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Abstract—Recent work by Jia et al. [1], showed the possibility
of effectively computing pairwise model distances in weight space,
using a model explanation technique known as LIME. This
method requires query-only access to the two models under
examination. We argue this insight can be leveraged by an
adversary to reduce the net cost (number of queries) of launching
an evasion campaign against a deployed model. We show that
there is a strong negative correlation between the success rate of
adversarial transfer and the distance between the victim model
and the surrogate used to generate the evasive samples. Thus,
we propose and evaluate a method to reduce adversarial costs
by finding the closest surrogate model for adversarial transfer.

I. INTRODUCTION

Evasion attacks [2], often referred to as adversarial examples,
have been a strong focus of machine learning (ML) researchers
for quite some time now. Despite the large body of work on the
subject, launching evasion campaigns, that is finding multiple
adversarial examples for a given deployed model, remains a
non-trivial task, especially when the adversary is given only
query access to the victim. There are two main strategies
to tackle this issue: (i) using an attack method based on a
zeroth-order optimization technique such as AutoZOOM [3]
and HopSkipJump [4]; (ii) crafting the adversarial examples
on a local surrogate (proxy) model, using a gradient-based
approach, and transferring [5] the generated evasive points to
the victim.

As with most practical applications of adversarial machine
learning, both strategies come with specific trade-offs. Gradient-
free methods, while effective, are limited by their strict threat
model. They generally require either a large number of queries
to the victim model for each adversarial example, (and) or
they tend to create more distorted points than their gradient-
based counterparts. Adversarial transfer, on the other hand,
allows the attacker to leverage the full power of gradient-based
methods, and enable them to generate a large number of evasive
samples without inducing high query volumes. However, the
rate of success of transferred samples is not guaranteed to be
satisfactory, leading to potentially failing attack campaigns.
Therefore, an adversary willing to launch an evasion campaign
against a deployed ML classifier has to carefully consider costs
related to query API usage, and ensure they are not identified
by anomaly detection systems deployed to monitor incoming
queries to the victim model.

Given this cost landscape for the adversary, any technique
aimed at increasing the rate of successful transfer of adversarial
examples crafted locally on proxy models would result in a

direct decrease in the costs of running an attack campaign.
Based on this insight, we argue that the recently proposed
”Zest of LIME” paper by Jia et al. [1], offers an intriguing new
approach for the adversary to minimize their costs. [1] proposes
a methodology to compute distances between pairs of models
given only access to the their outputs using Local Interpretable
Model-agnostic Explanations (LIME) [6], which builds local
linear models based on the answer of the target model to
specific queries. A small set of representative points (N = 128
in the paper) is used to build N linear regression models
approximating the classifier around the chosen points, forming
its LIME representation (signature). These representations are
then used to compute the distance between two target classifiers.

While this process does require the adversary to pay a cost
for the queries used to estimate the LIME representation, that
cost is only paid once – the learned representation can be
saved and re-used at any time. Moreover, the adversary can
progressively collect LIME representations for an abundance
of potential proxy models, either by downloading them from
model hubs or by manually training diverse models locally,
and, over time, build a library of representations to compare
against new victims. This would induce an economy of scale
effect due to which, the bigger the adversarial library becomes,
the easier it becomes for the adversary to find good proxy
models for generating evasive samples.

II. BACKGROUND AND RELATED WORKS

In this section we provide a short introduction to the concepts
behind Zest distances and the main approaches currently used
for carrying out black-box evasion attacks.

A. Model Distances with Zest

Local Interpretable Model-agnostic Explanations (LIME) [6]
is a model interpretability approach focused on training
surrogate linear models to locally approximate the predictions
of the model under analysis. LIME is architecture agnostic,
and only requires query access to the model making it viable
for use with a remote target behind an API.

Recent work by Jia et al. [1] proposes a new approach
to estimate the similarity between different models based on
LIME, called Zest. Zest offers a variety of advantages with
respect to previous model comparison methods. First, it is
generally easier to apply than direct weights comparison, as
the latter requires both full access to the weight matrices, and
that the models under scrutiny share the same architecture.
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It is also less susceptible to inconsistencies related to the
selection of representative inputs than other methods based
on comparing model predictions. At its core, Zest samples N
images form the training set to use as reference inputs and then
generates N corresponding LIME linear regression models by
perturbing super-pixels representing continuous pixel patches,
and querying the target model with the perturbed inputs. These
local models are then aggregated into signatures over which a
distance metric such as Cosine similarity, or the L1/2/∞ norm
of the difference, is applied.

B. Black-box Attacks

Many common adversarial example generation techniques,
[7], [8], [9], are developed in a white-box scenario, where the
adversary can compute gradients on the loss of the model with
respect to its weights. They generally lead to effective attacks,
able to alter the prediction of the model with extremely limited
perturbation budgets, which are very useful in estimating the
robustness of both existing models and proposed defensive
systems. However, they are generally not applicable in realistic
scenarios where the adversary’s only interface with the victim
model is through an API designed by the model owner, which
usually returns only the classifier’s output and is provided under
a pay-per-query model. Efforts to circumvent these limitations
led to the development of two main strategies: gradient-free
methods, and transfer attacks.

Examples of the first class include methods based on gener-
ating adversarial examples through zeroth-order optimization
techniques, such as ZOO [10] and AutoZOOM [3]. Another
commonly used technique, HopSkipJump [4], focuses on
estimating the direction of the gradient by analyzing the outputs
of the model in the proximity of the decision boundary. Square
Attack [11], on the other hand, approaches the problem by
adapting a randomized search scheme where each perturbation
is confined to a small square of pixels. These methods are
generally characterized by a rather large amount of queries to
the victim model for each adversarial example generated.

The second, studied by [5], [12], [13], revolves around
using one or multiple local proxy (or surrogate) models to
compute a set of adversarial examples, and then using these
locally generated points to attack the victim model. The use
of proxy models implies that the adversary is not limited
in which technique to use to generate the evasive samples,
and can leverage the full power of gradient based methods.
This approach allows the attacker to minimize the number
of queries to the victim model, as they are free to generate
a vast quantity of evasive points locally without repeatedly
generating large query volumes. However, the rate at which
the generated samples transfer successfully to the victim is
highly variable with the proxy model used in the generation
phase, and generally hard to predict.

III. THREAT MODEL

In this work we are interested in a realistic scenario where
the adversary wishes to craft evasive samples for a victim
model while having limited, query-only, access to it, often

referred to in literature as black-box. This means that the
adversary can send requests to the victim model, and retrieve
the classifier output scores for each query. The number of
queries the adversary can make is strictly limited by their
resources, as they will have to pay a fixed cost to run each
query. This is an extremely common situation, as most deployed
machine learning systems provide access through a payed API
system, which generally returns only the output scores for each
query1. While there are a multitude of works in the adversarial
ML literature exploring a variety of other threat models, we
argue that this represents one of the most realistic and wide-
spread scenarios.

A. Problem statement

Let us assume the adversary is in control of a number n of
different classification models, proxies {p1, ..., pn}, trained on
a similar data distribution as the victim model f . We consider a
transfer attack successful if the perturbed data point, generated
using only information gathered through the local proxy model,
induces a mis-classification in the target model, f . Therefore,
the adversary’s objective A is to generate a set of adversarial
examples A = {a1, ..., am}, starting from clean test points
Dt = {(x1, y1), ..., (xm, ym)}, such that the largest possible
number of them are evasive for f :

Aj =

m∑
i=1

1(f(ai) 6= yi)

A = argmax
p∈P

Ap

(1)

In this work we formulate and empirically analyze the
following hypotheses:

(H1) Pairs of models (pj , f) with similar architectures will
show, on average, lower Zest distances.

(H2) There is a negative correlation between the Zest distance of
a pair (pj , f) and the successful transfer rate of adversarial
examples from pj to f .

Testing these hypotheses is critical in determining if Zest
distances between models can be used for reducing the
cost of black-box adversarial attacks. (H1) is informative
in determining the relationships between models trained on
similar architectures. (H2) implies that an adversary can directly
leverage Zest distances as a source of information to select the
best possible surrogate when targeting a black-box model.

IV. METHODOLOGY

The process followed by the attacker to increase the cost-
effectiveness of their campaigns is very simple, and summarized
in Algorithm 1. It starts with acquiring a large number of
models trained for a similar task as the victim model. For each
collected model, they would compute the respective LIME
representation and store it for later reuse. Note that this process
does not have to be temporally bounded. The adversary can

1In the rarer cases in which the target model returns only categorical labels,
LIME would not be applicable. The adversary would have to fall-back to
gradient-free methods.
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continue to accumulate useful models, progressively updating
their collection of LIME representations. After having acquired
a sizeable portfolio of potential proxy models, the adversary
can generate the LIME representation of the victim model,
which will only require access to the inputs (selected by the
adversary) and the victim logits, and so can be obtained for
many deployed victim models.

Once in possession of the necessary LIME representations,
the adversary can proceed to compute pairwise distances
between their portfolio of proxy models and the target, using
the method proposed in [1]. Finally, the adversary can select
the proxy model with the minimal distance from the target,
and craft a large variety of adversarial examples using strong
gradient-based methods such as Projected Gradient Descent
(PGD) [9].

Algorithm 1 Bad Citrus
Require: DN a subset of training points of size N
Require: Dt a set of valid points for which the adversary wishes to generate

evasive variants
Require: {p1, ..., pn} proxy models and a target model f
Ensure: A← adversarial examples from best proxy model

// Compute LIME signatures for each model
for j = 1; j < n; j ++; do

lj ← LIME(pj , DN )
end for

lf ← LIME(f,DN )
dist← {}

// Compute the Zest distance between each pair (pj , f)
for j = 1; j < n; j ++; do

distj ← Zest(lj , lf )
end for
p← argmin(dist)

A← generateAdvEx(p,Dt)

V. EXPERIMENTAL EVALUATION

In this section we empirically evaluate our hypotheses
and highlight the negative correlation between successful
adversarial transfer and Zest distance.

A. Experimental setup

For our evaluations, we use the well known CIFAR-10
dataset2, containing 60,000 images of 32x32 pixels. We use a
set of 13 pre-trained CIFAR-10 models, leveraging the PyTorch
implementations provided by [14], including the following
types of architecture: DenseNet, ResNet, MobileNet V2,
GoogleNet, Inception V3 and VGG (with batch normalization).

For all models, we use PGD3 to craft untargeted adversarial
examples. Unless otherwise noted, we select an l∞ budget
ε = 0.1, a step size of 0.02, and 5 random restarts. This setup
results in > 90% local attack success in all cases with the
exception of VGG-194. The successful adversarial transfer rate

2https://www.cs.toronto.edu/∼kriz/cifar.html
3We use the open source implementation from the Adversarial Robustness

Toolbox https://github.com/Trusted-AI/adversarial-robustness-toolbox
4We are primarily interested in showing the correlation between transfer

rate and model distance. An attacker can invest resources tuning the attack
parameters to craft even more effective samples.

Fig. 1: Rate of successful adversarial transfer between all pairs
of CIFAR-10 models.

for all pairs of CIFAR-10 models is shown in Figure 1. The
same subset of representative points was used for all models
when computing their LIME signature, and all the adversarial
examples were generated on the same subset of 100 images
from the CIFAR-10 test set, originally classified correctly by
all models.

B. Model Distances

We computed the Zest distance among all possible pairs of
our 13 CIFAR-10 models, using the default parameters from
[1], under both the L∞ and Cosine metrics. The default value
of the number of points used to compute the LIME signatures
in Zest is N = 128, and each point is perturbed 1000 times. As
highlighted in Table I, the Cosine metric appears more effective
in associating models coming from the same architecture family,
finding a closest model of the same type for 9/10 models. The
L∞ metric, on the other hand, tends to consider models from
different architectures as closest, especially in the case of
ResNets, where all three models are associated with models
from the DenseNet family.

The full set of distances is reported in Table III, Table IV,
Table V for N = 128, N = 64, and N = 32 respectively5.
We measure the distances for lower values of N , as smaller
N values reduce the costs, in terms of number of queries, for
the adversary to compute the LIME signature of the target
model. The relative order of measured distances for N = 128
and N = 64 appear quite aligned, while the measurements for

5All distances reported are not normalized - this is not an issue as we are
interested in their relative ordering and deltas, rather then their absolute value.
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TABLE I: Closest model for each target in an architecture
family by Zest L∞ and Cosine distances, N = 128.

Target Closest Distance
L∞ densenet121 densenet161 2.5259

densenet161 densenet169 2.4783
densenet169 resnet50 2.4038
resnet18 densenet169 2.6694
resnet34 densenet121 2.5648
resnet50 densenet169 2.4038
vgg11 bn inception v3 2.9164
vgg13 bn vgg16 bn 2.6872
vgg16 bn vgg13 bn 2.6872
vgg19 bn vgg13 bn 4.0845

Cosine densenet121 densenet161 0.1405
densenet161 densenet121 0.1405
densenet169 densenet121 0.1406
resnet18 resnet34 0.1545
resnet34 resnet18 0.1545
resnet50 densenet169 0.1441
vgg11 bn vgg13 bn 0.1602
vgg13 bn vgg16 bn 0.1295
vgg16 bn vgg13 bn 0.1295
vgg19 bn vgg16 bn 0.1615

N = 32 tend to differ more. This is in line with what was
reported by [1], who mentioned that the standard deviation of
measurements increases with smaller reference sets.

C. Zest-Transfer Correlation

To evaluate (H2), we measured the Zest distance between a
randomly selected victim model (DenseNet 161), and all the
remaining pre-trained models. We then run the PGD attack with
three different l∞ perturbation budgets, ε ∈ {0.3, 0.1, 0.032},
corresponding to a relatively large, medium and small visible
perturbation. Figure 2a and Figure 2b show the rate of
successful adversarial transfer, plotted against the value of the
Zest distance under the L∞ and Cosine metrics, for N = 128.
We find a strong negative correlation between the Zest distance
and the rate of successful transfer, for both distance metrics,
and all attack budget. In particular, for ε = 0.1, we estimate a
Pearson correlation coefficient of -0.746 and -0.871 for L∞
and Cosine respectively.

Selecting the middle value of ε = 0.1 and repeating the
experiment for all the 13 CIFAR-10 models, we obtain an
average correlation coefficient of -0.594 for Cosine and -0.439
for L∞. We observe that the average correlation is significantly
impacted by the the very low adversarial transfer success
towards VGG-11 from all other proxy models, highlighted
by Figure 1. The higher average correlation, together with
the observations from Section V-B, lead us to suggest using
the Cosine distance when employing Zest to select a suitable
surrogate. For completeness, we report all the correlation values
for ε = 0.1 and N ∈ {128, 64, 32} in Table II.

D. Attacking a deployed model

To empirically show the advantage in using the model-
distance strategy when attacking a deployed classification
system, we target an instance of a CIFAR-10 classifier generated
through a machine learning as-a-service system (MLaaS). This

model is trained using exclusively automated tools, and neither
its architecture nor its training parameters are known to us.
It achieves an area under the precision/recall curve of 0.93,
and 88% precision and 81.5% recall for a confidence threshold
value of 0.5. Moreover, we can interact with it only through
the APIs provided by the MLaaS platform.

We used the evasive samples computed with ε = 0.1, and
show the results of this experiment, for both N = 128 and
N = 32 (corresponding to 128,000 and 32,000 queries), in
Figure 2c and Figure 2d. The closest Due to the known issue
of numerical precision loss, when converting the adversarial
examples generated locally to JPG files, we observe a reduction
in the overall evasiveness of the samples. We also account for
the fact that the 100 images chosen to compute the samples on,
were not all correctly classified by the MLaaS model, which
achieved 92% accuracy on that subset, and therefore we only
measure the accuracy difference after the attack. Despite these
limitations, we still observe a clear negative correlation, for
both values of N , especially when using the Cosine metric.

VI. DISCUSSION AND CONCLUSION

In this paper we proposed a simple and effective method
for selecting suitable surrogate models to use when crafting
adversarial examples to attack a black-box model via adversarial
transfer. We showed that there is a strong negative correlation
between the successful adversarial transfer rate between two
models and their Zest distance, especially when evaluated
with the Cosine metric. We argue that this information can be
leveraged to reduce the cost of an evasion campaign, as the
price to compute the LIME signature of a victim model is paid
only once, and can be re-used indefinitely. Moreover, once a
suitable proxy model has been identified, the adversary can
craft arbitrarily many evasive samples without having to spend
additional resources querying the victim model.

While the proposed method is a way to reduce adversarial
cost, it is not designed to increase adversarial success per-se.
The adversarial examples are crafted with a powerful gradient-
based method, but their effectiveness is bound by both the
parameters chosen to craft the samples, and the transfer rate of
the best proxy model the adversary has at their disposal. This
means that, if the adversary is incapable of acquiring an ample
and varied portfolio of proxy models, and chose appropriate
parameters for their adversarial examples crafting technique,
using the proposed approach would not significantly help them.

While ML explainability methods are important for inter-
preting the predictions made by ML models, our work shows
that these techniques might be weaponized by adversaries for
launching attacks against ML. Understanding in more details
the tradeoffs between ML explainability and robustness is an
interesting topic for future work.

A. Ethical Considerations

We are aware that the method we are proposing in this paper
is an offensive technique, designed to reduce the attack cost of a
potential malicious party. This work has the purpose of exposing
this possibility to the security community so it can be taken
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(a) DenseNet161, Cosine (b) DenseNet161, L∞

(c) MLaaS model, Cosine (d) MLaaS model, L∞

Fig. 2: Rate of successful adversarial transfer plotted against Zest distance. The top row shows results for a DenseNet161
model, while the bottom row shows results for the MLaaS classifier.

TABLE II: Pearson correlation between transfer rate and Zest distance, for different values of N ∈ {128, 64, 32}, ε = 0.1.

Model N = 128 N = 64 N = 32
Corr - Cosine Corr - L∞ Corr - Cosine Corr - L∞ Corr - Cosine Corr - L∞

densenet121 -0.830 -0.435 -0.808 -0.353 -0.793 -0.392
densenet161 -0.871 -0.746 -0.850 -0.593 -0.868 -0.392
densenet169 -0.814 -0.641 -0.795 -0.407 -0.767 -0.534

googlenet -0.440 -0.499 -0.437 -0.469 -0.446 -0.141
inception v3 -0.632 -0.218 -0.590 -0.245 -0.533 -0.200

mobilenet v2 -0.111 -0.527 -0.148 -0.566 -0.176 -0.111
resnet18 -0.765 -0.703 -0.732 -0.726 -0.789 -0.669
resnet34 -0.734 -0.513 -0.722 -0.573 -0.709 -0.788
resnet50 -0.743 -0.483 -0.698 -0.443 -0.677 0.053

vgg11 bn 0.026 -0.244 0.008 -0.242 -0.031 -0.269
vgg13 bn -0.355 0.124 -0.371 -0.424 -0.368 -0.182
vgg16 bn -0.724 -0.157 -0.718 -0.511 -0.757 -0.721
vgg19 bn -0.725 -0.671 -0.700 -0.534 -0.764 -0.597
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into account and used to better estimate adversarial costs when
designing defenses in ML systems. We also remind the reader
that there are situations where ML evasion techniques can
be directly beneficial to innocent people. This is the case, for
instance, of political activists and people living under dictatorial
regimes, who may employ adversarial machine learning in an
effort to evade oppressive systems such as facial recognition
tools.
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APPENDIX

Here, we report the Zest distances computed for all possible
pairs of the 13 CIFAR-10 models we analyzed. The distances
are shown for both the L∞ and Cosine metrics, as those
metrics where the ones which appeared to better correlate
with adversarial transfer, with the best being Cosine. We
also report these results for different value of the number
of representative samples used to compute the LIME models,
N , with Table III, Table IV and Table V showing values for
N = 128, 64, 32 respectively. Lower values of N are interesting
from an adversarial perspective, as they reduce the number of

queries to the victim model necessary to compute the LIME
representation, reducing cost further.
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TABLE III: Zest L-inf and Cosine distance between all pairs of CIFAR-10 models, with N = 128.
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densenet121 — 2.526 4.596 3.663 3.567 2.865 3.143 2.565 2.910 4.058 3.552 3.837 5.815
densenet161 2.526 — 2.478 4.076 3.728 3.231 3.022 3.680 3.064 3.674 3.513 4.184 5.868
densenet169 4.596 2.478 — 4.291 3.475 4.146 2.669 2.961 2.404 3.806 3.818 4.733 5.567

googlenet 3.663 4.076 4.291 — 3.658 3.607 5.145 4.868 3.763 4.266 3.565 3.946 5.478
inception v3 3.567 3.728 3.475 3.658 — 3.299 3.438 3.506 2.759 2.916 3.484 3.705 5.038

mobilenet v2 2.865 3.231 4.146 3.607 3.299 — 3.681 3.497 2.602 3.312 3.504 4.030 5.286
resnet18 3.143 3.022 2.669 5.145 3.438 3.681 — 2.890 2.866 3.453 3.476 3.766 5.601
resnet34 2.565 3.680 2.961 4.868 3.506 3.497 2.890 — 3.356 3.519 3.403 3.243 5.312
resnet50 2.910 3.064 2.404 3.763 2.759 2.602 2.866 3.356 — 3.320 3.383 3.613 4.863

vgg11 bn 4.058 3.674 3.806 4.266 2.916 3.312 3.453 3.519 3.320 — 4.781 4.631 4.219
vgg13 bn 3.552 3.513 3.818 3.565 3.484 3.504 3.476 3.403 3.383 4.781 — 2.687 4.085
vgg16 bn 3.837 4.184 4.733 3.946 3.705 4.030 3.766 3.243 3.613 4.631 2.687 — 4.296
vgg19 bn 5.815 5.868 5.567 5.478 5.038 5.286 5.601 5.312 4.863 4.219 4.085 4.296 —

C
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e

densenet121 — 0.141 0.141 0.262 0.229 0.201 0.180 0.177 0.145 0.285 0.267 0.283 0.335
densenet161 0.141 — 0.146 0.290 0.232 0.211 0.181 0.172 0.161 0.286 0.278 0.288 0.339
densenet169 0.141 0.146 — 0.289 0.245 0.204 0.191 0.183 0.144 0.309 0.290 0.297 0.343

googlenet 0.262 0.290 0.289 — 0.236 0.248 0.319 0.330 0.246 0.337 0.292 0.339 0.358
inception v3 0.229 0.232 0.245 0.236 — 0.192 0.256 0.265 0.219 0.319 0.271 0.304 0.328

mobilenet v2 0.201 0.211 0.204 0.248 0.192 — 0.214 0.218 0.182 0.288 0.258 0.263 0.303
resnet18 0.180 0.181 0.191 0.319 0.256 0.214 — 0.155 0.166 0.278 0.266 0.277 0.326
resnet34 0.177 0.172 0.183 0.330 0.265 0.218 0.155 — 0.170 0.281 0.281 0.274 0.330
resnet50 0.145 0.161 0.144 0.246 0.219 0.182 0.166 0.170 — 0.273 0.243 0.261 0.305

vgg11 bn 0.285 0.286 0.309 0.337 0.319 0.288 0.278 0.281 0.273 — 0.160 0.180 0.238
vgg13 bn 0.267 0.278 0.290 0.292 0.271 0.258 0.266 0.281 0.243 0.160 — 0.130 0.177
vgg16 bn 0.283 0.288 0.297 0.339 0.304 0.263 0.277 0.274 0.261 0.180 0.130 — 0.162
vgg19 bn 0.335 0.339 0.343 0.358 0.328 0.303 0.326 0.330 0.305 0.238 0.177 0.162 —

TABLE IV: Zest L-inf and Cosine distance between all pairs of CIFAR-10 models, with N = 64.
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densenet121 — 2.526 4.596 3.663 2.741 2.865 3.143 2.327 2.910 4.058 3.552 3.837 7.165
densenet161 2.526 — 2.365 4.076 2.710 2.597 2.700 2.753 3.064 2.964 3.513 3.487 6.309
densenet169 4.596 2.365 — 3.775 2.605 4.146 2.646 2.961 2.404 2.989 4.181 3.420 5.496

googlenet 3.663 4.076 3.775 — 3.658 3.607 5.145 4.868 3.763 4.266 3.565 4.071 5.478
inception v3 2.741 2.710 2.605 3.658 — 3.101 3.173 3.506 2.623 2.916 3.484 3.705 4.854

mobilenet v2 2.865 2.597 4.146 3.607 3.101 — 3.681 2.699 2.538 3.312 3.504 4.144 5.716
resnet18 3.143 2.700 2.646 5.145 3.173 3.681 — 2.890 2.866 2.951 3.476 3.766 4.843
resnet34 2.327 2.753 2.961 4.868 3.506 2.699 2.890 — 3.356 2.949 3.403 3.243 5.297
resnet50 2.910 3.064 2.404 3.763 2.623 2.538 2.866 3.356 — 3.320 3.383 3.613 4.692

vgg11 bn 4.058 2.964 2.989 4.266 2.916 3.312 2.951 2.949 3.320 — 3.063 2.570 4.219
vgg13 bn 3.552 3.513 4.181 3.565 3.484 3.504 3.476 3.403 3.383 3.063 — 2.687 4.085
vgg16 bn 3.837 3.487 3.420 4.071 3.705 4.144 3.766 3.243 3.613 2.570 2.687 — 2.921
vgg19 bn 7.165 6.309 5.496 5.478 4.854 5.716 4.843 5.297 4.692 4.219 4.085 2.921 —

C
os

in
e

densenet121 — 0.143 0.156 0.270 0.221 0.212 0.189 0.186 0.158 0.291 0.264 0.279 0.345
densenet161 0.143 — 0.153 0.301 0.225 0.213 0.187 0.178 0.170 0.282 0.274 0.285 0.350
densenet169 0.156 0.153 — 0.299 0.243 0.211 0.199 0.187 0.153 0.322 0.292 0.294 0.351

googlenet 0.270 0.301 0.299 — 0.240 0.255 0.337 0.350 0.255 0.344 0.298 0.342 0.369
inception v3 0.221 0.225 0.243 0.240 — 0.196 0.250 0.269 0.219 0.320 0.270 0.300 0.335

mobilenet v2 0.212 0.213 0.211 0.255 0.196 — 0.211 0.222 0.177 0.293 0.260 0.261 0.315
resnet18 0.189 0.187 0.199 0.337 0.250 0.211 — 0.166 0.167 0.277 0.259 0.273 0.328
resnet34 0.186 0.178 0.187 0.350 0.269 0.222 0.166 — 0.188 0.285 0.284 0.280 0.344
resnet50 0.158 0.170 0.153 0.255 0.219 0.177 0.167 0.188 — 0.278 0.247 0.260 0.312

vgg11 bn 0.291 0.282 0.322 0.344 0.320 0.293 0.277 0.285 0.278 — 0.160 0.179 0.252
vgg13 bn 0.264 0.274 0.292 0.298 0.270 0.260 0.259 0.284 0.247 0.160 — 0.131 0.186
vgg16 bn 0.279 0.285 0.294 0.342 0.300 0.261 0.273 0.280 0.260 0.179 0.131 — 0.160
vgg19 bn 0.345 0.350 0.351 0.369 0.335 0.315 0.328 0.344 0.312 0.252 0.186 0.160 —
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TABLE V: Zest L-inf and Cosine distance between all pairs of CIFAR-10 models, with N = 32.
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densenet121 — 2.526 2.081 3.115 2.741 2.809 2.763 2.327 4.305 2.864 3.552 3.654 3.432
densenet161 2.526 — 2.365 2.748 2.710 2.597 2.268 2.753 3.064 4.613 4.076 3.487 3.469
densenet169 2.081 2.365 — 2.997 2.605 2.067 2.570 2.961 2.131 2.935 3.465 2.976 3.720

googlenet 3.115 2.748 2.997 — 2.684 2.948 2.754 3.270 2.522 3.339 4.020 3.609 3.776
inception v3 2.741 2.710 2.605 2.684 — 3.101 2.989 3.942 2.500 3.588 3.484 4.168 3.540

mobilenet v2 2.809 2.597 2.067 2.948 3.101 — 2.594 3.178 2.322 2.939 4.067 3.344 3.758
resnet18 2.763 2.268 2.570 2.754 2.989 2.594 — 2.062 2.866 2.794 3.476 2.986 3.730
resnet34 2.327 2.753 2.961 3.270 3.942 3.178 2.062 — 3.356 2.949 3.403 3.190 3.827
resnet50 4.305 3.064 2.131 2.522 2.500 2.322 2.866 3.356 — 2.737 3.383 3.613 3.486

vgg11 bn 2.864 4.613 2.935 3.339 3.588 2.939 2.794 2.949 2.737 — 1.934 2.570 2.590
vgg13 bn 3.552 4.076 3.465 4.020 3.484 4.067 3.476 3.403 3.383 1.934 — 2.241 2.161
vgg16 bn 3.654 3.487 2.976 3.609 4.168 3.344 2.986 3.190 3.613 2.570 2.241 — 2.280
vgg19 bn 3.432 3.469 3.720 3.776 3.540 3.758 3.730 3.827 3.486 2.590 2.161 2.280 —

C
os

in
e

densenet121 — 0.160 0.132 0.266 0.223 0.201 0.175 0.189 0.141 0.285 0.251 0.285 0.336
densenet161 0.160 — 0.165 0.323 0.250 0.221 0.171 0.190 0.187 0.289 0.281 0.292 0.348
densenet169 0.132 0.165 — 0.307 0.238 0.188 0.179 0.178 0.153 0.306 0.285 0.294 0.345

googlenet 0.266 0.323 0.307 — 0.251 0.255 0.339 0.359 0.253 0.341 0.296 0.334 0.357
inception v3 0.223 0.250 0.238 0.251 — 0.213 0.256 0.277 0.222 0.321 0.272 0.305 0.344

mobilenet v2 0.201 0.221 0.188 0.255 0.213 — 0.201 0.201 0.176 0.280 0.260 0.248 0.298
resnet18 0.175 0.171 0.179 0.339 0.256 0.201 — 0.146 0.179 0.257 0.253 0.268 0.319
resnet34 0.189 0.190 0.178 0.359 0.277 0.201 0.146 — 0.196 0.288 0.279 0.279 0.326
resnet50 0.141 0.187 0.153 0.253 0.222 0.176 0.179 0.196 — 0.270 0.240 0.270 0.310

vgg11 bn 0.285 0.289 0.306 0.341 0.321 0.280 0.257 0.288 0.270 — 0.152 0.170 0.235
vgg13 bn 0.251 0.281 0.285 0.296 0.272 0.260 0.253 0.279 0.240 0.152 — 0.125 0.177
vgg16 bn 0.285 0.292 0.294 0.334 0.305 0.248 0.268 0.279 0.270 0.170 0.125 — 0.160
vgg19 bn 0.336 0.348 0.345 0.357 0.344 0.298 0.319 0.326 0.310 0.235 0.177 0.160 —
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