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Abstract—In this paper, we explore the capabilities of a number
of deep neural network models in generating whole-brain 3T-
like MR images from clinical 1.5T MRIs. The models include
a fully convolutional network (FCN) method and three state-
of-the-art super-resolution solutions, ESPCN [26], SRGAN [17]
and PRSR [7]. The FCN solution, U-Convert-Net, carries out
mapping of 1.5T-to-3T slices through a U-Net-like architecture,
with 3D neighborhood information integrated through a multi-
view ensemble. The pros and cons of the models, as well the
associated evaluation metrics, are measured with experiments
and discussed in depth. To the best of our knowledge, this study
is the first work to evaluate multiple deep learning solutions for
whole-brain MRI conversion, as well as the first attempt to utilize
FCN/U-Net-like structure for this purpose.

Index Terms—FCN, MRI, modality conversion, U-Net, U-
Convert-Net, GAN, SRGAN

I. INTRODUCTION

Magnetic resonance imaging (MRI) is widely used in neu-
roimaging and the popularity is due to its non-invasive nature,
high soft tissue contrast, as well as the availability of safe
intracellular contrast agents. Currently 1.5 tesla (T) short-bore
MRI is the standard technology for clinical use. However,
3T (and even 7T) MRI scanners are becoming increasingly
more desirable, as they can provide extremely clear and vivid
images. Comparing with 1.5T, 3T MR images have higher
signal-to-noise ratios (SNR) and higher contrast-to-noise ratios
(CNR) between gray and white matter. The latter make 3T
MRI a better choice for brain tissue segmentation, as well as
a generally preferred modality in neuroimaging studies.

While the availability of 3T MRI has increased significantly
over the past decade, the majority of clinical scanners across
the US are still 1.5T systems. Converting 1.5T images into 3T-
like images, if with great fidelity, would help physicians make
better informed diagnosis and treatment decisions. In addition,
historical 1.5T MR images in various ongoing longitudinal
studies can also be brought into a better use. One of such
examples is the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) project — 1.5T was the major MRI modality in ADNI
1, the first stage of the project, but the acquisition switched
to 3T alone in later stages (ADNI GO, 2 and 3). Converting
1.5T images into 3T-like counterparts may allow the datasets
generated in such studies to be delivered in a more uniform
form.

Establishing a nonlinear spatially-varying intensity mapping
between two images is a challenging task. The efforts to tackle
this problem can trace back to at least the Image Analogies
model [[12], which relies on a nonparametric texture model [9]]
to learn the mapping on a single pair of input-output images.
The emerge of the powerful deep learning paradigm in recent
years makes the task more viable. Generative adversarial net-
works (GAN) [[15], [17]], [34], [37]], [41]] and pixel-RNN/CNN
[7]] are among the models that have been applied for modality
conversion, producing impressive results.

The original GAN model by Goodfellow er al. [[11] was
designed to generate images that are similar to the training
samples. Several later solutions, including DualGAN [37],
CycleGAN [41] and DiscoGAN [16]], take the similar idea
to train image-to-image translation with unpaired natural im-
ages. The CycleGAN model has been adopted to synthesize
CT images from MRIs [34]. While flexible and with broad
applicability, this group of solutions reply on the distribution
of real samples instead of paired inputs/outputs, even if the
latter are available. Consequently, the results from this group
can be rather unstable and far from uniformly positive [41].
Some GANSs, including pix2pix [[15]] and PAN [31]], take paired
training samples to trade flexibility for stability.

With paired input/output samples, MR modality conversion
could be implemented as a special case of super-resolution,
where one or multiple low-resolution images are combined
to generate images with higher spatial resolution. Traditional
super-resolution solutions include reconstruction-based meth-
ods [25], [27], [30], [35]], and example-based methods [3],
(100, [14], 120, [24], [36[, [39]. Under the deep learning
framework, numerous new super-resolution solutions have
recently been developed, in both the computer vision [7],
[26] and medical image computing [2], [I[, [8]], [18[I, [28],
[40] communities. SRGAN [17]], a model designed to recover
the finer texture details even with large upscaling factors, is
commonly regarded as one of the state-of-the-art solutions.

Fully convolutional networks (FCN) proposed by Long et
al. [|19] was primarily designed for image segmentation, which
can also be regarded as a special type of modality mapping
— from gray-valued intensities to binary-valued labels. U-Net
[23]] and its variants [4]], [5], [29]], [32], [33]] follow the similar
idea of FCN and rely on skip connections to concatenate
features from the contracting (convolution) and expanding
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Fig. 1: The overall architecture of SRGAN for MRI conversion: generator and discriminator with corresponding kernel size
(k), number of feature maps (n) and stride (s) indicated for each convolutional layer.

(deconvolution) paths. In theory, an FCN with a proper setup
can potentially describe any intensity mapping between two
modalities. However, such capacity of FCN has yet been
explored for general-purpose modality conversion. It should be
noted that, Nie et al. [21]] use a convolutional network for MR
to CT conversion, but their network structure is not FCN/U-
Net equivalent, as no pooling, skip connections, contracting
and expanding components are utilized.

In this paper, we explore the capability of a number of
super-resolution (SR) and segmentation models in handling
modality conversion. More specifically, we adopt SR models
including ESPCN [26], SRGAN and PRSR [7], and modify
Chen’s segmentation model [5]], to convert 1.5T whole-brain
MR images into 3T. Experiments are conducted with ADNI
data. To the best of our knowledge, this study is the first
work to compare and evaluate multiple deep learning solutions,
based on various performance metrics, for whole-brain MRI
conversion.

II. MOTHOD

The MR conversion models to be analyzed in this study are
modified from SR and segmentation solutions, respectively. In
this section, we introduce them in detail.

A. Modified from Super-Resolution Solutions

SRGAN is designed to generate 4 xupscaled photo-realistic
natural images with highly perceptual quality. Focused on
recovering finer texture details in up-scaled images, SRGAN
adopts a perceptual loss function that consists of an adversarial

loss and a content loss. As a super-resolution solution, SRGAN
produces outputs that have different sizes from inputs. To suit
for our MRI conversion task, we remove one upsampling layer
to make the input/output of equal size.

As shown in Fig. [I] the modified SRGAN for MR conver-
sion model consists of two major components: generator and
discriminator. The generator part is a deep residual network
(ResNet) with skip-connections, generating 3T-like images
from 1.5T inputs. The goal of the generator is to be able
to produce 3T images so realistic that it would be able to
fool the discriminator. The discriminator, on the other hand,
is configured as a classification CNN and its goal is to be
trained as sharp as possible to distinguish fake 3T from real
3T images. With this setup, the generator can eventually learn
to create outputs that are highly similar to real 3T images.

ESPCN uses two convolutional layers to extract feature
maps from low resolution image and then applies a sub-pixel
convolution layer to transform these feature maps back to
an enlarged super resolution image. The sub-pixel layer is
designed to be very efficient, which reduces the computational
complexity of the model and enables the system to achieve
real-time super-resolution of 1080p videos on a single K2
GPU.

PRSR is a super resolution model build upon ResNet and
PixelCNNs (a probabilistic generative model) that is capable
of enlarging small input image to a wide range of plausible
high-resolution images with large amplification factors. Exper-
iments show that the transformed images obtain high rate of
perceptual evaluation by humans.
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Fig. 2: The overall architecture of Multi-view U-Convert-Net: (a)
U-Convert-Net and (b) Model overview.

B. Modified from FCN-based Segmentation Solution

As shown in Fig. 2] the segmentation-based model consists
of two major components. First, U-Convert-Net, a U-Net-like
network, is trained to convert two-dimensional (2D) slices
extracted from 1.5T MR volumes into slices of 3T MR images.
Second, the converted 3T slices from three different views
are fused together to generate the final 3T MR volumes with
enhanced structural details and intensity contrasts.

The main architecture of U-Convert-Net is modified from
U-Net [23]]. Similar to U-Net, our U-Convert-Net (shown
in Fig. fa)) is also comprised of encoding and decoding
paths. 1.5T MR slices are inputs and go through several
“convolution + pooling” layers to be encoded into high-
level latent features. These features will then be sent through
several “deconvolution/upsampling” layers to reconstruct the
target 3T MR images. Structural information lost during the
pooling procedure would be added back through “bridges”:
latent features in the encoded path are concatenated with the
corresponding feature maps from the decoding path.

U-Convert-Net is different from U-Net in several aspects.
The first major alternation is to the loss function. U-Net uses
cross-entropy as their loss, which is a reasonable choice to
seek for intensity-to-label mappings. For intensity-to-intensity
translation, mean-square-error (MSE) would be more appro-
priate, as any deviation from the target 3T image should be
penalized.

The second set of modifications are made in order to reduce
the training time and make the structure reusable for different
views, whose input image dimensions may be different. We
use padded convolution to maintain the same spatial dimension

of the data flow throughout the convolutional layers. This is
in contrast with U-Net, where the images are altered at input
to accommodate dimension decrement along convolutions. We
only keep one convolutional layer prior to each pooling layer
to reduce the number of parameters of the network. The size of
the filters is kept as 3 x 3. Third, to ease the training procedure,
explicit data augmentation as in U-Net, which would increase
training time, is replaced with dropout operations on several
deconvolution layers to prevent overfitting. Additionally, in
the last convolution layer, the transformed 2D images are
generated by applying only one 3 X 3 filter.

With the 2D images generated from individual slices, an
overall 3D image can be obtained by stacking these 2D image
slices back together. A limitation of such slice-based 3D trans-
formation is that the contextual information between slices is
overlooked and not taken into account to generate the overall
conversion. Our strategy to tackle this issue is to combine
the conversion results from three orthogonal views — sagittal,
coronal and axial. While not directly extracting 3D information
from sub-volumes, slices from these orthogonal views do
contain complementary information, enough to depict the 3D
neighborhood surrounding each voxel.

FCN/U-Net segmentation can also be carried out with 3D
convolutions [6]], but we believe our ‘“2D U-Convert-Net+
multi view” have several practical advantages, especially for
whole-brain neuroimage analyses.

C. Loss Functions and Evaluation Metrics

As mentioned in last section, the objective to be optimized
in our U-Convert-Net is the mean squared error (MSE) be-
tween the generated 3T images and ground truth. This is also
a very common setup in SR algorithms, as minimizing MSE
also maximizes the peak signal-to-noise ratio (PSNR), which
is a well-accepted measure used to evaluate and compare SR
algorithms [38§]]. Structural similarity index (SSIM) is another
widely used evaluation metric in SR studies. PSNR is good
at showing absolute errors, while SSIM focuses more on
structural resemblance which carry important information on
human’s visual scene.

However, minimizing MSE tends to produce blurry results
[22], [38]]. This is because the minimum of MSE would be
the average of all possible samples, which leads to blurring.
Identifying loss functions that can force FCN-like models to
produce sharp, realistic images, is still an open problem and
may have to be application-dependent.

GAN models are designed, to certain extent, to tackle this
issue. GANSs, including SRGAN, learn a loss that trains the
discriminator to be intelligent at identifying if the output image
is real or fake, while simultaneously train the generator to
minimize this loss. Blurry images will be rejected as they
do not look real. The perceptual loss adopted in SRGAN
consists of an adversarial loss and a content loss. Minimizing
the content loss would increase the similarity, perception-wise
instead of pixel-wise, between the generated images and the
target.



The enhanced conversion quality obtained in SRGAN,
however, is not reflected in the evaluations with traditional
metrics — SGRAN is outperformed by its MSE-based version
measured with PSNR. The authors of SRGAN had to resort
to a subjective metric called mean opinion score (MOS) to
demonstrate the improvements. In MOS, human raters are
called in to assign integral scores to assess the obtained results.

We are well aware of the above issues, and take them into
account in our experiment designs for MR conversion, as well
as the analysis of the results.

III. EXPERIMENTS
A. Data, Preprocessing, and Evaluation Metrics

The data used in this work were obtained from the ADNI
database [[13]]. Started in 2004, ADNI is currently in the stage
of ADNI 3, after the completion of ADNI 1, GO and 2.
The participants enrolled in late stages (GO/2/3) were scanned
using the 3T MRI scanning protocols. In ADNI 1, however,
subjects were scanned using either a 1.5T scanner, or both 1.5T
and 3T scanners. MR images acquired in the latter generates
a considerable number of matched 1.5T/3T pairs (in the sense
of same person in the same visit). We searched the ADNI
database for these cases, and downloaded all the 1.5T/3T pairs
acquired in the same visits (one pair each visit). To simplify
our network design, we chose the largest subset of the images
that have the same resolutions/sizes, which results in 157
distinct pairs of 1.5T/3T images, from 47 different subjects.

A series of pre-processing steps were then applied. Firstly,
each MRI pair was spatially aligned using SPM12. The skulls
were removed, and the image size was uniformed reduced to
(256 x 256 x 100) after removing a number of empty slices.
As the 3T images in ADNI GO/2/3 were all acquired along
the sagittal view, each 1.5T MR image was aligned with their
3T counterpart, and resampled into 2D slices along the same
axis. These 157 pairs of images are the training samples in this
study. In our experiments, we randomly chose 90% of subjects
(totally 141) for training, and the remaining one tenth (16) for
testing.

As mentioned in the previous section, the similarity between
the generated 3T images and ground truth are measured using
SSIM and PSNR. We also qualitatively look into the image
contrast at various areas, including the boundaries between
gray matter and white matter.

B. Results

All the experiments were conducted on an NVidia GTX
1080 GPU (2560 CUDA Cores, 8 GB GDDR5X Memory)
using TensorFlow package. We design a number of experi-
ments to evaluate our model, as well as the competing solu-
tions. The tests are on running-time and conversion accuracy,
respectively.

Experimental design Through early experiments, we ob-
served that the four models had rather different performance in
terms of running time. PRSR was very slow, and would take
a prohibitively long time to process the original 256 x 256
sized images. Therefore, we design the first experiment to

specifically evaluate the time performance of the models. In
order to ensure PRSR to run through, we reduce the image
size to 96 x 96 in this experiment. The results will be reported
shortly. The other three models can take the 256 x 256 sized
images, though still with rather different GPU times. The
second experiment is designed to evaluate the accuracies of
modality conversion of the models. Training and testing are
conducted on the original image pairs, with PRSR being
excluded for comparison. The third experiment is to evaluate
the effectiveness of multi-view ensemble, when integrated on
top of U-Convert-Net.

The training details of the first two experiments, including
image sizes, learning rates, training time and testing time, are
listed in Table 1. In experiment 3, the same settings have been
used for the U-Convert-Nets on coronal and axial views. All
the experiments were run over 40 epochs.

TABLE I: Training details of the experiments: image sizes, learning
rates (Ir), batch sizes, training time (seconds per epoch) and testing
time (seconds per image).

image size PRSR | SRGAN | ESPCN | U-Convert-Net
Ir 0.004 0.001 0.002 0.001
expl batch 4 4 4 4
96 %96 training | 1666 1998 92 203
testing 1921 0.005 0.005 0.005
Ir - 0.001 0.001 0.001
exp2 batch - 1 4 4
256x256 traing - 8979 118 313
testing - 0.005 0.005 0.005

Running time comparison The results are shown in Ta-
ble m For the tests on 96 x 96 sized images, ESPCN is
the fastest, followed by U-Convert-Net, PRSR and SRGAN.
PRSR takes much longer time in testing, as pixels need to
be generated one-by-one in a serial order. In the tests for the
full-sized images (experiment 2), ESPCN is still the fastest.
This is due to the efficient design in ESPCN that specifically
shortcuts the deconvolution operations. Our U-Convert-Net is
slower than ESPCN, but is 28 times faster than SRGAN. This
can be partially explained by the fact that SRGAN employs
ResNet, with much more layers than U-Convert-Net.

TABLE II: System performance measured with SSIM and PSNR.

..... ESPCN | SRGAN | U-Convert-Net | U-Convert-Net+3Vs
SSIM 0.85 0.94 0.93 0.94
PSNR 21.8 25.1 26.5 28.4

Conversion Accuracy by Traditional Metrics The quan-
titative evaluations of the solutions, measured with SSIM
and PSNR, is shown in Table All the measurements
are conducted on the 2D slices extracted from the sagittal
view. It can be observed that U-Convert-Net achieves better
performance than ESPCN and SRGAN in terms of PSNR. For
SSIM, U-Convert-Net is better than ESPCN and is comparable
with SRGAN but with a much shorter training time. The ef-
fectiveness of multi-view ensemble is validated in experiment
3: in addition to the original sagittal-view slices/results, we
conduct the network constructions and trainings for the slices
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along coronal and axial views. The 3T conversion volumes of
the three views are averaged to produce the final output of
our multi-view U-Convert-Net. As shown in the last column
of Table [II} both SSIM and PSNR are improved through the
view ensemble.

Actual Contrast Enhancements A major advantage of 3T
MRIs over 1.5T is the enhanced contrasts along the boundaries
of gray and white matter. To get a qualitative comparison,
we also look into the 3T images produced by the models.
Fig. 3] shows the zoom-in version of a typical slice. Obviously
ESPCN’s high speed comes with a cost — its 3T result is
over smoothed with missing details. Results from SRGAN,
U-Convert-Net and its multi-view version are all consistent
with the ground-truth 3T image.

The comparison between multi-view U-Convert-Net and
SRGAN reveals the deficiencies of the traditional metrics.
While the former has a “superior” performance measured by
PSNR and SSIM, SRGAN obviously generates slices that have
higher contrasts between gray and white matter, as shown in
Fig. 3] This observation is consistent with the experiments
conducted in SRGAN paper [17], where the proposed method
(SRGAN) gets lower PSNR and SSIM measures than its MSE
version, but performs better in the subjective metric MOS,
judged by human raters.

All in all, our observations can be summarized as: 1)
SRGAN can produce higher contrasts MR images with the
help of its discriminator; 2) the multi-view U-Convert-Net
framework produces results with higher PSNR and SSIM
measures; 3) multi-view U-Convert-Net framework can be
trained much faster than SRGAN.

IV. CONCLUSIONS

In this work, we study four solutions for MRI modality
conversion. The models are compared and evaluated with
various metrics. The FCN-based Multi-view U-Convert-Net
is fast to train and it achieves the better performance in

1.5 to 3T MRI mapping, measured with SSIM and PSNR.
SRGAN, on the other hand, produces more realistic 3T-like
images with enhanced contrasts. The take-home messages
could be: 1) GAN models have inherent mechanism for image
conversions, including that between MRIs; 2) FCNs equipped
with other loss functions, including perception-based losses,
are also worth explorations for faster solutions.
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