2210.06377v1 [cs.RO] 12 Oct 2022

arxXiv

Smooth Trajectory Collision Avoidance through
Deep Reinforcement Learning

Sirui Song, Kirk Saunders, Ye Yue, Jundong Liu*

School of Electrical Engineering and Computer Science,
Ohio University, Athens, OH 45701

Abstract—Collision avoidance is a crucial task in vision-guided
autonomous navigation. Solutions based on deep reinforcement
learning (DRL) has become increasingly popular. In this work, we
proposed several novel agent state and reward function designs
to tackle two critical issues in DRL-based navigation solutions:
1) smoothness of the trained flight trajectories; and 2) model
generalization to handle unseen environments.

Formulated under a DRL framework, our model relies on
margin reward and smoothness constraints to ensure UAVs fly
smoothly while greatly reducing the chance of collision. The
proposed smoothness reward minimizes a combination of first-
order and second-order derivatives of flight trajectories, which
can also drive the points to be evenly distributed, leading to
stable flight speed. To enhance the agent’s capability of handling
new unseen environments, two practical setups are proposed to
improve the invariance of both the state and reward function
when deploying in different scenes. Experiments demonstrate the
effectiveness of our overall design and individual components.

Index Terms—Deep reinforcement learning, collision avoid-
ance, UAV, smoothness, rewards.

I. INTRODUCTION

Autonomous navigation capability is of great importance
for unmanned aerial vehicles (UAVs) to fly in complex en-
vironments where communication might be limited. Collision
avoidance (CA) is among the most crucial components of high-
performance autonomy and thus has been extensively studied.
Generally speaking, the existing CA solutions can be grouped
into two categories: geometry-based and learning-based solu-
tions. Geometry-based solutions are commonly formulated as
a two-step procedure: first to detect obstacles and estimate the
geometry surrounding a UAV, followed by a path planning step
to identify a traversable route for escape maneuver.

Learning-based CA solutions extract patterns from training
data to perceive environments and make maneuver decisions.
Such solutions can be broadly divided into two categories:
supervised learning-based and reinforcement learning-based.
The former performs perception and decision-making simul-
taneously, predicting control policies directly from raw input
images [1]-[5]. Supervised-based methods are straightforward,
but they normally require a large amount of labeled training
samples, which are often difficult or expensive to obtain.
Reinforcement learning [6]], on the other hand, relies on a scale
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reward function to motivate the learning agent and explores
policy through trial and error. Combined with neural networks,
deep reinforcement learning (DRL) has been shown to achieve
superhuman performance on a number of games by fully
exploring raw images [[7]-[9]. DRL-based collision avoidance
has also been recently proposed [10] [11] [12] [13]. In order
to reduce cost and increase effectiveness, such training is often
first carried out within a certain simulation environment.

While remarkable progress has been made in DRL-based
navigation solutions, insufficient attention has been given to
two critical issues: 1) smoothness of the navigation trajec-
tories; and 2) model generalization to handle unseen envi-
ronments. For the former, Kahn et al. [14]] proposed a RL-
based solution that seeks a tradeoff of collision uncertainty
and speed of UAV motion. When collision uncertainty is high,
the motion of the robot/UAV is set to slower, and vice versa.
The smoothness of the flight trajectories, however, is not di-
rectly addressed. Hasanzade et al. [|15] proposed an RL-based
UAV navigation solution based on a trajectory re-planning
algorithm, where high order B-splines are used to define and
specify flight trajectories. Due to the local support property of
B-spline, such trajectories can be updated quickly, allowing the
small UAVs to navigate in clutter environments aggressively.
However, new knots need to be inserted over the training
process for the re-planning procedure to be fully realized,
negatively impacting the overall trajectory smoothness.

Model generalization is a critical issue in machine learning,
especially for DRL solutions. Many current DRL works,
however, were evaluated on the same environments as they
were trained on, such as Atari [[16], MuJoCo [17] and OpenAl
Gym [18]]. For UAV training, there is an additional sim-to-real
layer, which complicates the problem even more. Kong et al.
[19] explored the generalization of various DRL algorithm by
training them with different (but not unseen) environments.
Doukui et al. [20] tackle this issue by mapping exteroceptive
sensors, robot state, and goal information to continuous ve-
locity control inputs, but their exploration was only tested on
unseen targets instead of unseen scenes.

In this work, we address the afore-mentioned issues with
novel designs for agent state and reward functions. To ensure
the smoothness of the learned flight trajectories, we inte-
grate two curve smoothness terms, based on first-order and
second-order derivatives respectively, into the agent reward



(a): Original deep depth

(b): Truncated shallow depth
Fig. 1: An example pair of deep and shallow depth maps.

functions. To improve the agent’s generalization capability,
two practical setups, shallow depth and unit vector towards
the target, are adopted to boost the robustness of the state
and reward function in dealing with new environments. The
proposed designs are trained and tested in simulation scenes
with large geometric obstacles. Experiments demonstrate the
effectiveness of our overall design and individual components.

II. METHOD

In this work, a multirotor UAV takes off at a designated
starting point and navigates autonomously towards a destina-
tion. The line segment connecting the start and end points
is regarded as a predefined path, along which certain objects
have been put as obstacles.

A. Design and environment setup

Our overall design goal is to fly the UAV mostly along
the predefined route while being able to avoid the obstacles.
Such capability is trained through DRL with the following
considerations. Firstly, to ensure the UAV to fly along the
predetermined path, we minimize the distance of the drone’s
trajectory away from such a path. Secondly, to ensure the
drone avoids collisions while flying smoothly, we set up a
variety of rewards, including those for margin, arrival, and
penalty for collisions and smoothness. In addition, we aim to
design DRL agent with a good generalization capability in
handling unseen environments.

States, actions, and rewards are three basic components of
most DRL algorithms. In this work, the state s; at time ¢ is
defined to include three components: 1) the depth map of the
current view facing the camera; 2) the current velocity of the
UAYV, and 3) a unit vector pointing from the UAV’s current
position to the target.

Our choices of 1) and 3) are both with model generalization
in mind. At each time point, a depth image is obtained from
the onboard monocular camera of the UAV. In order to limit
the impact of environment changes and thus improve the
generalization capability of our model, we focus on nearby
objects and ignore those beyond a certain distance. We call
this truncated depth image as shallow depth, in contrast with
the original deep depth. An example pair are shown in Fig [I]
We include unit vector to the target as part of the agent’s
state, which later will also be used in our proposed reward
function. This is in contrast to the Euclidean distance of the
UAV away from the destination. Compared with the distances,
our unit vectors are scale invariant, and therefore have better

generalization potentials to deal with new environments of
different sizes. Each action a, at time ¢ is defined as (v, , vy, ),
a velocity vector with x-axis and y-axis components. The
proposed reward functions will be explained in the next
subsection.

We choose Deep Deterministic Policy Gradient (DDPG)
[21]] as the DRL algorithm to train the flight policy of the UAV.
DDPG uses an actor-critic method in which the critic network
learns the value function (Q value), and the actor network
decides how the policy model should be updated. The output
of the Actor network can be real-valued vectors, which enables
the DDPG model to directly learn actions in continuous space.
The detailed network structure and state composition of our
DDPG model can be found in Fig. 2

Furthermore, for each state, we keep historical information
and stack together depth images from several consecutive time
points. This is designed to alleviate blind spot issues in flight
and allow us to monitor the flight trajectory for smoothness
control. To reduce the dimensionality of the depth map, we
use an LSTM network on the depth stack, as shown in Fig. 2]
to capture basic information before feeding it into the actor
and critic networks.

B. Reward functions

In this work, the overall reward r, at time ¢ is designed to
include multiple components, each of which corresponds to a
desired system condition. Note that our design goals include:
1) avoiding collisions, 2) enhancing model generalization, and
3) encouraging smooth flights. The overall r, is given as
follows,

R, if at destination
e = Rmargin + Riowards + Rsmooth + § Re
Ry if normal flight

if collision

where Riargin and Remooth denote the rewards to ensure margin
and smoothness respectively; Riowards 1S aimed to attract the
UAV to fly towards the target; 17, is rewarded if the UAV
reaches the end point; R, is a a penalty (negative reward) if
collisions happen; and Iy contains a reward for flying forward
and a penalty for any deviation from the predefined route.

Rinargin 1s design to penalize the UAV for getting too close to
the obstacles. Two margin zones, soft margin and hard margin
are set up, as shown in Fig. 8] When the drone flies into
the soft margin zone, it will be pushed back with a moderate
force. If it enters the hard margin zone, the system should
provide a rapidly increasing repulsive force to prevent the
drone from getting closer to the obstacle. Computationally,
this two-margin design is implemented as:

_Cl (dsoft - dobs)/(dsoft - dhard)
_02/ dobs
0 otherwise

in soft-margin

Riargn = in hard-margin

where C7 and Cy are positive constants; d,s represents the
minimum distance from the drone to the nearest obstacle; dgf,
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Fig. 2: Overall network architecture of our DDPG-based method. Left: actor-network; Middle: critic-network; Right: information

fusion and dimensional reduction through LSTM.

dhara are constant parameters denoting the range of soft zone
and hard zone respectively.
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Fig. 3: Illustration of the soft margin and hard margin zones.

Riowards can be designed in many different ways. For in-
stance, the Euclidean distance away from the destination can
be used as a negative reward to attract the UAV. However,
absolute distances would have poor generalization as they are
not scale invariance. In this work, we use unit vector to the
target as a better alternative, which is also used as part of the
agent state. Let vy be the direction (a unit vector) from current
position to the destination and v,.; be the direction of the
current speed. We design Riowards = €08(Vd, Uyer). Comparing
with absolute distances, our design is scale invariant, which
leads to two major benefits: 1) potentially better generaliza-
tion for unseen environments; and 2) enhanced training and
convergence performance. The latter comes from the fact that
angle to the destination always provides strong guidance, even
when the UAV is far away from the destination.

1) Smoothness rewards: The design of our smoothness
rewards is inspired by the classic active contour model (also
known as snakes) proposed by Kass et al. for image segmenta-
tion [22]. Let v(s) be an evolving contour. Snake model drives
the contour to capture a target object, with an internal energy
term to ensure the smoothness of the evolution curve:

J(v) = Ji(v) + Jo(v) = / ofv(s)* + Blu(s)"|*ds (1)

where « and (3 are contributing weights. The Euler-Lagrange
(E-L) equations to minimize J;(v) and Ja(v) are linear

functions and cubic functions, respectively. The former (linear
functions) would force the curve to stretch up into straight line
segments, while the latter (cubic functions) ensures the curve
to keep smooth at all points.

Inspired by the snake model, we take flight trajectories as
evolving curves and design a smoothness reward Rgnoom based
on the combination of first-order and second-order derivatives
of the trajectories. More specifically, we intend to minimize the
square of the first-order derivative to stretch up the trajectory,
so the UAV would be forced to fly directly towards the
destination. Minimizing the squared second-order derivative
would make the flight path generally smooth.

Let p; denote the location of the UAV at time ¢. The first-
order term will be minimized when p;_1, Py, Pt+1 are on
the same line. The difference between |p; — pr—1| + |Pt+1 —
pt| and |pty1 — pt—1| can be used as an indictor to measure
the deviation of the points from collinearity. The norm of the
second-order derivative can be numerically approximated with
|Pt+1 + Pt+1 — 2p¢|, which would be minimized by uniform
and gradual changes in direction. With these two observations,
we come up with our smoothness reward at time ¢:

Rgnooth = — C3(|pt — Pe—1| + [Pe+1 — Pe| — [Pe41 — Pe—1)

— C4lpi—1 — 2p¢ + Pr41|
(2)

where C3 and C) are positive constants, which can be set
manually or empirically in experiments. It should be noted
that, for computational convenience and numerical stability,
we use the norms of the first-order and second-order deriva-
tives instead of their squared values as in the original snake
model. In addition, our setup of the first-order derivative term,
inspired by the Greedy snake model [23]], would encourage the
points to be evenly distributed along the trajectory, leading to
stable flight speed.

III. SIMULATION ENVIRONMENTS AND EXPERIMENT
DESIGN

In this work, we train our DRL solutions in one training
scene and test them under three different test scenes, which



(a): Training scene

(b): Test scene 1
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(d): Test scene 3

(c): Test scene 2

Fig. 4: Simulation scenes of training and testing environments
under Airsim + UE4. (a) is the training scene; (b) has more
obstacles; (c) is a test scene of larger size and (d) has unseen
shapes. In each scene, the solid line is the predefined route
and the orange point at the right side is the destination. Refer
to text for details.

are previously unseen. The scenes are designed to evaluate our
proposed components in boosting the generalization capability
and trajectory smoothness, respectively.

The training scene is designed as a 3D container, 20 meters
long, 15 meters high and 15 meters wide. Four obstacles are
put inside, as shown in Fig. {](a). The drone takes off at the
start point, and then flies towards the destination, which is
marked with an orange dot. The straight line connecting the
two points is the predefined route. Four thick hexagonal prism
(diameter = 2.55m) obstacles are on the predefined route,
blocking the drone flying to the destination.

Fig. @{b - d) show the three test scenes. The first test scene
(TS1) has the same dimension as the training scene, but has
two additional (totally 6) hexagonal prism obstacles of the
same shape and size. This setup is aimed to test whether the
UAV can successfully fly to the end point in an environment
with more crowded obstacles. The second test scene (TS2) has
eight hexagonal prism obstacles of the same size, and the total
scene length is set to 45 meters. Compared with the training
scene, this scene is much longer, aiming to evaluate model
generalization under different scene sizes. The third test scene
(TS3) has the same dimension as the training scene, however,
is filled with obstacles of different shapes. This is to test the
learned policy in handling obstacle shapes that have not been
trained with.

IV. EXPERIMENTS AND RESULTS

We build the training and testing simulation scenes on Air-
sim and UE4, simulating the UAV collision avoidance in a real
environment. The simulator runs on a Nvidia GeForce RTX
2080 graphics card and the UAV in the simulator is equipped
with a LiDAR, a GPS and an onboard monocular camera.
Experiments are conducted to evaluate the effectiveness of

our designs for 1) boosting the model generalization and 2)
ensuring the smoothness of flight trajectories.

A. Results for smoothness setups

Our designs for improving the trajectory smoothness comes
from the reward component Rgnoom in Eqn. @[) For the
convenience of discussion, we use Wynoom to denote the full
DRL model with Rgnoom and W Ogmoom to denote the model
without this term. Evaluations are conducted based on visual
inspections and statistical analysis, under both the training and
testing environments.

Fig. [5] shows an example result of the models under the
training environment. Fig. [5(a) and Fig. [5{b) record the trajec-
tories of the UAV, where the red dashed line is the predefined
route. The trajectory produced by Wyneom 1S smoother and
closer to the predefined route than that of W Ogmooth-

(a) With Rsmooth

(b): Without Rgmooth

Fig. 5: An example pair of training results from the models
of (a) Wsmooth and (b) Wosmoolh~

For the inference performance in the unseen test environ-
ments, Fig. [6] shows an example of the trajectories generated
by the two models. In each figure, the dashed line is the
predefined route and the purple line shows the trajectory of the
UAV. One can see Wpoom clearly outperforms W Ogpoom in all
three test scenes, producing smoother and more direct tracks
towards the destination. In the third test scene, W Ogmooth
can not find the path to the destination, as the UAV collides
with the cube and the door, indicating that it fails to bypass
obstacles of unseen shapes. In contrast, Wypoom, With the
proposed smoothness rewards, can successfully find a rather
smooth path to reach the destination.

We conduct multiple inference tests of the two models
under the three test scenes. The numbers of the tests are 100,
50 and 100, respectively, for test scenes 1, 2 and 3. Three
evaluation metrics are employed to evaluate the policy perfor-
mance: average linear acceleration over the flights, average
path curvature of the flight trajectories, and success rate to
reach the destinations. The comparisons are summarized in
Table [l Our Wymeomn model has lower average curvatures and
accelerations than W Ogyoom, demonstrating that the produced
trajectories are generally smoother and more stable. Our model
also has higher success rates to reach destinations, indicating
the smooth terms also make positive contributions to training
convergence.

It should be noted that our setup of the first-order derivative
in the smoothness term in Eqn. (Z) not only encourages the
flight trajectory to be tighten up, but also drives the points
to be distributed evenly [23]. This would lead to more stable



flight speed, which is partly reflected in the smaller values
of the average acceleration. Both first-order and second-order
derivatives contribute to the overall smoothness. The smaller
average curvatures produced by Wyneom indicate we have
achieved our design goals.

(a): Test 1: with Rgnooth (b): Test 1: without Rgmooth

(e): Test 3: with Rgmooth

(f): Test 3: without Rgmooth

Fig. 6: (a) and (b): final trajectories of Wymeom and W Ogmoom
in Test scene 1. (c) and (d): final trajectories of the two models
in Test scene 2. (e) and (f): final trajectories of the two models
in Test scene 3.

B. Results for model generalization

In this work, we propose two practical designs for improv-
ing the DRL agent’s handling of environment changes: 1)
using shallow depth instead of deep depth as a part of agent’s
state; and 2) using unit vector towards destination (denoted as
vec) instead of the distance (denoted as dist) in agent’s state
and reward functions.

In order to test the effectiveness of our designs, we design
four DRL models based on: 1) deep depth + vec; 2) shallow
depth + vec; 3) deep depth + dist and 4) shallow depth + dist.
It should be noted that veé is used in both the state and reward
of our models. In models 3) and 4), both ve¢ terms are replaced
with dist. To simplify the analysis, smoothness reward is not
integrated into the models. For each of the combination, we
train the policy under the training environment to convergence
first, and then directly perform inferences in the three unseen
test environments described in the previous section. Note that

test scene TS1 has more crowded obstacles than the training
scene; test scene TS2 has a larger size; and test scene TS3 is
filled with objects that have not been seen in the training.

The four models are all trained successfully in the training
scene. When moving into the three testing environments, we
conducted 100 trials for each of the TSI, TS2 and TS3
environments.

To measure the performance of the trained policies in
the unseen testing environments, we design two evaluation
metrics: 1) success rate (SR), which is the percentage of the
trials where the UAV can successfully arrive at the destination;
and 2) capability of collision avoidance (CAC), which is
defined as the average length that the UAV can fly prior to
its first collision. The results are shown in Table [

Comparing with the other three models, shallow + vel
demonstrates a much stronger capability of finding the targets
in unseen environments. It also shows the best capability in
avoiding collisions. deep depth + dist, on the other hand, show
the worst performance in CAC.

From the above experiments, we can observe that both
shallow depth and unit vector are helpful for the learning
policy to be directly deployed in changed environments. Their
combination demonstrates the best generalization capability in
the experiments.

V. CONCLUSIONS

In this work, we propose a DRL-based collision avoidance
solution for UAVs to fly smoothly and stably. We also seek to
develop our system to have good generalization performance
to handle unseen environments. A number of novel designs are
made regarding the agent’s state, as well as its reward function.
The major innovation is a smoothness reward term, based on
the minimization of a combined first-order and second-order
derivatives. Experiments demonstrate this term can indeed lead
to smoother trajectories, as well as flights with stable speeds.

Our design for boosting model generalization is based on
shallow depth and unit vector towards target. While simple,
this combined setup reduces the input space and increases
system invariance, leading to greatly enhanced robustness.
Experimental results demonstrate the effectiveness of our over-
all design and individual components. To transplant proposed
solutions and deploy them into real UAVs is our ongoing
effort.
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