

SECOE: Alleviating Sensors Failure in Machine
Learning-Coupled IoT Systems

Yousef AlShehri
School of Computing
University of Georgia
Athens, United States

yousef.alshehri@uga.edu

Lakshmish Ramaswamy
School of Computing
University of Georgia
Athens, United States

laksmr@uga.edu

Abstract—Machine learning (ML) applications continue to

revolutionize many domains. In recent years, there has been
considerable research interest in building novel ML applications
for a variety of Internet of Things (IoT) domains, such as precision
agriculture, smart cities, and smart manufacturing. IoT domains
are characterized by continuous streams of data originating from
diverse, geographically distributed sensors, and they often require
a real-time or semi-real-time response. IoT characteristics pose
several fundamental challenges to designing and implementing
effective ML applications. Sensor/network failures that result in
data stream interruptions is one such challenge. Unfortunately,
the performance of many ML applications quickly degrades when
faced with data incompleteness. Current techniques to handle data
incompleteness are based upon data imputation – i.e., they try to
fill-in missing data. Unfortunately, these techniques may fail,
especially when multiple sensors' data streams become
concurrently unavailable (due to simultaneous sensor failures).
With the aim of building robust IoT-coupled ML applications, this
paper proposes SECOE – a unique, proactive approach for
alleviating potentially simultaneous sensor failures. The
fundamental idea behind SECOE is to create a carefully chosen
ensemble of ML models in which each model is trained assuming
a set of failed sensors (i.e., the training set omits corresponding
values). SECOE includes a novel technique to minimize the
number of models in the ensemble by harnessing the correlations
among sensors. We demonstrate the efficacy of the SECOE
approach through a series of experiments involving three distinct
datasets. The experimental findings reveal that SECOE effectively
preserves prediction accuracy in the presence of sensor failures.

Keywords— IoT, Sensor Failure, Data Incompleteness, Robust
Machine Learning, Machine Learning Ensemble.

I. INTRODUCTION
 The Internet of Things (IoT) paradigm is transforming many
domains of human endeavor, such as agriculture, healthcare,
physical infrastructure management, manufacturing, and
transportation. At its core, IoT is a collection of Things
"objects," each embedded with a sensor, Radio-Frequency
Identification (RFID) tag, or actuator, and other software or
hardware technologies. Things produce, communicate, and
exchange data with one another, connecting a variety of objects
such as home appliances, vehicles, and farm equipment to the
Internet [1]. IoT has endowed diverse, geographically
distributed sensors to seamlessly interact and exchange data

over the Internet, which in turn has led to tremendous
proliferation of IoT-driven technologies in various fields.

 IoT domains are characterized by high-velocity data streams
originating from diverse devices. This provides the opportunity
to build innovative Big Data applications by constructing
models that harness historical and current data, thereby gaining
valuable insights that facilitate better decision-making. In this
context, there is significant research interest in applying
machine learning (ML) techniques for IoT domains. Indeed,
many ML applications have already been built for IoT data. As
a prominent example of an ML-coupled IoT application, Google
uses ML to improve the energy efficiency of its data centers by
using data collected from sensors within the data centers,
thereby reducing the cost of cooling energy by 40% [2].
Focusing on achieving the ultimate business objective (e.g.,
reducing power consumption), ML models could be built using
supervised ML methods in which a model, using the labeled
historical IoT data, learns to map the target goal y to the
independent variables as an input x [3]. This model can
automatically label a new test sample from sensors to a
corresponding prediction in real-time.

 However, IoT environments possess several unique
characteristics that pose significant challenges for building
effective ML-based applications. Some of these include: (1) The
need for integrative analytics on heterogeneous data streams; (2)
Stringent response time requirements (i.e., many applications
are real/semi-real time); (3) Harsh operating environments that
are not only resource-constrained but also dynamic; (4)
Susceptibility to drastic contextual changes; and (5) Sudden and
unexpected interruption of data streams due to IoT-sensor or
communication failures resulting in inference-time data
incompleteness.

 This paper addresses the last of the above-listed challenges,
namely, inference-time data incompleteness in ML-coupled IoT
systems. Inference time data incompleteness occurs due to data
stream interruptions that are commonly caused by two reasons.
First, sensor devices can fail either due to electronic
malfunctioning or battery outage. Second, communication may
fail due to wired/wireless network disruptions. In face of such
failures, ML applications are required to make inferences based
on incomplete/partial data. As a simple example, consider a
hypothetical ML application that continuously determines

operational safety of a manufacturing plant based on periodic
readings from 4 distinct sensors (temperature, pressure, voltage,
and humidity sensors) located at various locations of the
manufacturing plant. If two of these sensors fail and stop
sending data, the ML application has to continue making
inferences based on partial data (i.e., reading from the other two
sensors). Unfortunately, many ML algorithms fail when faced
with inference-time data incompleteness in the sense that their
performance degrades drastically even when a small fraction of
sensors fail.

 Our research aims to design ML-based techniques that are
robust against sensor/network failure-induced inference-time
data incompleteness. Note that we do not intend to develop new
ML algorithms; rather, we design novel techniques that can
augment generic ML algorithms to enhance their robustness
against inference-time data incompleteness. Several previous
researchers have worked on overcoming sensor failures [15, 16,
17]. Most of these techniques and other existing related work are
focused on providing efficient imputation algorithms to fill in
the missing values of failed sensors with potential estimated
values. These imputation-based strategies, however, are not
effective when faced with simultaneous failures of multiple
sensors (i.e., multiple data streams become simultaneously
unavailable). This is because imputation-based strategies often
suffer from the out-of-distribution (OOD) problem, where the
new record produced by applying imputation deviates highly
from the model's training data distribution, causing the model to
misclassify such a record.

 Towards enhancing the robustness of ML-coupled IoT
systems against sensor failures, this paper presents SECOE – a
novel approach to proactively alleviate sensor failure-induced
inference-time data incompleteness. SECOE is fundamentally
distinct from imputation-based approaches. The basic idea of
SECOE is to create an ensemble [4] of ML models in which each
model is specifically trained with an incomplete dataset
representing a set of failed sensors. In other words, specific
sensor feeds are omitted from training sets in anticipation of
potential failures of corresponding sensors during inference
time.

 In designing SECOE, this paper makes the following unique
technical contributions:

• We present the architecture of SECOE that includes
novel techniques for ensemble creation and inference-
time optimization, thereby demonstrating how the
ensemble techniques can be harnessed for mitigating
sensor failures in IoT systems.

• Towards improving training and inference efficiency,
we present an algorithm that minimizes the sub-models
in the ensemble. Our technique forms sensor groups
based on inherent correlations among sensors in an IoT
system. Furthermore, we present, Random-Selection,
an alternate simple strategy for ensemble creation that
randomly omits a set of sensors when training sub-
models.

• We study the advantages and limitations of SECOE
through extensive experimentation of our system in
conjunction with three popular ML paradigms, namely,

Multi-Layer Perceptron (MLP) [5], Random Forest
(RF) [6] and Support-Vector Machine (SVM) [7]. We
use three distinct datasets for our experimental study.
Our study shows that SECOE is highly effective in
overcoming sensor failure-induced data
incompleteness.

 The rest of the paper is organized as follows. The motivation
and challenges are described in Section II, followed by Section
III, in which we present the implementation details of SECOE.
Section IV demonstrates the conducted experiments and results.
Then Section V describes the related work. Finally, we conclude
in Section VI.

II. MOTIVATION AND CHALLENGES
 Due to its unquestionable capability of connecting a variety
of physical objects using digital embedded objects, e.g., sensors,
IoT has gained enormous attention and been recognized by a
wide range of industrial organizations. Thus, several IoT
applications have been developed in different domains, such as
healthcare, smart environments (e.g., office and agriculture),
and transportation and logistics. For instance, UPS and John
Deere utilize IoT-enabled fleet tracking to improve supply
efficiency and cut overall costs [8]. Another factor contributing
to IoT's current prominence and widespread adoption across all
industries is that major corporations are already investing
billions in emerging technology. According to [9], billions of
connected IoT devices, coupling the digital and physical worlds,
are estimated to generate around $2.8-$6.3 trillion in potential
IoT economic value by 2025.

The unique characteristics of IoT environments pose
significant challenges for developing effective ML-based
applications. Among these challenges, Incomplete data at
inference time in IoT-ML-coupled systems is a critical challenge
that this research aims to address. Inference time data
incompleteness happens owing to data stream interruptions. In
IoT systems, it is common for sensors to fail to send data to the
IoT edge device/Cloud. This failure might be caused by delay,
disconnection, and other hardware limitations (e.g., electronic
malfunctioning or battery failure). In the face of such failures,
ML applications are required to make inferences based on
incomplete/partial data. ML models, however, need an input size
"shape" similar to the size of the input on which they were
trained. Consequently, if sensor data is insufficient, the IoT-ML-
based system would be unable to process it.

Several earlier researchers, including [15] and [17], have
tried to address the problem of data incompleteness caused by
sensor failures. The majority of earlier research in this field
mostly focused on providing imputation methods to replace
missing data with estimated values. However, in the situation of
simultaneous sensor failures, imputing their missing data may
result in the OOD issue, resulting in severe performance
degradation of the model. In contrast to past research, our
objective is to optimize the performance of the IoT ML-based
system in the presence of concurrent sensor failures by limiting
the number of missing value imputations. Note that we do not
propose to construct new ML algorithms; instead, we design
novel techniques that can augment generic ML algorithms in
order to improve their robustness against inference-time data
incompleteness.

Our research objective is to proactively lessen the effects of
missing data caused by sensor failures in IoT ML-based systems
using an ensemble of a few sub-models, each of which is trained
on a distinct subset of sensors chosen based on the correlation of
sensors from the total IoT sensors. To the best of our knowledge,
none of the existing work attempts to minimize imputing the
missing data during the production time of the ML-IoT-based
system. In this research, we introduce SECOE, an approach that
enables the IoT ML-based system to make a real-time prediction
without the necessity of filling in the missing value of the failed
sensor when up to ~50% of the IoT sensors are failed. Hence,
the IoT application could continually make a real-time
prediction with an optimized accuracy using the correlated
sensors to the failed ones, giving the IoT infrastructure's
operator more time to physically inspect the failed sensors and
replace them if necessary.

III. SENSOR CORRELATION-BASED ENSEMBLE (SECOE)

A. Overview
The main objective of the presented approach in this paper

is to reduce the impact of sensor failures on the performance of
IoT ML-based applications during inference time. Our method
leverages an ensemble of a few sub-models each trained on a
distinct subset of sensors formed based on the correlation of
sensors in the IoT system. We use the correlation between
sensors to minimize the number of models and build sub-models
that perform similarly to the base model, which is a model
trained using the entire IoT sensors data of the system.

Fig. 1 shows an overview of the training architecture of our
method. Initially, our method groups the correlated sensors
together, producing different groups of correlated sensors. Then,
after computing the minimum number of sub-models (MinM),
for instance, four sub-models, our method forms the features for
each sub-model by selecting a distinct ~50% of sensors from
each correlated group. The sub-model features created will then
be used to build the sub-models along with the base model. The
sensors included in each model's features correspond to ~50%
of the total sensors of the IoT system. Our method guarantees
that for each sensor x in the IoT system, there exists at least one
suitable sub-model trained using a subset of sensors that
includes some correlated sensors to sensor x, excluding sensor
x. Thus, during inference-time, if a sensor x fails, then the
prediction accuracy of the IoT application is maintained via an
ensemble of the suitable sub-models or at least one of the sub-
models.

The following subsections describe the architecture of our
approach in more detail.

B. Forming Correlated Groups
The correlation between sensors is the key factor of our

approach. We have only considered the positive Pearson
correlation measurement from 0 to 1 scale when forming the
groups of correlated sensors. We have categorized the
coefficient interpretations into four categories, which are strong,
moderate, weak, and very weak correlation. The coefficient
correlation value ranges are 0.76-1.0, 0.50-0.75, 0.25-0.50, 0.10-
0.25 for the above-mentioned categories, respectively. Each
sensor is grouped with its highly correlated sensor. Note that a

correlated group Gi could contain correlated sensors with
different coefficient interpretations.

C. Selecting Sensors and Building the Sub-models
Selecting sensors for each sub-model is based on Algorithm

1. Each sub-model's features can have a different 50% of the
sensors from each correlated group Gi. If the size of a Gi is an
odd number, then we select sensors for each sub-model equal to
the nearest integer to 50% of the total sensors in such a Gi (i.e.,
No. of sensors in Gi is 7, then sensors that would be selected for
each sub-model from such a Gi is 4). For reliability, a sensor
must be included in at least one sub-model and excluded from
another sub-model.

As a result, when up to almost 50% of sensors from each
correlated group Gi fail, our proactive solution still provides a
sub-model, trained on the remaining 50% of sensors (free-of-
failure), that could make a real-time prediction with high
accuracy using the correlated sensors to the ones that have
failed. Furthermore, in case of the failure of many sensors

Fig. 1 Architecture of the training phase.

concurrently, leading to the necessity of imputing the missing
values of such sensors, the number of imputations is minimized
by at least ~50% less than the base model.

See Algorithm 1 for the pseudocode of sensors selection per
sub-model. Algorithm 1 requires two arguments: lists of the
correlated groups CG and the size of the largest correlated group
L. First, Algorithm 1, using (1), finds the minimum number of
the sub-models (MinM). Equation (1) finds MinM in the case of
the percentage of sensors that would be selected from each Gi is
set to 50%. MinM satisfies these two conditions: (a) Each sensor
from each Gi is at least included in one sub-model, and (b) Each
sensor is at least excluded from one sub-model.

 MinM = !round(50%*L)+1,	 		 if L is even.
round(50%*L), otherwise. (1)

The above two conditions guarantee that if any sensor x from
the IoT system fails, there is a sub-model, trained without sensor
x, to make a real-time prediction.

 Second, Algorithm 1, for each sub-model, selects the
leftmost sensors from each Gi, equals to ~50% of sensors in Gi,
then it shifts each Gi to the left by 1. This step ensures that
sensors that will be picked for the next sub-model differ from
those selected for the previous sub-model. As illustrated in Fig.
2, if we have a correlated group G1 as [H, B, D, C, A, G],
Algorithm 1 will select the leftmost three sensors ([H, B, D])
from G1 for the first sub-model, then shift G1 to the left by 1.
Next, for the second sub-model, Algorithm 1 will choose the
leftmost three sensors ([B, D, C]) from G1 after being shifted.
This procedure is repeated for the following sub-models.
Finally, after iterating over every Gi, Algorithm 1 outputs the
model features MFj for each sub-model. The resulted features
for each sub-model is approximately 50% of the entire IoT
sensors.

D. Accuracy Optimization
 To optimize the performance of the IoT ML-based system
during the presence of sensor failures, whenever records are
received from sensors for prediction, they would be fed to the
most suitable sub-model, the model that is trained on the subset
of sensors that contains the least matched number of the failed
sensors. The final prediction is their majority voting (ensemble)
if there are several suitable sub-models. However, in some cases
in which only two suitable models exist, the model with the

highest training accuracy will be chosen for prediction. Note that
the base model handles the prediction in the case of no failure of
sensors. See Fig. 3.

IV. EVALUATION

A. Datasets
We evaluate our method on three datasets from the UCI

repository [10]: (1) Dry-Beans, (2) Steel Plates Fault, and (3)
Wall-Following Robot Navigation. Due to the lack of publicly
available datasets containing features corresponding to sensors’
readings with target class label/labels, we have utilized the first
two datasets since they have a fair amount of correlation
between features that contain either real or integer data types.
We slightly preprocessed these two datasets. More specifically,
we rescaled the features of each training dataset by subtracting
the mean and dividing all values by the standard deviation of the
training samples. The third dataset contains actual sensors’
readings. Dry-Beans contains more than 13K samples forming
16 dry beans' geometric features to classify the bean into one of
7 species. In contrast, the Steel Plates Fault consists of 27
attributes describing the plates' geometric shapes and 1941
instances to classify Steel plates' faults into one of seven
different types. The third dataset, Wall-Following Robot
Navigation, comes with different versions having 2, 4, and 24
attributes corresponding to numerical ultrasound sensors'
readings collected from sensors embedded on a SCITOS G5
robot navigating in a room following the wall in a clockwise
direction. We used the version that contains 24 attributes. This
version has more than 5K instances, through which the
movement of the robot is predicted into one of 4 classes: move-
forward, slight-right-turn, sharp-right turn, or slight-left-turn.
For clarity, in our experiments, we renamed features of all
datasets to follow the English alphabetical order from A-Z and
a-z.

TABLE I. CORRELATED GROUPS AND SUB-MODELS’ FEATURES.

Dataset Correlated group G Sub-model features (MF)

Dry-
Beans

G1= {H, B, D, C, A, G}
G2= {E, F}
G3= {N, K, M, I, L, O}
G4= {J, P}

MF1= {H, B, D, E, N, K, M, J}
MF2= {B, D, C, F, K, M, I, P}
MF3= {D, C, A, E, M, I, L, J}
MF4= {C, A, G, F, I, L, O, P}

Fig. 3 Procedure of real-time prediction.

Fig. 2 Example of selection of sensors from two correlated groups.

B. Experimental Setup
Initially, we examine SECOE when all models are MLPs [5]

trained on 85% of the dataset size and tested on the remaining
15%. Next, to investigate whether the training set size would
affect the performance of our method, we conduct different
experiments in which all ML models are trained on three
portions {90%, 80%,75%} of the dataset and tested on the
remaining portions. To validate the generality of SECOE across
different ML methods, we also examine its performance with
two additional supervised ML algorithms: RF [6] and SVM [7].
In addition, we ran some experiments to find whether increasing
the number of models above the MinM would affect the
performance of our approach. To show the effectiveness of our
SECOE, we compare SECOE with two other approaches. The
first one is the base model. The second approach is Random-
Selection, an approach we have created similar to ours. Instead
of using correlation of sensors, Random-Selection randomly
selects 50% of sensors from the entire sensors of the IoT system
for each sub-model. We evaluate each approach based on its
classification accuracy of the testing set. For simplicity, in all
experiments, we utilize the Mean Imputation technique to
replace the missing sensors' values with the Mean values of their
records across the training set. All models are built using the
default parameters defined by the “Sciket-Learn” python library
[11].

C. Performance of Models
In this subsection, we illustrate the performance of all

models when there are no sensor failures. The MinM that
SECOE produced is six sub-models for the Steel Plates Fault

dataset and four for the other two datasets. Table 1 displays the
correlated groups and sub-models' features resulting from
Algorithm 1 on the Dry-Beans dataset. Fig. 4 demonstrates the
classification accuracy of the sub-models of both SECOE and
Random-Selection and the base model on the three datasets:
Dry-Beans, Steel Plates Fault, and Wall-Following Robot
Navigation. In Fig. 4, all models are MLPs, trained on 85% and
tested on the remaining 15% of the dataset. Although they are
built using ~50% of the sensors from the dataset, most of the
sub-models by SECOE are comparable to the base model in
terms of test accuracy. In contrast, some Random-Selection sub-
models perform poorly; more specifically, sub-model-4 and sub-
model-1 on Steel Plates Fault and Wall-Following Robot
Navigation datasets, respectively.

Choosing from the dataset a subset of sensors that contains
the important sensors, which are the sensors that have a high
impact on the model classification accuracy, is essential to make
the ML model performs well. Since Random-Selection
randomly selects sensors for each sub-model, some important
sensors or their correlated ones were ignored (not included in
any sub-model), producing weak-performed models. SECOE
offers well-performed sub-models built using the important
sensors or ~50% of its correlated ones. Overall, SECOE
provides better-performed sub-models than the Random-
Selection approach.

D. Static Sensor Failure Evaluation
To show the importance of SECOE, we created several test

cases in which specific sensors were statically chosen as the
simulated failed sensors. Each test case corresponds to a

Fig. 5 Test accuracy with a 95% confidence interval of SECOE versus the base model during the failure of sensors on each dataset.

Fig. 4 Test accuracy comparison between the base model, Random-Selection and SECOE sub-models on each dataset.

different percentage of simultaneous sensor failures, from 5%
up to 50%. In this experiment, for each test case, there are
suitable sub-models or at least one suitable sub-model, free of
sensors' failure, trained on the correlated sensors to the failed
sensors. Fig. 5 demonstrates the results of the test case scenarios
for each dataset. As can be seen in Fig. 5, the test accuracy of
the base model drops sharply when the percentage of failed
sensors is 30% or more. At the highest percentage of sensor
failures, SECOE maintains the accuracy at 90.84%, 73.63%, and
84.98%, which are 77.49%, 61.64%, and 94.42% more than
what has been achieved by the base model on the Dry-Beans,
Steel Plates Fault, and Wall-Following Robot Navigation
datasets, respectively. Such a dramatic drop in the base model's
accuracy is due to the OOD problem caused by imputing many
missing values of the failed sensors. Substantially, SECOE
minimizes the percentage of imputation to 0% compared to the
base model. These results confirm the intuition behind SECOE:
by using a few sub-models built carefully using correlation of
sensors, we can achieve high classification accuracy even
though up to 50% of sensors fail without the necessity of
imputing the missing values of these sensors.

E. Random Sensor Failure Evaluation
To precisely examine our approach, we have mimicked real-

world scenarios by simulating several test cases where sensors
failed concurrently at random. We compare our SECOE with the
Random-Selection and base model approaches under seven
different fractions of failed sensors, ranging from 5% to 60%.
Fig. 6 shows, for all datasets, the average test accuracy of 10
iterations per test case. The results indicate that SECOE
outperforms the base model and Random-Selection. When less
than 30% of sensors fail on the Dry-Beans and Steel Plates Fault
datasets, the base model exhibits performance close to our
SECOE. However, its performance decreases severely when the
failure rate of sensors is above 30% on all datasets. More

specifically, when 60% of sensors fail, the accuracy of the base
model reaches 56.83%, 42.43%, and 51.79% on the Dry-Beans,
Steel Plates Fault, and Wall-Following Robot Navigation
datasets, respectively. These results are 13.10%, 14.14%, and
9.57% less than what our SECOE has obtained on the three
datasets, respectively. In SECOE, since each sub-model is
trained on a distinct ~50% of the entire IoT sensors from the
dataset, it minimizes the number of imputations of the missing
sensors' values by at least ~50% less than the base model.
Therefore, when more than 30% of the sensors in the system fail,
the ensemble of sub-models by SECOE obtains better
classification accuracy than the base model. On the other hand,
due to its random selection of sensors, Random-Selection gets
the lowest average accuracy in every simulated test case across
all datasets, except the Wall-Following Robot Navigation. It has
similar performance to the base model when the percentage of
failed sensors is 30% or above.

From analyzing these results, we can draw the conclusion
that using the correlation of sensors to build an ensemble of sub-
models alleviates the impact of concurrent sensor failures. To
further enhance the performance of SECOE, we suggest that
future research should investigate the performance of SECOE
utilizing alternative imputation algorithms that take sensor
"features" correlation into account when calculating the missing
value of a sensor.

F. Ablation Studies
To further validate SECOE, we conduct similar experiments

to those in the previous subsection IV.E using different training
and testing set sizes. Fig. 7 shows the results of these
experiments on the Dry-Beans dataset. These results align
precisely with the prior experimental results presented in Fig. 6
on the same dataset, implying that the tested training sizes do
not influence the performance of SECOE and other approaches.

Fig. 7 Mean test Accuracy comparison on the Dry-Beans dataset when the models are trained on different training portions.

Fig. 6 Mean test Accuracy of SECOE, Random-Selection, and Base model during random failure of sensors on each dataset.

We do not show figures of the experimental results on the other
two datasets since they are also very similar and consistent with
the results shown in Fig. 6.

On the other hand, to determine whether the type of ML
algorithm influences the performance of SECOE, we have run
the same experiments described in subsection IV.E using SVM
and RF. The experimental results on the Dry-Beans and Steel
Plates Fault datasets are plotted in Fig. 8 and Fig. 9, respectively.
According to Fig. 8 and 9, although the supervised ML methods
RF, MLP, and SVM vary in terms of learning, the performance
of SECOE using SVM and RF is consistent with its results using
the MLP ML method and better compared to the base model and
Random-Selection. These results prove the generality of
SECOE across different ML algorithms. In the case of RFs, the
Random-Selection outperforms the base model as concurrent
sensor failures increase. This is because RF is an ensemble of
decision trees. Hence, having several RF sub-models improved
Random-Selection's performance over the base model.

G. Effect of The Number of Models
 Algorithm 1 finds the MinM that, for reliability, ensures that

each sensor from each correlated group Gi is at least included in
one sub-model and omitted from one sub-model. The question
is: how would the performance of SECOE be affected when we
increase the number of models above the MinM? To answer this
question, we have run SECOE on the Wall-Following Robot
Navigation dataset when the number of models is 4, 6, 12, and
14, where 4 is the MinM. Fig. 10 shows the effect of the number
of models on the performance of SECOE. According to Fig. 10,
the performance of SECOE is better when we increase the
number of models over the MinM. Although 6 is half of 12, it
has shown quite similar performance compared to the 12 and 14
models, except when 40% of sensors failed. This performance
improvement is because SECOE uses majority voting of the
most suitable sub-models (ensemble of sub-models). Therefore,
using a larger number of models than the MinM increases the
number of most suitable sub-models, optimizing the prediction
accuracy. These results infer that increasing the number of
models slightly larger than the MinM is always recommended
for better performance.

V. RELATED WORK
Several previous works aimed to address data

incompleteness. Some of which utilize probabilistic matrix
factorization (PMF) to recover missing sensors' value(s). As a
recent example, Fekade et al. proposed a method that recovers
the missing values of a sensor by performing PMF to its group
of related sensors, which has been preliminarily assigned using
the K-means clustering algorithm. Their method has shown
better performance than SVM and deep neural network (DNN)
algorithms [12].

Neural networks (NN) have also been used for building
efficient imputations to fill the missing values. Wang et
al. offered a gated recurrent unit filling (GRUF) at the edge
nodes for artificial IoT (AIoT) applications. Their method, based
on the GRU and generative adversarial network (GAN)
algorithms, effectively fills the missing value(s) of sensors by
learning the internal properties of IoT data via sensor geographic
location and time series data history. Empirical results have

proven that GRUF outperforms all comparable imputation
techniques, such as the Mean [13].

Using the correlation of features helps in constructing
efficient imputation methods. Mary and Arockiam proposed ST-
correlated, an imputation approach that uses the temporal
correlation of IoT sensors to proximate sensor readings
corresponding to time [14]. At different percentages [5%, 10%,
and 15%] of missing values, their ST-correlated outperforms
different imputation methods, namely Mean, Median, Mode,
and MICE from R. Ilyas et al. presented a framework to mitigate
sensors' failure [15]. Their framework finds the highly correlated
IoT sensors in the surrounding environment of any type, not
within the same IoT system. Then, based on the metadata of the
nearby sensor, such as location and sensor type, their framework
creates an ML virtual sensor using the historical data of the
faulty and the nearby correlated sensors. Tsai et al. proposed
real-time anomaly detection and recovery in IoT sensing
systems [16]. Their method constructs a Bayesian model for
each sensor utilizing its Top-2 linked sensors. This Bayesian

Fig. 8 Performance of SECOE using SVM and RF on the Dry-Beans
dataset.

Fig. 9 Performance of SECOE using SVM and RF on the Steel Plates
Faults dataset.

Fig. 10 Comparison of SECOE on a different number of models at
different sensors failure percentages on the Wall-Following Robot
Navigation dataset.

model predicts sensor data. After analyzing defective patterns,
they provided a technique that changes sensed data based on the
kind of fault to make it look normal.

Unlike all the previous works, Fonollosa et al. offered sensor
failure mitigation using several SVM models [17]. The authors
employ the mathematical combination formula C (n, r) to build
different sub-models, where n is the total number of sensors, and
r represents the number of faulty sensors. Sub-models built with
the same number of sensors are grouped as a classifier.

Among the above-related works, only [15, 16, 17] dealt with
missing data during the in-production of the application. [15]
relies on accessing nearby sensors' data from different IoT
systems. Such access requires permission, which is not always
granted. [16] does not address complete sensor failure (complete
missing sensor values). In general, all the above methods mainly
focus on providing data imputation techniques to fill in missing
values, except [17], which employs many models and uses zero
imputation to alleviate data incompleteness. In this paper, we
focus on providing a method that optimizes the prediction
accuracy of the IoT ML-based system by minimizing the
imputation of missing sensors' values.

VI. CONCLUSION
Due to its properties, IoT faces several fundamental

challenges in designing and deploying efficient ML IoT
applications. One such challenge is sensor/network failures that
result in data stream interruptions. Unfortunately, in the
presence of missing data, many ML systems encounter rapid
degradation in their performance. In this paper, to make IoT-
coupled ML systems robust against simultaneous sensor
failures, we introduced SECOE, an ensemble of sub-models,
each constructed utilizing distinct subsets of sensors obtained
through a method that employs sensor correlation. In addition,
we created a Random-Selection technique for comparison
purposes. A series of empirical studies carried out have proven
the intuition behind SECOE. At various percentages of
simulated concurrent missing sensor data streams, SECOE
enabled the IoT ML-based system to produce accurate real-time
predictions without having to fill in the missing sensor readings.
When 40-50% of sensors simultaneously failed, SECOE
produced classification accuracies that were substantially better
than the base model by 77.49%, 61.64%, and 94.42% on the
three datasets, respectively. In other scenarios in which SECOE
was examined when sensors were failing randomly and
imputation of their values was required, SECOE achieved a
noticeably higher classification accuracy than the base model
and Random-Selection. Furthermore, SECOE reduced the
imputation of missing sensor data streams by at least 50% less
than the base model. We also studied the performance of
SECOE with varying numbers of sub-models and provided a
suggestion for the number of sub-models for obtaining better
performance of SECOE.

ACKNOWLEDGMENT
 This research has been partially funded by grants from the
National Science Foundation (NSF) and the US Department of
Agriculture's National Institute of Food and Agriculture (USDA
NIFA), and gifts from Accenture Research Labs. Any opinions,

findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the funding agencies or the companies mentioned
above.

REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: a survey,”

Computer Networks: The Int. J. of Comput. and Telecommun. Netw., vol.
54, no. 15, pp. 2787–2805, Oct. 2010.

[2] R. Evans and J. Gao, “DeepMind AI Reduces Google Data Centre
Cooling Bill by 40%,” deepmind.com.
https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-
centre-cooling-bill-by-40 (accessed Dec. 19, 2021).

[3] A. Singh, N. Thakur and A. Sharma, "A review of supervised machine
learning algorithms," 2016 3rd Int. Conf. on Comput. for Sustainable
Global Develop. (INDIACom), 2016, pp. 1310-1315.

[4] O. Sagi and L. Rokach, Ensemble learning: A survey,Data Mining and
Knowledge Discovery, vol. 8, no. 4,pp. 1–18, 2018.

[5] Aurélien Géron, Hands-on Machine Learning with Scikit-Learn and
TensorFlow, 2th ed. Sebastopol, CA: O’Reilly Media, Inc., 2019, p. 286.

[6] Aurélien Géron, Hands-on Machine Learning with Scikit-Learn and
TensorFlow, 2th ed. Sebastopol, CA: O’Reilly Media, Inc., 2019, pp. 155-
157.

[7] Aurélien Géron, Hands-on Machine Learning with Scikit-Learn and
TensorFlow, 2th ed. Sebastopol, CA: O’Reilly Media, Inc., 2019, p. 199.

[8] I. Lee and K. Lee, “The internet of things (iot): Applications, investments
and challenges for enterprises,” Business Horizons, vol. 58, no. 4, pp. 431
– 440, July 2015, doi: 10.1016/j.bushor.2015.03.008.

[9] M. Chui, M. Collins, and M. Patel, “IoT Value Set To Accelerate Through
2030: Where And How To Capture It,” McKinsey.com.
https://www.mckinsey.com/business-functions/mckinsey-digital/our-
insights/iot-value-set-to-accelerate-through-2030-where-and-how-to-
capture-it. (accessed Jan. 27, 2022).

[10] D. Due and C. Graff, UCI Machine Learning Repository, Irvine, CA:
University of California, School of Information and Computer Science,
2017. Accessed on: Oct 15, 2021. [Online]. Available:
http://archive.ics.uci.edu/ml.

[11] F. Pedregosa et al., “Scikit-learn: machine learning in python,” The J. of
Machine Learning Research, vol 12, pp. 2825-2830, Jan. 2011.

[12] B. Fekade, T. Maksymyuk, M. Kyryk and M. Jo, "Probabilistic Recovery
of Incomplete Sensed Data in IoT," in IEEE Internet of Things J., vol. 5,
no. 4, pp. 2282-2292, Aug. 2018, doi: 10.1109/JIOT.2017.2730360.

[13] T. Wang, H. Ke, A. Jolfaei, S. Wen, M. S. Haghighi and S. Huang,
"Missing Value Filling Based on the Collaboration of Cloud and Edge in
Artificial Intelligence of Things," in IEEE Transactions on Industrial
Informatics, vol. 18, no. 8, pp. 5394-5402, Aug. 2022, doi:
10.1109/TII.2021.3126110.

[14] I. P. S. Mary and L. Arockiam, "Imputing the missing data in iot based on
the spatial and temporal correlation," presented at 2017 IEEE Int. Conf.
on Current Trends in Adv. Comput. (ICCTAC), 2017, pp. 1-4, doi:
10.1109/ICCTAC.2017.8249990.

[15] E. B. Ilyas, M. Fischer, T. Iggena and R. Tönjes, "Virtual sensor creation
to replace faulty sensors using automated machine learning techniques,"
2020 Global Internet of Things Summit (GIoTS), 2020, pp. 1-6, doi:
10.1109/GIOTS49054.2020.9119681.

[16] F. -K. Tsai, C. -C. Chen, T. -F. Chen and T. -J. Lin, "Sensor abnormal
detection and recovery using machine learning for IoT sensing systems,"
IEEE 6th Int. Conf. on Ind. Eng. and Appl. (ICIEA), 2019, pp. 501-505,
doi: 10.1109/IEA.2019.8715215.

[17] J. Fonollosa, A. Vergara and R. Huerta, "Sensor failure mitigation based
on multiple kernels," SENSORS, 2012 IEEE, 2012, pp. 1-4, doi:
10.1109/ICSENS.2012.6411124.

