate this issue, the
DRAC [11] method suggests regularizing the policy network
and value network by augmented observation and not using
augmented data for policy training. In contrast, we propose
a novel way to leverage data augmentation. Our method
augmented observations for advantage estimation, one of the
core components of many policy optimization algorithms (e.g.,
PPO). We conducted extensive experiments on six environ-
ments consisting of image and vector-based observation; and
discrete and continuous action spaces. Our method falls in the
general model-free on-policy category, and we experimented
with Proximal Policy Optimization (PPO) [3] in this paper.
In particular, our experiments on Procgen Starpilot and Miner
environments demonstrate that our method can be beneficial in

ar
X

iv
:2

21
0.

07
31

2v
1 

 [
cs

.L
G

] 
 1

3 
O

ct
 2

02
2



the zero-shot generalization setup compared to baseline GAE
[5], and two data augmentation techniques: RAD [10], and
DRAC [11].

We further evaluated our method on several robotic lo-
comotion tasks with the high-dimensional observation from
Deepmind Control Suite [12]: Quadruped Run, and Cartpole
- Three Poles; and PyBullet [13]: Minitaur and HalfCheetah.

In experiments, we observe that our method BAE performs
better than baseline agents, including base PPO, RAD, and
DRAC. Our method achieves a much lower loss for policy
and value function estimation. Eventually, it performs better
in sample efficiency and zero-shot generalization than baseline
agents, including data augmentation. We observe that the base-
line data augmentation methods (RAD and DRAC) sometimes
worsen the base model performance. In contrast, our BAE
method improves the performance in most tested environments
and performs consistently with the base algorithm in other
cases. These results show that our method BAE is more
robust in performance compared to baseline data augmentation
methods.

The source code of our method is available at https://github.
com/masud99r/bae.

II. PRELIMINARIES AND PROBLEM SETTINGS

Reinforcement Learning We assume the task/environment
is a Markov Decision Process (MDP) which is denoted by
M = (S,A,P,R, γ), where S is state space, A is that action
space, P is the transition probability between states resulted by
an action. In this setup, at every timestep t, the agent take an
action at ∈ A in a state st ∈ S and the environment transition
to next state st+1 ∈ S determined by the transition probability
P (st+1|st, at). In a reinforcement learning framework, the
goal of the agent is to learn a policy π ∈ Π by maximizing the
expected return in an MDP, where Π is a set of all possible
policies and π is a single policy which is a mapping from
state to action. The policy which achieves the highest expected
return is optimal π∗ ∈ Π.
Policy Gradient Proximal Policy Optimization (PPO) [3], a
type of policy gradient method which achieved tremendous
success and is popularly used in many setups because of its
effective learning and simple implementation. However, the
choice of implementation details might impact the perfor-
mance of such algorithms in significant ways [6], [14], [15].
These implementation details consist of training individual
components of the algorithms, such as learning value function,
policy function, and advantage estimation. The following is the
objective of the PPO [3].

Lπ = −Et[
πθ(at|st)
πθold(at|st)

At] (1)

, where πθ(at|st) is the probability of choosing action at give
state st at timestep t using the current policy parameterized by
θ. On the other hand the πθold(at|st) refer to the probabilities
using an old policy parameterized by previous parameter
values θold. The advantage At is an estimation which is the
advantage of taking action at at st. A popular and effective

choice of estimating advantage using a value function is as
follows (equation 2):

At = −V (st)+rt+γrr+1 + ...+γT−t+1rT−1 +γT−tV (sT ).
(2)

Here V (s) is a value function that gives the average future
return under the underlying policy. The first term V (st) is the
value prediction at timestep t, and the rest of the terms except
the last term in the equation is the discounted Monte Carlo
Estimation which can be computed for a given episode from t
to T−1 (T > t). The last term V (sT ) is the value prediction at
state sT . Thus overall, this At represents how much the current
action at is doing compared to the current value prediction.
The more the advantage of action, the more the policy should
weigh that action. This is done by multiplying πθ(at|st)
with At. The πθold(at|st) in Equation 2 introduced due to
importance sampling which allows estimating the advantage
from the old policy samples. For details discussion, we refer
the reader to [3], [4].
Value Function Estimation An effective value function esti-
mation [3] is to regress value prediction with an advantage-
based return estimation. Here the Verror = |Vprediction −
VReturn|, where Vprediction is the predicted value and the
VReturn is value computed from the rewards R =

∑
t rt of

sampled trajectories and advantage A. Thus, VReturn = A+R.
Note that in this way, both the policy (in equation 1 and value
function is dependent on the advantage estimation. Thus, an
accurate advantage estimation should give us lower policy and
value losses and thus a better performing policy.
Generalization in RL Now we turn attention to the scenarios
where different episode varies by confounding features in
the observation. Note that these confounders (also called
context)impact the reward in the environment; however, they
might misguide the agent to think otherwise. Due to nature,
the agent might overfit the confounding features and fails to
generalize to slightly modified test environments [7], [8]. For
a details overview of generalization in reinforcement learning,
we refer the reader to the servery papers [16].
Data augmentation in various forms has been leveraged [10],
[11]. The general idea is to transform the observation so
that the observation’s semantic meaning remains the same
but the contextual information changes. However, the context
information is readily not available, and thus we need to
impose various assumptions that certain transformations on the
observation s′ = f(s) keep the reward semantic. For image-
based observation, various image manipulation can be used,
such as cropping, rotation, and color-jitter.
Advantage Estimation An essential component in policy
training is to estimate the advantage. Generalized Advantage
Estimation (GAE) [5] is a useful way to compute advan-
tage, which combines the value function estimate and the
Monte Carlo method. However, the data augmentation-based
regularization approaches [10], [11] do not handle the case
of advantage estimation. The advantage is estimated using a
single trajectory; thus, the computed advantage has a high
variance due to the systematic noise in the advantage esti-

https://github.com/masud99r/bae
https://github.com/masud99r/bae


mation. Given two similar states (observation), the advantage
estimation should be the same. For example, an observation
with the same semantic but a different background (red and
blue) should have the same advantage if the background is not
essential and thus confounded.

III. BOOSTRAP ADVANTAGE ESTIMATION (BAE)

We proposed to bootstrap the advantage estimation using
observation transformation to mitigate the abovementioned
issue. Formally, we generate m additional estimation with m
transformation. For each such transformation i, we compute
an estimate as in equation 3.

A
(k,i)
t = −V (f(st+1, vi))+rt+γrr+1+...+γT−tV (f(st+k, vi)),

(3)
where v0 refer to no augmentation. Furthermore, finally, we
take the average of all estimates as in equation 4 to estimate
the final advantage estimation for k-step return.

A
(k,b)
t =

1

m+ 1
(A

(k,0)
t +A

(k,1)
t +A

(k,2)
t + ..+A

(k,m)
t ) (4)

Finally, we can achieve bootstrap advantage estimation of a
trajectory of length T by combining several k-step returns
using exponential-weighted average as in 5 following the GAE
method [5].

A
BAE(γ,λ)
t = (1−λ)(A

(1,b)
t +λA

(2,b)
t +...+λT−1A

(T,b)
t ) (5)

This ABAE(γ,λ)
t is used to compute the advantage at state st

of timestep t in an episode. Note that, our BAE differs from
the GAE [5] in computing the k-step return as in equation
4. Algorithm 1 shows the details step of using our BAE with
the PPO-based policy optimization method. In this paper, we

Algorithm 1 BAE for Policy Optimization
1: Get transformation function f(s, v) with augmentation

type v
2: Get PPO for policy optimization RL agent
3: for each iteration do
4: for each environment step do
5: at ∼ πθ(at|st)
6: st+1 ∼ P (st+1|st, at)
7: rt ∼ R(st, at)
8: B ←− B ∪ {(st, at, rt, st+1)}
9: end for

10: Transform all s ∈ B to get B′ using v augmentation
with function f(s, v).

11: Compute Bootstrap Advantage Estimate (BAE) from
data B and B′ using equation 5.

12: Perform PPO updates with BAE to optimize for Lπ as
in equation 1

13: end for

leverage PPO [3] as the base RL algorithm, which uses gen-
eralized advantage estimation (GAE) as the default estimator.
In contrast, our method BAE-PPO uses bootstrap advantage

estimation (BAE) instead of GAE. The data augmentation
baselines RAD and DRAC use base PPO with GAE advantage
estimation. In the experiments we use m = 1 in equation
4. This means we use one data augmentation approach and
combine it with original advantage estimation as in equation
5.

Note that we do not apply any observation transformation
in other parts of the agent objective, and thus equation 2
remains theoretically and practically sound. Furthermore, we
empirically show how our Bootstrap Advantage Estimation
leads to a smaller value, policy loss, and performance boost.
Finally, we also compared the baseline RAD [10] and DRAC
[11] and show that our method performs better in many setups.

IV. EXPERIMENTS

A. Setup

Environments We experimented with image-based observa-
tions with discrete action space and vector-based observations
with continuous action space.
Procgen We use Procgen [17]: Starpilot and Miner (Figure 1)
which use image-based observation and procedural generation
to produce challenging game logic that changes episode by
episode. This benchmark allows for evaluating both sample
efficiency and generalization capacity of RL agents. Each
environment has around 100K levels. A subset of levels can
be used to train the agent, and then the full distribution, that
is, 100K levels, can be used to test the agent’s generalization
capacity. For our experiment, we use the standard evaluation
protocol from [17]; 200 levels of each environment are used
for training in the difficulty level easy. All the environments
have discrete action space of dimension 16. Intuitively, during
training, the agent has access to a limited number of envi-
ronment variability (e.g., 200 levels). The trained agent is
tested on all the available variabilities, which consist of unseen
scenarios. Thus, to master the game, the agent must focus on
essential aspects of the state and ignore irrelevant information
such as background color.

Fig. 1. Procgen: Some snapshots of Starpilot and Miner. The environments
are generated procedurally, which results in different observations (e.g.,
background) in each episode.

Deepmind Control We use two environments from
dm control [12]: Quadruped run, and Cartpole with three
poles (Figure 2). The Quadruped Run has high-dimensional
vector observation, and the task is to run as far as possible.
On the other hand, the Cartpole variation consists of three
procedurally generated poles. The complexity of these environ-
ments is suitable for evaluating the data augmentation-based
approaches.



Fig. 2. [Left] Deepmind Control: Some snapshots of Deepmind Control
tasks. [Right] Pybullet: Some snapshots of Pybullet Minitaur quadruped and
HalfCheetah environments. These environments contain vector-based state
space, and the action space is continuous.

Pybullet We use Pybullet [13]: Minitaur quadruped and
HalfCheetah environments with vector-based observation.
Each observation consists of raw sensory inputs. The Minitaur
quadruped is a 4-legged robot, and the task is to travel as long
as possible on flat ground. Furthermore, the HalfCheetah is a
two-legged robot that can control its movement in 2D, and
the task is to travel as much distance as possible. The action
spaces are continuous in these environments. Snippets of these
environments are in Figure 2.
Baselines All agents usage on-policy PPO [3] as the base
policy. We compare our method with Generalized Advantage
Estimation (GAE) [5] which is referred to as GAE-PPO in
our experiments. GAE is shown to perform better compared
to other advantage estimation techniques [6]. Moreover, we
compare with the data augmentation-based approach uses data
augmentation to transform the observation and then uses the
transformed observation to train the base policy. In particular,
we compare our method with existing baselines RAD [10]
and DRAC [11]. RAD, referred to as RAD-PPO, proposes
various data augmentation techniques to improve learning
from pixel-based observation. DRAC, referred to as DRAC-
PPO leverages the data augmentation to regularize the policy
and value learning, showing improved performance in policy
learning. In our method, we replaced the GAE estimation with
our proposed Bootstrap Advantage Estimation (BAE), which
is referred to as BAE-PPO.

We build all the agents, including our BAE-PPO and
baseline, using the implementation available in [15]. In a
PPO-based scenario, many factors have been identified as key
in implementing algorithms that impact the performance [6],
[14]. Thus, we use the same implementation logic for all the
baselines and our method for a fair comparison.
Data augmentation We evaluate Cutout Color data augmen-
tation for image-based observation, which performs best in
our setup compared to another popularly used Random Crop.
Thus, we report Cutout Color data augmentation results for
RAD, DRAC, and our BAE. We use the implementation avail-
able in RAD [10] for data augmentation. For the vector-based
observation robotic task, we use a random amplitude scale
proposed in RAD [10]. This method multiply the observation
with a number generated randomly between a range α to β.
We used best performing range α = 0.8 to β = 1.4 for our

Fig. 3. Starpilot Env. Training time policy and value loss [lower is better].
Our method achieves lowest value and policy losses than the base algorithm
(GAE-PPO) and data augmentation baselines (RAD and DRAC).

BAE method, and a range α = 0.6 to β = 1.2 for RAD, and
DRAC (suggested in RAD [10]).
Implementation and Hyper-parameters For the Procgen
Starpilot and Miner, we report mean and standard deviation
across 3 seeds run following the setup of Procgen paper [17].
We used an Nvidia A100 GPU to run agents with the IMPALA
CNN model [18] on the image observation-based Procgen
environments. We use neural networks to represent policy and
value functions for vector-based observations. For Deepmind
control environments, we report results with 10 random seed
runs, and for Pybullet environments, we report results over 5
seeds. For all experiments, we keep the common hyperparam-
eters the same for a fair comparison. The implementation and
hyperparameters are based on [15], [19]. For all results, we
report the mean (showed in solid line) and standard deviation
(showed in shaded areas) across runs.

B. Results

The PPO-based agent’s objective consists of value loss and
policy loss. The objective is to reduce them and potentially
improve the expected return. We show that our method BAE
reduces the losses and thus learns a better value function and
policy than the baselines. We then show how our method
performs in the expected return.
Procgen Results Figure 3 shows value and policy loss during
policy training on Procgen Starpilot environments. As the
training progresses, the loss of our method BAE reduces
drastically compared to the baselines. These results show the
sign of the effectiveness of our method in reducing the agent’s
losses. Note that the advantage estimation is used to train both
the value function and the policy; thus, better estimation of
advantages should generally give better value and policy. In
this sense, our method shows empirical evidence that it can
help better advantage estimation.

We observe that in the Starpilot environment, the success in
policy and value loss translates to the final return. In Figure 4
we see that our method (BAE-PPO) shows improved sample
efficiency (Train Return) and generalization capacity compared
to the baseline GAE-PPO, RAD-PPO, and DRAC-PPO.

Note that the RAD-PPO performance worsens the perfor-
mance of the base GAE-PPO algorithms. This result is con-
sistent with the findings in [11], and it shows that naive data



Fig. 4. Starpilot Env. Sample efficiency performance measured in train
time return. We see our method BAE-PPO achieves higher returns where
DRAC does not improve the base agent’s (GAE-PPO) performance. RAD
slightly worsens the performance of the base agent. [Right] Generalization
performance measured in test time return. We see a similar trend and observe
that our method performs the best.

Fig. 5. Miner Env. Training time policy and value loss [lower is better].
The value loss of BAE eventually become lower. Losses of RAD increases
compared to base PPO.

Fig. 6. Miner Env. [Left] Sample efficiency performance measured in train
time return and [Right] Generalization performance measured in test time
return. Overall, we see our method BAE-PPO shows consistence improvement
over baselines.

augmentation can be detrimental to performance. Furthermore,
we observe a similar trend for the value and policy loss results.

We observe a similar performance trend in the Procgen
Miner environment. In Figure 5, we see that in our method,
BAE shows a smaller value loss eventually despite being
higher at the beginning compared to the baselines. GAE and
DRAC show slightly lower values in the policy loss plot than
BAE. However, both show smaller policy losses in general.

In performance measure (Figure 6), we see that our method
shows better performance throughout the training than the
baseline in both sample efficiency and generalization. The
performance difference is consistent across timestep. Similar
to Starpilot, RAD also performs worse compared to base GAE-
PPO.

We further evaluate our method on vector-based state space

Fig. 7. [Left] Performance on Quadruped run environments. Our method
BAE-PPO shows higher mean returns compared to all other agents. Data
augmentation baseline RAD and DRAC worsen the performance of the base
agent (GAE-PPO). [Right] Our method BAE consistently achieves a higher
mean where DRAC fails to improve upon the base agent, and RAD worsens
the base performance.

and continuous robotic tasks: Deepmind control and Pybullet.
Note that the setup of these benchmarks are different from
Procgen’s train-test setup, and here we evaluate how our agents
can perform in high-dimensional states and procedurally gen-
erated task. Thus we can only report returns during training.

Deepmind Control Results Figure 7 shows performance
compariosn on Quadruped run and Cartpole - Three Poles
environments. We observe that our method BAE achieves the
best performance in both environments. On the other hand, the
baseline RAD severely worsens the base agent’s (GAE-PPO)
performance in both environments. Another baseline, DRAC,
worsens the base agents’ performance in Quadruped Run and
fails to improve performance in the Cartpole Three Poles envi-
ronment. These results show that properly using the augmenta-
tion in policy learning can lead to strong performance. In this
case, all data augmentation agents (RAD, DRAC, and BAE)
use the same random amplitude modulation augmentation.
However, using this augmentation in advantage computation,
our method BAE shows a substantial performance boost. On
the other hand, other baselines, RAD and DRAC, worsen the
performance (Quadruped Run).

Pybullet Results In Figure 8, for the HalfCheetah environ-
ment, we see that our method BAE performs better than
base agent GAE-PPO and other data augmentation baselines
RAD and DRAC. On the other hand, in Minitaur, the data
augmentation baseline DRAC and RAD worsen the base
agent’s (GAE-PPO) performance where BAE can maintain the
base performance.

Overall, these results show the robustness of our method in
performance compared to baseline data augmentation methods.
Therefore, the proposed augmented observation is expected
not to worsen the base performance. However, in our exper-
iments, we observe that the RAD and DRAC barely match
the base agent’s (GAE-PPO) results and sometimes worsen
the performance. These variabilities in performance hinder
the widespread adaptation of these methods. In contrast, our
method BAE shows a consistent performance across various
tasks without reducing the base agent’s performance.



Fig. 8. Performance on Minitaur [Left] and HalfCheetah [Right] environ-
ments. Our method shows better or similar performance compared to the base
agent (GAE-PPO), where the data augmentation baselines sometimes worsen
the base performance.

V. RELATED WORK

Advantage Estimation. The baseline has been leveraged to
reduce variance in policy gradient update [2], [20], [21].
Furthermore, effective modification of such methods is the use
of advantage estimation. This method is commonly used in
policy optimization and enjoys strong empirical success [6],
especially the Generalized Advantage Estimation (GAE) [5]
method. In contrast to GAE, our method BAE leverages data
augmentation and incorporates advantage computation across
various semantically similar states. Empirically we observe
that our method of computing advantage can be beneficial over
GAE, especially in high-dimensional and procedural generated
environments.
Data augmentation. Data augmentation has been demon-
strated to be an effective and efficient approaches to improve
performance [9]–[11]. Other methods proposed to improve
generalization which includes regularization [22], and style-
transfer [23]. Depending on how the augmented observation
is used, the method can be different; for example, RAD [10]
and DRAC [11]. In contrast to these methods, our method
incorporates data augmentation into advantage estimation,
which shows better empirical performance compared to these
methods (RAD and DRAC).

VI. CONCLUSION

In this paper, we propose a data augmentation-based advan-
tage estimation method for policy optimization. Our Bootstrap
advantage estimation (BAE) method replaces the GAE method
in policy gradient-based algorithms. We demonstrated the
effectiveness of our method on PPO algorithms. Furthermore,
we evaluated our methods on both image-based observation
space with discrete action space and vector-based observation
with continuous action space (Procgen, Deepmind Control,
and Pybullet). Our BAE method showed better performance
in various environment setups than GAE. Furthermore, our
method performs better than two existing data augmentation
techniques (RAD and DRAC).

REFERENCES

[1] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in neural information processing systems, vol. 12, 1999.

[2] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3,
pp. 229–256, 1992.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[4] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889–1897.

[5] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in Proceedings of the International Conference on Learning Represen-
tations (ICLR), 2016.

[6] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin,
R. Marinier, L. Hussenot, M. Geist, O. Pietquin, M. Michalski, S. Gelly,
and O. Bachem, “What matters for on-policy deep actor-critic methods?
a large-scale study,” in International Conference on Learning Represen-
tations, 2021.

[7] X. Song, Y. Jiang, S. Tu, Y. Du, and B. Neyshabur, “Observational
overfitting in reinforcement learning,” in International Conference on
Learning Representations, 2020.

[8] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, “A study on overfitting
in deep reinforcement learning,” arXiv preprint arXiv:1804.06893, 2018.

[9] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying
generalization in reinforcement learning,” in International Conference
on Machine Learning. PMLR, 2019, pp. 1282–1289.

[10] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,
“Reinforcement learning with augmented data,” in Advances in neural
information processing systems, 2020.

[11] R. Raileanu, M. Goldstein, D. Yarats, I. Kostrikov, and R. Fergus,
“Automatic data augmentation for generalization in deep reinforcement
learning,” arXiv preprint arXiv:2006.12862, 2020.

[12] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel,
T. Erez, T. Lillicrap, N. Heess, and Y. Tassa, “dm control: Software and
tasks for continuous control,” Software Impacts, vol. 6, p. 100022, 2020.

[13] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[14] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph,
and A. Madry, “Implementation matters in deep rl: A case study on
ppo and trpo,” in International Conference on Learning Representations,
2020.

[15] S. Huang, R. F. J. Dossa, A. Raffin, A. Kanervisto, and W. Wang, “The
37 implementation details of proximal policy optimization,” in ICLR
Blog Track, 2022. [Online]. Available: https://iclr-blog-track.github.io/
2022/03/25/ppo-implementation-details/

[16] R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel, “A sur-
vey of generalisation in deep reinforcement learning,” arXiv preprint
arXiv:2111.09794, 2021.

[17] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging procedu-
ral generation to benchmark reinforcement learning,” in International
conference on machine learning. PMLR, 2020, pp. 2048–2056.

[18] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning et al., “Impala: Scalable dis-
tributed deep-rl with importance weighted actor-learner architectures,”
arXiv preprint arXiv:1802.01561, 2018.

[19] S. Huang, R. F. J. Dossa, C. Ye, and J. Braga, “Cleanrl: High-quality
single-file implementations of deep reinforcement learning algorithms,”
2021.

[20] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural networks, vol. 21, no. 4, pp. 682–697, 2008.

[21] C. Wu, A. Rajeswaran, Y. Duan, V. Kumar, A. M. Bayen, S. Kakade,
I. Mordatch, and P. Abbeel, “Variance reduction for policy gradient with
action-dependent factorized baselines,” in International Conference on
Learning Representations, 2018.

[22] M. Igl, K. Ciosek, Y. Li, S. Tschiatschek, C. Zhang, S. Devlin, and
K. Hofmann, “Generalization in reinforcement learning with selective
noise injection and information bottleneck,” in Advances in neural
information processing systems, 2019, pp. 13 978–13 990.

[23] M. M. Rahman and Y. Xue, “Bootstrap state representation using style
transfer for better generalization in deep reinforcement learning,” in
European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML-PKDD 2022), 2022.

http://pybullet.org
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

	I Introduction
	II Preliminaries and Problem Settings
	III Boostrap Advantage Estimation (BAE)
	IV Experiments
	IV-A Setup
	IV-B  Results

	V Related Work
	VI Conclusion
	References

