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Abstract—Machine learning (ML) applications continue to 

revolutionize many domains. In recent years, there has been 
considerable research interest in building novel ML applications 
for a variety of Internet of Things (IoT) domains, such as precision 
agriculture, smart cities, and smart manufacturing. IoT domains 
are characterized by continuous streams of data originating from 
diverse, geographically distributed sensors, and they often require 
a real-time or semi-real-time response. IoT characteristics pose 
several fundamental challenges to designing and implementing 
effective ML applications. Sensor/network failures that result in 
data stream interruptions is one such challenge. Unfortunately, 
the performance of many ML applications quickly degrades when 
faced with data incompleteness. Current techniques to handle data 
incompleteness are based upon data imputation – i.e., they try to 
fill-in missing data. Unfortunately, these techniques may fail, 
especially when multiple sensors' data streams become 
concurrently unavailable (due to simultaneous sensor failures). 
With the aim of building robust IoT-coupled ML applications, this 
paper proposes SECOE – a unique, proactive approach for 
alleviating potentially simultaneous sensor failures. The 
fundamental idea behind SECOE is to create a carefully chosen 
ensemble of ML models in which each model is trained assuming 
a set of failed sensors (i.e., the training set omits corresponding 
values). SECOE includes a novel technique to minimize the 
number of models in the ensemble by harnessing the correlations 
among sensors. We demonstrate the efficacy of the SECOE 
approach through a series of experiments involving three distinct 
datasets. The experimental findings reveal that SECOE effectively 
preserves prediction accuracy in the presence of sensor failures. 

Keywords— IoT, Sensor Failure, Data Incompleteness, Robust 
Machine Learning, Machine Learning Ensemble. 

I. INTRODUCTION 
 The Internet of Things (IoT) paradigm is transforming many 
domains of human endeavor, such as agriculture, healthcare, 
physical infrastructure management, manufacturing, and 
transportation. At its core, IoT is a collection of Things 
"objects," each embedded with a sensor, Radio-Frequency 
Identification (RFID) tag, or actuator, and other software or 
hardware technologies. Things produce, communicate, and 
exchange data with one another, connecting a variety of objects 
such as home appliances, vehicles, and farm equipment to the 
Internet [1]. IoT has endowed diverse, geographically 
distributed sensors to seamlessly interact and exchange data 

over the Internet, which in turn has led to tremendous 
proliferation of IoT-driven technologies in various fields.  

    IoT domains are characterized by high-velocity data streams 
originating from diverse devices. This provides the opportunity 
to build innovative Big Data applications by constructing 
models that harness historical and current data, thereby gaining 
valuable insights that facilitate better decision-making. In this 
context, there is significant research interest in applying 
machine learning (ML) techniques for IoT domains. Indeed, 
many ML applications have already been built for IoT data. As 
a prominent example of an ML-coupled IoT application, Google 
uses ML to improve the energy efficiency of its data centers by 
using data collected from sensors within the data centers, 
thereby reducing the cost of cooling energy by 40% [2]. 
Focusing on achieving the ultimate business objective (e.g., 
reducing power consumption), ML models could be built using 
supervised ML methods in which a model, using the labeled 
historical IoT data, learns to map the target goal y to the 
independent variables as an input x [3]. This model can 
automatically label a new test sample from sensors to a 
corresponding prediction in real-time.  

 However, IoT environments possess several unique 
characteristics that pose significant challenges for building 
effective ML-based applications. Some of these include: (1) The 
need for integrative analytics on heterogeneous data streams; (2) 
Stringent response time requirements (i.e., many applications 
are real/semi-real time); (3) Harsh operating environments that 
are not only resource-constrained but also dynamic; (4) 
Susceptibility to drastic contextual changes; and (5) Sudden and 
unexpected interruption of data streams due to IoT-sensor or 
communication failures resulting in inference-time data 
incompleteness.  

 This paper addresses the last of the above-listed challenges, 
namely, inference-time data incompleteness in ML-coupled IoT 
systems. Inference time data incompleteness occurs due to data 
stream interruptions that are commonly caused by two reasons. 
First, sensor devices can fail either due to electronic 
malfunctioning or battery outage. Second, communication may 
fail due to wired/wireless network disruptions. In face of such 
failures, ML applications are required to make inferences based 
on incomplete/partial data. As a simple example, consider a 
hypothetical ML application that continuously determines 



operational safety of a manufacturing plant based on periodic 
readings from 4 distinct sensors (temperature, pressure, voltage, 
and humidity sensors) located at various locations of the 
manufacturing plant. If two of these sensors fail and stop 
sending data, the ML application has to continue making 
inferences based on partial data (i.e., reading from the other two 
sensors). Unfortunately, many ML algorithms fail when faced 
with inference-time data incompleteness in the sense that their 
performance degrades drastically even when a small fraction of 
sensors fail.  

 Our research aims to design ML-based techniques that are 
robust against sensor/network failure-induced inference-time 
data incompleteness. Note that we do not intend to develop new 
ML algorithms; rather, we design novel techniques that can 
augment generic ML algorithms to enhance their robustness 
against inference-time data incompleteness. Several previous 
researchers have worked on overcoming sensor failures [15, 16, 
17]. Most of these techniques and other existing related work are 
focused on providing efficient imputation algorithms to fill in 
the missing values of failed sensors with potential estimated 
values. These imputation-based strategies, however, are not 
effective when faced with simultaneous failures of multiple 
sensors (i.e., multiple data streams become simultaneously 
unavailable). This is because imputation-based strategies often 
suffer from the out-of-distribution (OOD) problem, where the 
new record produced by applying imputation deviates highly 
from the model's training data distribution, causing the model to 
misclassify such a record. 

    Towards enhancing the robustness of ML-coupled IoT 
systems against sensor failures, this paper presents SECOE – a 
novel approach to proactively alleviate sensor failure-induced 
inference-time data incompleteness. SECOE is fundamentally 
distinct from imputation-based approaches. The basic idea of 
SECOE is to create an ensemble [4] of ML models in which each 
model is specifically trained with an incomplete dataset 
representing a set of failed sensors. In other words, specific 
sensor feeds are omitted from training sets in anticipation of 
potential failures of corresponding sensors during inference 
time. 

    In designing SECOE, this paper makes the following unique 
technical contributions: 

• We present the architecture of SECOE that includes 
novel techniques for ensemble creation and inference-
time optimization, thereby demonstrating how the 
ensemble techniques can be harnessed for mitigating 
sensor failures in IoT systems. 

• Towards improving training and inference efficiency, 
we present an algorithm that minimizes the sub-models 
in the ensemble. Our technique forms sensor groups 
based on inherent correlations among sensors in an IoT 
system. Furthermore, we present, Random-Selection, 
an alternate simple strategy for ensemble creation that 
randomly omits a set of sensors when training sub-
models. 

• We study the advantages and limitations of SECOE 
through extensive experimentation of our system in 
conjunction with three popular ML paradigms, namely, 

Multi-Layer Perceptron (MLP) [5], Random Forest 
(RF) [6] and Support-Vector Machine (SVM) [7]. We 
use three distinct datasets for our experimental study. 
Our study shows that SECOE is highly effective in 
overcoming sensor failure-induced data 
incompleteness. 

 The rest of the paper is organized as follows. The motivation 
and challenges are described in Section II, followed by Section 
III, in which we present the implementation details of SECOE. 
Section IV demonstrates the conducted experiments and results. 
Then Section V describes the related work. Finally, we conclude 
in Section VI.  

II. MOTIVATION AND CHALLENGES  
 Due to its unquestionable capability of connecting a variety 
of physical objects using digital embedded objects, e.g., sensors, 
IoT has gained enormous attention and been recognized by a 
wide range of industrial organizations. Thus, several IoT 
applications have been developed in different domains, such as 
healthcare, smart environments (e.g., office and agriculture), 
and transportation and logistics. For instance, UPS and John 
Deere utilize IoT-enabled fleet tracking to improve supply 
efficiency and cut overall costs [8]. Another factor contributing 
to IoT's current prominence and widespread adoption across all 
industries is that major corporations are already investing 
billions in emerging technology. According to [9], billions of 
connected IoT devices, coupling the digital and physical worlds, 
are estimated to generate around $2.8-$6.3 trillion in potential 
IoT economic value by 2025. 

The unique characteristics of IoT environments pose 
significant challenges for developing effective ML-based 
applications. Among these challenges, Incomplete data at 
inference time in IoT-ML-coupled systems is a critical challenge 
that this research aims to address. Inference time data 
incompleteness happens owing to data stream interruptions. In 
IoT systems, it is common for sensors to fail to send data to the 
IoT edge device/Cloud. This failure might be caused by delay, 
disconnection, and other hardware limitations (e.g., electronic 
malfunctioning or battery failure). In the face of such failures, 
ML applications are required to make inferences based on 
incomplete/partial data. ML models, however, need an input size 
"shape" similar to the size of the input on which they were 
trained. Consequently, if sensor data is insufficient, the IoT-ML-
based system would be unable to process it.  

Several earlier researchers, including [15] and [17], have 
tried to address the problem of data incompleteness caused by 
sensor failures. The majority of earlier research in this field 
mostly focused on providing imputation methods to replace 
missing data with estimated values. However, in the situation of 
simultaneous sensor failures, imputing their missing data may 
result in the OOD issue, resulting in severe performance 
degradation of the model. In contrast to past research, our 
objective is to optimize the performance of the IoT ML-based 
system in the presence of concurrent sensor failures by limiting 
the number of missing value imputations. Note that we do not 
propose to construct new ML algorithms; instead, we design 
novel techniques that can augment generic ML algorithms in 
order to improve their robustness against inference-time data 
incompleteness. 



Our research objective is to proactively lessen the effects of 
missing data caused by sensor failures in IoT ML-based systems 
using an ensemble of a few sub-models, each of which is trained 
on a distinct subset of sensors chosen based on the correlation of 
sensors from the total IoT sensors. To the best of our knowledge, 
none of the existing work attempts to minimize imputing the 
missing data during the production time of the ML-IoT-based 
system. In this research, we introduce SECOE, an approach that 
enables the IoT ML-based system to make a real-time prediction 
without the necessity of filling in the missing value of the failed 
sensor when up to ~50% of the IoT sensors are failed. Hence, 
the IoT application could continually make a real-time 
prediction with an optimized accuracy using the correlated 
sensors to the failed ones, giving the IoT infrastructure's 
operator more time to physically inspect the failed sensors and 
replace them if necessary. 

III. SENSOR CORRELATION-BASED ENSEMBLE (SECOE) 

A. Overview 
The main objective of the presented approach in this paper 

is to reduce the impact of sensor failures on the performance of 
IoT ML-based applications during inference time. Our method 
leverages an ensemble of a few sub-models each trained on a 
distinct subset of sensors formed based on the correlation of 
sensors in the IoT system. We use the correlation between 
sensors to minimize the number of models and build sub-models 
that perform similarly to the base model, which is a model 
trained using the entire IoT sensors data of the system. 

Fig. 1 shows an overview of the training architecture of our 
method. Initially, our method groups the correlated sensors 
together, producing different groups of correlated sensors. Then, 
after computing the minimum number of sub-models (MinM), 
for instance, four sub-models, our method forms the features for 
each sub-model by selecting a distinct ~50% of sensors from 
each correlated group. The sub-model features created will then 
be used to build the sub-models along with the base model. The 
sensors included in each model's features correspond to ~50% 
of the total sensors of the IoT system. Our method guarantees 
that for each sensor x in the IoT system, there exists at least one 
suitable sub-model trained using a subset of sensors that 
includes some correlated sensors to sensor x, excluding sensor 
x. Thus, during inference-time, if a sensor x fails, then the 
prediction accuracy of the IoT application is maintained via an 
ensemble of the suitable sub-models or at least one of the sub-
models. 

The following subsections describe the architecture of our 
approach in more detail. 

B. Forming Correlated Groups 
The correlation between sensors is the key factor of our 

approach. We have only considered the positive Pearson 
correlation measurement from 0 to 1 scale when forming the 
groups of correlated sensors. We have categorized the 
coefficient interpretations into four categories, which are strong, 
moderate, weak, and very weak correlation. The coefficient 
correlation value ranges are 0.76-1.0, 0.50-0.75, 0.25-0.50, 0.10-
0.25 for the above-mentioned categories, respectively. Each 
sensor is grouped with its highly correlated sensor. Note that a 

correlated group Gi could contain correlated sensors with 
different coefficient interpretations. 

C. Selecting Sensors and Building the Sub-models 
Selecting sensors for each sub-model is based on Algorithm 

1. Each sub-model's features can have a different 50% of the 
sensors from each correlated group Gi. If the size of a Gi is an 
odd number, then we select sensors for each sub-model equal to 
the nearest integer to 50% of the total sensors in such a Gi (i.e., 
No. of sensors in Gi is 7, then sensors that would be selected for 
each sub-model from such a Gi is 4). For reliability, a sensor 
must be included in at least one sub-model and excluded from 
another sub-model. 

As a result, when up to almost 50% of sensors from each 
correlated group Gi fail, our proactive solution still provides a 
sub-model, trained on the remaining 50% of sensors (free-of-
failure), that could make a real-time prediction with high 
accuracy using the correlated sensors to the ones that have 
failed. Furthermore, in case of the failure of many sensors 

 
Fig. 1 Architecture of the training phase. 

 

 

 



concurrently, leading to the necessity of imputing the missing 
values of such sensors, the number of imputations is minimized 
by at least ~50% less than the base model.  

See Algorithm 1 for the pseudocode of sensors selection per 
sub-model. Algorithm 1 requires two arguments: lists of the 
correlated groups CG and the size of the largest correlated group 
L. First, Algorithm 1, using (1), finds the minimum number of 
the sub-models (MinM). Equation (1) finds MinM in the case of 
the percentage of sensors that would be selected from each Gi is 
set to 50%. MinM satisfies these two conditions: (a) Each sensor 
from each Gi is at least included in one sub-model, and (b) Each 
sensor is at least excluded from one sub-model. 

       MinM = !round(50%*L)+1,	  		 if L is even.
round(50%*L),            otherwise.             (1) 

The above two conditions guarantee that if any sensor x from 
the IoT system fails, there is a sub-model, trained without sensor 
x, to make a real-time prediction. 

 Second, Algorithm 1, for each sub-model, selects the 
leftmost sensors from each Gi, equals to ~50% of sensors in Gi, 
then it shifts each Gi to the left by 1. This step ensures that 
sensors that will be picked for the next sub-model differ from 
those selected for the previous sub-model. As illustrated in Fig. 
2, if we have a correlated group G1 as [H, B, D, C, A, G], 
Algorithm 1 will select the leftmost three sensors ([H, B, D]) 
from G1 for the first sub-model, then shift G1 to the left by 1. 
Next, for the second sub-model, Algorithm 1 will choose the 
leftmost three sensors ([B, D, C]) from G1 after being shifted. 
This procedure is repeated for the following sub-models. 
Finally, after iterating over every Gi, Algorithm 1 outputs the 
model features MFj for each sub-model. The resulted features 
for each sub-model is approximately 50% of the entire IoT 
sensors. 

D. Accuracy Optimization 
 To optimize the performance of the IoT ML-based system 
during the presence of sensor failures, whenever records are 
received from sensors for prediction, they would be fed to the 
most suitable sub-model, the model that is trained on the subset 
of sensors that contains the least matched number of the failed 
sensors. The final prediction is their majority voting (ensemble) 
if there are several suitable sub-models. However, in some cases 
in which only two suitable models exist, the model with the 

highest training accuracy will be chosen for prediction. Note that 
the base model handles the prediction in the case of no failure of 
sensors. See Fig. 3. 

IV. EVALUATION 

A. Datasets 
We evaluate our method on three datasets from the UCI 

repository [10]: (1) Dry-Beans, (2) Steel Plates Fault, and (3) 
Wall-Following Robot Navigation. Due to the lack of publicly 
available datasets containing features corresponding to sensors’ 
readings with target class label/labels, we have utilized the first 
two datasets since they have a fair amount of correlation 
between features that contain either real or integer data types. 
We slightly preprocessed these two datasets. More specifically, 
we rescaled the features of each training dataset by subtracting 
the mean and dividing all values by the standard deviation of the 
training samples. The third dataset contains actual sensors’ 
readings. Dry-Beans contains more than 13K samples forming 
16 dry beans' geometric features to classify the bean into one of 
7 species. In contrast, the Steel Plates Fault consists of 27 
attributes describing the plates' geometric shapes and 1941 
instances to classify Steel plates' faults into one of seven 
different types. The third dataset, Wall-Following Robot 
Navigation, comes with different versions having 2, 4, and 24 
attributes corresponding to numerical ultrasound sensors' 
readings collected from sensors embedded on a SCITOS G5 
robot navigating in a room following the wall in a clockwise 
direction. We used the version that contains 24 attributes. This 
version has more than 5K instances, through which the 
movement of the robot is predicted into one of 4 classes: move-
forward, slight-right-turn, sharp-right turn, or slight-left-turn. 
For clarity, in our experiments, we renamed features of all 
datasets to follow the English alphabetical order from A-Z and 
a-z. 

TABLE I.  CORRELATED GROUPS AND SUB-MODELS’ FEATURES. 

 

Dataset Correlated group G Sub-model features (MF) 
 
 
Dry-
Beans 

G1= {H, B, D, C, A, G} 
G2= {E, F} 
G3= {N, K, M, I, L, O} 
G4= {J, P} 

MF1= {H, B, D, E, N, K, M, J} 
MF2= {B, D, C, F, K, M, I, P} 
MF3= {D, C, A, E, M, I, L, J} 
MF4= {C, A, G, F, I, L, O, P}  

Fig. 3  Procedure of real-time prediction. 

 

 

Fig. 2  Example of selection of sensors from two correlated groups. 

 



B. Experimental Setup 
Initially, we examine SECOE when all models are MLPs [5] 

trained on 85% of the dataset size and tested on the remaining 
15%. Next, to investigate whether the training set size would 
affect the performance of our method, we conduct different 
experiments in which all ML models are trained on three 
portions {90%, 80%,75%} of the dataset and tested on the 
remaining portions. To validate the generality of SECOE across 
different ML methods, we also examine its performance with 
two additional supervised ML algorithms: RF [6] and SVM [7]. 
In addition, we ran some experiments to find whether increasing 
the number of models above the MinM would affect the 
performance of our approach. To show the effectiveness of our 
SECOE, we compare SECOE with two other approaches. The 
first one is the base model. The second approach is Random-
Selection, an approach we have created similar to ours. Instead 
of using correlation of sensors, Random-Selection randomly 
selects 50% of sensors from the entire sensors of the IoT system 
for each sub-model. We evaluate each approach based on its 
classification accuracy of the testing set. For simplicity, in all 
experiments, we utilize the Mean Imputation technique to 
replace the missing sensors' values with the Mean values of their 
records across the training set. All models are built using the 
default parameters defined by the “Sciket-Learn” python library 
[11]. 

C. Performance of Models 
In this subsection, we illustrate the performance of all 

models when there are no sensor failures. The MinM that 
SECOE produced is six sub-models for the Steel Plates Fault 

dataset and four for the other two datasets. Table 1 displays the 
correlated groups and sub-models' features resulting from 
Algorithm 1 on the Dry-Beans dataset. Fig. 4 demonstrates the 
classification accuracy of the sub-models of both SECOE and 
Random-Selection and the base model on the three datasets: 
Dry-Beans, Steel Plates Fault, and Wall-Following Robot 
Navigation. In Fig. 4, all models are MLPs, trained on 85% and 
tested on the remaining 15% of the dataset. Although they are 
built using ~50% of the sensors from the dataset, most of the 
sub-models by SECOE are comparable to the base model in 
terms of test accuracy. In contrast, some Random-Selection sub-
models perform poorly; more specifically, sub-model-4 and sub-
model-1 on Steel Plates Fault and Wall-Following Robot 
Navigation datasets, respectively.  

Choosing from the dataset a subset of sensors that contains 
the important sensors, which are the sensors that have a high 
impact on the model classification accuracy, is essential to make 
the ML model performs well. Since Random-Selection 
randomly selects sensors for each sub-model, some important 
sensors or their correlated ones were ignored (not included in 
any sub-model), producing weak-performed models. SECOE 
offers well-performed sub-models built using the important 
sensors or ~50% of its correlated ones. Overall, SECOE 
provides better-performed sub-models than the Random-
Selection approach. 

D. Static Sensor Failure Evaluation 
To show the importance of SECOE, we created several test 

cases in which specific sensors were statically chosen as the 
simulated failed sensors. Each test case corresponds to a 

 
Fig. 5  Test accuracy with a 95% confidence interval of SECOE versus the base model during the failure of sensors on each dataset. 

 

 
Fig. 4  Test accuracy comparison between the base model, Random-Selection and SECOE sub-models on each dataset. 

 



different percentage of simultaneous sensor failures, from 5% 
up to 50%. In this experiment, for each test case, there are 
suitable sub-models or at least one suitable sub-model, free of 
sensors' failure, trained on the correlated sensors to the failed 
sensors. Fig. 5 demonstrates the results of the test case scenarios 
for each dataset. As can be seen in Fig. 5, the test accuracy of 
the base model drops sharply when the percentage of failed 
sensors is 30% or more. At the highest percentage of sensor 
failures, SECOE maintains the accuracy at 90.84%, 73.63%, and 
84.98%, which are 77.49%, 61.64%, and 94.42% more than 
what has been achieved by the base model on the Dry-Beans, 
Steel Plates Fault, and Wall-Following Robot Navigation 
datasets, respectively. Such a dramatic drop in the base model's 
accuracy is due to the OOD problem caused by imputing many 
missing values of the failed sensors. Substantially, SECOE 
minimizes the percentage of imputation to 0% compared to the 
base model. These results confirm the intuition behind SECOE: 
by using a few sub-models built carefully using correlation of 
sensors, we can achieve high classification accuracy even 
though up to 50% of sensors fail without the necessity of 
imputing the missing values of these sensors. 

E. Random Sensor Failure Evaluation 
To precisely examine our approach, we have mimicked real-

world scenarios by simulating several test cases where sensors 
failed concurrently at random. We compare our SECOE with the 
Random-Selection and base model approaches under seven 
different fractions of failed sensors, ranging from 5% to 60%. 
Fig. 6 shows, for all datasets, the average test accuracy of 10 
iterations per test case. The results indicate that SECOE 
outperforms the base model and Random-Selection. When less 
than 30% of sensors fail on the Dry-Beans and Steel Plates Fault 
datasets, the base model exhibits performance close to our 
SECOE. However, its performance decreases severely when the 
failure rate of sensors is above 30% on all datasets. More 

specifically, when 60% of sensors fail, the accuracy of the base 
model reaches 56.83%, 42.43%, and 51.79% on the Dry-Beans, 
Steel Plates Fault, and Wall-Following Robot Navigation 
datasets, respectively. These results are 13.10%, 14.14%, and 
9.57% less than what our SECOE has obtained on the three 
datasets, respectively. In SECOE, since each sub-model is 
trained on a distinct ~50% of the entire IoT sensors from the 
dataset, it minimizes the number of imputations of the missing 
sensors' values by at least ~50% less than the base model. 
Therefore, when more than 30% of the sensors in the system fail, 
the ensemble of sub-models by SECOE obtains better 
classification accuracy than the base model. On the other hand, 
due to its random selection of sensors, Random-Selection gets 
the lowest average accuracy in every simulated test case across 
all datasets, except the Wall-Following Robot Navigation. It has 
similar performance to the base model when the percentage of 
failed sensors is 30% or above. 

From analyzing these results, we can draw the conclusion 
that using the correlation of sensors to build an ensemble of sub-
models alleviates the impact of concurrent sensor failures. To 
further enhance the performance of SECOE, we suggest that 
future research should investigate the performance of SECOE 
utilizing alternative imputation algorithms that take sensor 
"features" correlation into account when calculating the missing 
value of a sensor.  

F. Ablation Studies   
To further validate SECOE, we conduct similar experiments 

to those in the previous subsection IV.E using different training 
and testing set sizes. Fig. 7 shows the results of these 
experiments on the Dry-Beans dataset. These results align 
precisely with the prior experimental results presented in Fig. 6 
on the same dataset, implying that the tested training sizes do 
not influence the performance of SECOE and other approaches. 

 
Fig. 7  Mean test Accuracy comparison on the Dry-Beans dataset when the models are trained on different training portions. 

 

 

Fig. 6  Mean test Accuracy of SECOE, Random-Selection, and Base model during random failure of sensors on each dataset. 

 
 



We do not show figures of the experimental results on the other 
two datasets since they are also very similar and consistent with 
the results shown in Fig. 6. 

On the other hand, to determine whether the type of ML 
algorithm influences the performance of SECOE, we have run 
the same experiments described in subsection IV.E using SVM 
and RF. The experimental results on the Dry-Beans and Steel 
Plates Fault datasets are plotted in Fig. 8 and Fig. 9, respectively. 
According to Fig. 8 and 9, although the supervised ML methods 
RF, MLP, and SVM vary in terms of learning, the performance 
of SECOE using SVM and RF is consistent with its results using 
the MLP ML method and better compared to the base model and 
Random-Selection. These results prove the generality of 
SECOE across different ML algorithms. In the case of RFs, the 
Random-Selection outperforms the base model as concurrent 
sensor failures increase. This is because RF is an ensemble of 
decision trees. Hence, having several RF sub-models improved 
Random-Selection's performance over the base model.  

G. Effect of The Number of Models  
 Algorithm 1 finds the MinM that, for reliability, ensures that 

each sensor from each correlated group Gi is at least included in 
one sub-model and omitted from one sub-model. The question 
is: how would the performance of SECOE be affected when we 
increase the number of models above the MinM? To answer this 
question, we have run SECOE on the Wall-Following Robot 
Navigation dataset when the number of models is 4, 6, 12, and 
14, where 4 is the MinM. Fig. 10 shows the effect of the number 
of models on the performance of SECOE. According to Fig. 10, 
the performance of SECOE is better when we increase the 
number of models over the MinM. Although 6 is half of 12, it 
has shown quite similar performance compared to the 12 and 14 
models, except when 40% of sensors failed. This performance 
improvement is because SECOE uses majority voting of the 
most suitable sub-models (ensemble of sub-models). Therefore, 
using a larger number of models than the MinM increases the 
number of most suitable sub-models, optimizing the prediction 
accuracy. These results infer that increasing the number of 
models slightly larger than the MinM is always recommended 
for better performance. 

V. RELATED WORK 
Several previous works aimed to address data 

incompleteness. Some of which utilize probabilistic matrix 
factorization (PMF) to recover missing sensors' value(s). As a 
recent example, Fekade et al. proposed a method that recovers 
the missing values of a sensor by performing PMF to its group 
of related sensors, which has been preliminarily assigned using 
the K-means clustering algorithm. Their method has shown 
better performance than SVM and deep neural network (DNN) 
algorithms [12].  

Neural networks (NN) have also been used for building 
efficient imputations to fill the missing values. Wang et 
al. offered a gated recurrent unit filling (GRUF) at the edge 
nodes for artificial IoT (AIoT) applications. Their method, based 
on the GRU and generative adversarial network (GAN) 
algorithms, effectively fills the missing value(s) of sensors by 
learning the internal properties of IoT data via sensor geographic 
location and time series data history. Empirical results have 

proven that GRUF outperforms all comparable imputation 
techniques, such as the Mean [13]. 

Using the correlation of features helps in constructing 
efficient imputation methods. Mary and Arockiam proposed ST-
correlated, an imputation approach that uses the temporal 
correlation of IoT sensors to proximate sensor readings 
corresponding to time [14]. At different percentages [5%, 10%, 
and 15%] of missing values, their ST-correlated outperforms 
different imputation methods, namely Mean, Median, Mode, 
and MICE from R. Ilyas et al. presented a framework to mitigate 
sensors' failure [15]. Their framework finds the highly correlated 
IoT sensors in the surrounding environment of any type, not 
within the same IoT system. Then, based on the metadata of the 
nearby sensor, such as location and sensor type, their framework 
creates an ML virtual sensor using the historical data of the 
faulty and the nearby correlated sensors. Tsai et al. proposed 
real-time anomaly detection and recovery in IoT sensing 
systems [16]. Their method constructs a Bayesian model for 
each sensor utilizing its Top-2 linked sensors. This Bayesian 

 
Fig. 8  Performance of SECOE using SVM and RF on the Dry-Beans 
dataset. 

 

 
Fig. 9  Performance of SECOE using SVM and RF on the Steel Plates 
Faults dataset. 

 

 
Fig. 10  Comparison of SECOE on a different number of models at 
different sensors failure percentages on the Wall-Following Robot 
Navigation dataset. 

 
 

 



model predicts sensor data. After analyzing defective patterns, 
they provided a technique that changes sensed data based on the 
kind of fault to make it look normal.  

Unlike all the previous works, Fonollosa et al. offered sensor 
failure mitigation using several SVM models [17]. The authors 
employ the mathematical combination formula C (n, r) to build 
different sub-models, where n is the total number of sensors, and 
r represents the number of faulty sensors. Sub-models built with 
the same number of sensors are grouped as a classifier. 

Among the above-related works, only [15, 16, 17] dealt with 
missing data during the in-production of the application. [15] 
relies on accessing nearby sensors' data from different IoT 
systems. Such access requires permission, which is not always 
granted. [16] does not address complete sensor failure (complete 
missing sensor values). In general, all the above methods mainly 
focus on providing data imputation techniques to fill in missing 
values, except [17], which employs many models and uses zero 
imputation to alleviate data incompleteness. In this paper, we 
focus on providing a method that optimizes the prediction 
accuracy of the IoT ML-based system by minimizing the 
imputation of missing sensors' values. 

VI. CONCLUSION 
Due to its properties, IoT faces several fundamental 

challenges in designing and deploying efficient ML IoT 
applications. One such challenge is sensor/network failures that 
result in data stream interruptions. Unfortunately, in the 
presence of missing data, many ML systems encounter rapid 
degradation in their performance. In this paper, to make IoT-
coupled ML systems robust against simultaneous sensor 
failures, we introduced SECOE, an ensemble of sub-models, 
each constructed utilizing distinct subsets of sensors obtained 
through a method that employs sensor correlation. In addition, 
we created a Random-Selection technique for comparison 
purposes. A series of empirical studies carried out have proven 
the intuition behind SECOE. At various percentages of 
simulated concurrent missing sensor data streams, SECOE 
enabled the IoT ML-based system to produce accurate real-time 
predictions without having to fill in the missing sensor readings. 
When 40-50% of sensors simultaneously failed, SECOE 
produced classification accuracies that were substantially better 
than the base model by 77.49%, 61.64%, and 94.42% on the 
three datasets, respectively. In other scenarios in which SECOE 
was examined when sensors were failing randomly and 
imputation of their values was required, SECOE achieved a 
noticeably higher classification accuracy than the base model 
and Random-Selection. Furthermore, SECOE reduced the 
imputation of missing sensor data streams by at least 50% less 
than the base model. We also studied the performance of 
SECOE with varying numbers of sub-models and provided a 
suggestion for the number of sub-models for obtaining better 
performance of SECOE. 
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