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Abstract—Intelligent and complex human motion analysis can
help design the next generation IoT and AR/VR systems for
automated human performance assessment. Such an automated
system can help advocate the interpretability and translatability
of complex human motions, intelligent motion feedback, and
fine-grained motion skill assessment to design next-generation
interactive human-machine teaming systems. Motivated by this,
we design a wearable sensing framework for assessing the
players’ performance and consider a live badminton game as
our use case. Generally, the players on the field try to im-
prove their performance by focusing on fast and synchronous
coordination of their limbs’ reflex actions to have the ideal
body postures to perform the desired shot. Learning the minute
dissimilarities and distinctive traits from each limb of the players
simultaneously can help assess the players’ performance and
specific skillsets during a game. This paper proposes a multi-
task learning framework, PerMTL to learn the shared features
from each player’s limb. The PerMTL comprises a task-specific
regressor output layer that helps to determine the dissimilarities
and distinctive traits between the player’s limbs for collective
inference in a body sensor network (BSN) environment. We eval-
uate the PerMTL framework using publicly available Badminton
Activity Recognition (BAR) and Daily and Sports Activities
(DSA) datasets. Empirical results indicate that PerMTL achieves
R2 Score of ≈ 82% in predicting the players’ performance.

Index Terms—Multi-task Learning, Sports Analytics, Activity
Recognition, Error Estimation, Performance Assessment

I. INTRODUCTION

Wearable smart devices are becoming an integral part of
our daily activities. Such wearable devices are widely used in
developing applications in smart homes [1], gait analysis [2],
and sports [3]. The fusion of various sensors such as motion,
temperature and heart rate sensors provide ample opportunities
to discover the activity execution pattern and enable us to
investigate the prospects for future improvement. Given the
scenario, sports analytics is no different in benefiting from
the commercial adaptation of smart wearables during the
practice session accumulating player statistics, player profiling
and performance improvement [4]. Nonetheless, commercial
device’s technical development mainly focuses on gathering
player statistics and provides less explorative analysis and
feedback to the players. In our research, we work towards
filling this gap.

Success in competitive sports depends on several factors,
such as a player’s physical fitness, technical skillset, and the

(a) Professional Player (b) Novice Player

Fig. 1: Magnitude scalograms of dominant limbs for Smash
Overhead Forehand Shot

adaptation of strategies at various crucial moments. This paper
focuses on developing a framework that supports technical
skill improvement in the Badminton sport. Badminton is a
racquet game played in singles and doubles format across the
globe and a part of Olympic games. In badminton, players
need to perform acrobatic activities that highly involve syn-
chronous hands and legs maneuvering in the ground and the
air. Effective and efficient maneuvering skill requires hours
of training and coaching. The difference in maneuvering skill
significantly affects the player’s performance.

The subtle difference in agility and skill can be captured
and assessed to provide valuable feedback to the compar-
atively less skilled player (trainee/novice). We hypothesize
that each player’s limb is unique and distinctive. Estimating
such distinctive traits will improve the players’ performance
irrespective of factors (height, dominance limb, weight, etc.)
in the game. To support our proposition, Figures 1a and 1b
demonstrate the magnitude of scalograms corresponding to
the Smash overhead forehand shots from the professional and
novice players, respectively. Magnitude values were calculated
from the 3-axis accelerometer, magnetometer and gyroscope
values. The scalogram suggests that the professional player
performs a defined repetitive pattern that might contribute
to low variations and sparse data points. Furthermore, the
scalogram from the professional player in Fig. 1a also reveals
a steady signal power at the same frequency band throughout
the time segment to complement this inference. Whereas,
in Fig. 1b, such definitive repetitive patterns are not visible
in the case of the novice player. Fewer repetitive patterns
suggest a higher error occurrence in the novice player than
the professional player. Figure 1a and 1b suggests that the
IMU data can capture the differences between the professional
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player and the novice player proficiency.
Fig. 2a depicts the broad overview of the PerMTL frame-

work that aims to determine the limb maneuvering quality.
Towards achieving the goal, it processes the collected IMU
data from four body positions where each IMU sensor is
integrated with accelerometry, gyroscope and magnetometer.
In addition, the error propagation module helps us to measure
the players’ minute dissimilarities and distinctive traits within
the framework. Furthermore, the inference module provides a
collective performance assessment and resource consumption
profiling of the framework. The motivation of profiling of the
PerMTL framework is to exemplify the required inference time
compared to the state-of-the-art proposed algorithms.

Key contributions of the paper are summarized as follows:
• Generalized Multi-task Learning Framework- We pos-

tulate a novel approach to learning by employing a multi-
task learning, PerMTL framework to learn the shared fea-
tures from each limb of the players through shared layers.
It is followed by task-specific output regression layers,
where the difference between each limb is retained.

• Evaluation- We evaluate PerMTL framework using pub-
licly available Badminton Activity Recognition (BAR)
and Daily and Sports Activities (DSA) datasets (com-
prises of activities of daily living (ADLs), instrumental
activities of daily living (IADLs) and sports activities).
We introduce a cross-person validation strategy to assess
the scalability of the PerMTL framework. We observe that
PerMTL achieves R2 Score of ≈ 82% for predicting the
players’ performance.

• Profiling- We benchmark the PerMTL framework and re-
port the hardware resource consumption (time) of the Py-
Torch operations. We propose layer-wise time complexity
profiling of the PerMTL framework to demonstrate the
reliability and robustness for the real-time inference.

II. RELATED WORK

This section summarises the related work applied method-
ologies into three categories: IoT wearables in sports analytics,
multi-task learning for activity recognition and performance
assessment. We mainly focus on the aspect of our approach
that is different from the existing approaches.

IoT wearables are making swift progress in developing var-
ious application and research works in different sports such as
tennis [5], soccer [3], badminton [6], etc. This literature study
mainly discusses the research works focusing on Badminton
as discussing other works is beyond this paper’s scope. In [6],
the authors attempted to classify nine badminton shots and the
associated body movements by leveraging Convolution Neural
Networks (CNNs). The authors placed sensors on three body
positions(the wrist, bottom of the racket’s grip and the upper
arm) and collected badminton data from two right-handed
players in the data collection. However, the work shortfall
focuses on recognizing a limited number of badminton strokes
using only upper limb movements data. In contrast, the lower
limb movements data did not consider in their study. Prior
additional research works mainly focused on analyzing the

smash shot [7], [8], where the authors proposed approaches
to measure the acceleration and the movement of the upper
and lower arm of the player. All these literature works focus
on classifying and recognizing various shots, and the feedback
mechanism to the beginner-level player is still missing. We aim
to extend the existing research direction from the classification
task to develop a feedback-providing mechanism so that any
entry-level player can be informed of the mistakes, make the
correction, and improve their performance.

Multi-task learning [9] is an inductive transfer learning
methodology that accomplishes to increases the generaliza-
tion performance of a proposed approach by exploiting the
commonalities and differences among various tasks. In [10]
leverages a multi-task long short-term memory (LSTM) model
to accomplish two tasks - accurately classify the activity types
and estimate the intensity of each activity. Both tasks play
a substantial role in healthcare applications, such as fitness
tracking and patient monitoring. Furthermore, in [11], the
authors investigated recognizing collective ADLs and sports
activities using a single model. The authors experimented
with several state-of-the-art approaches and found that multi-
task variants result in increased performance. Further, the
authors collected the C-Sports dataset, which comprised eleven
different sports with five different activities and used the
evaluation dataset. In our proposed work, we aim to borrow
the benefit of using multi-task learning to model to formulate
an end to end data-driven pipeline to estimate the difference
between the distinctive traits of the players’ limbs.

Performance Assessment is an essential aspect of activity
detection for long-term monitoring and training purposes.
However, such assessments are often carried out by coaches
who depend on their previous experiences, and such judgments
are prone to subjectivity. AAC [12] considered the wearables
that perform mutually to identify not only activities but
also to evaluate them qualitatively using the data of several
sensor nodes attached to the body. It also provide detailed
feedback for the improvement of the execution. AAC focuses
on the online assessment of periodic human activity within a
wireless body area network. To the best of our knowledge,
not too many literary works have concentrated on the players’
performance assessment. Similar to [13], PerMTL also uses
multiple body-worn IMU sensors focused on assessing sports
activity. However, it differs in that the intuitive assessment
is accomplished through a novel multi-tasking approach that
operates end-to-end.

III. PRELIMINARY STATE-OF-THE-ART STUDY

In the state-of-the art studies [14], [15], propose an instance-
based template matching scoring algorithm, a distance-based
error learning (DBEL). It enables to capture and detect the
minute discrepancies and distinctive traits of the lower limbs
(both legs) between the professional players and other play-
ers from different levels of expertise. The objective was to
estimate the players’ performance using a body sensor net-
work environment. The studies denote upper limbs movements
as stroke and lower limbs as stance. Error is defined as the
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(a) Overview of PerMTL Framework (b) Overall Architecture: (A) Multi-task learning module: An end-to-end data-driven error
estimation pipeline to study and capture the distinctive traits between each player’s limb
simultaneously. (B) Distance-based error learning (DBEL) module to determine the closest
k number of data instance (instance-based matching learning) approach to learn the ideal body
posture from other players w.r.t the professional players.

minute discrepancies between the stance & stroke performed
by the professional w.r.t the other players. In a badminton
shot, a professional player’s data samples might incur some
data variance which is trivial to understand. Furthermore, to
quantify the inconsistency and variations in the movements of
the players’ limbs w.r.t the professional players, they computed
the Euclidean distance of lower limb samples between the
professional and other players. However, a few state-of-the-
art preliminary studies’ limitations motivated us to develop
a multi-task learning framework that can overcome the chal-
lenges. Furthermore, we highlighted a few of the challenges
of the preliminary studies along with relevant solutions below:
A. Challenges

• Computation Resources Requirement: One of the major
challenges of the preliminary studies is computation
resources requirement. To showcase the challenges, we
perform components-wise time profiling of the scoring
framework, DBEL module1 highlighted in Table I. We
notice that the components B(i) and B(ii) are the per-
formance bottleneck of the DBEL overall pipeline as it
took ≈ 27 minutes and consumed 60% of 64 GB RAM
of memory in total to run an experiment. Due to high
computation resources requirements, deploying the DBEL
module in resource-constrained devices is not feasible.

• Technical Limitations: DBEL framework lacks in gener-
alizability and scalability characteristics because of the
reliance on the professional datasets’. It also employs
handcrafted error metrics (MSE, RMSE, MdAE, etc.)
to compute the players’ error. Moreover, the handcrafted
error calculation triggers a bottleneck effect for the real-
time deployment environment due to the high computa-
tional cost.

• Limited Data at Inference Time: Another challenge
is the limited influx of data at inference time of the

1https://github.com/indrajeetghosh/DeCoach

TABLE I: Component-wise time complexity profiling of
the DBEL module

Components Time

B(i) ≈ 13.78 minutes
B(ii) ≈ 7.5 minutes
B(iii) ≈ 4.2 minutes
B(iv) ≈ 1.58 minutes
B (Total) ≈ 27 minutes

DBEL framework because it only considers the lower
limb sensory data to infer and estimate the players’
performance in the game.

B. Solution

• BSN pipeline for collective data inference: We postu-
late that multiple incoming sensory data with collective
inference will help to build a robust and generalized error
estimation framework.

• Deep Learning (DL) based Error Estimation Propaga-
tion: We believe that an end-to-end deep learning archi-
tecture might help to mitigate and tackle the technical
limitations. DL architectures have a higher convergence
rate than any shallow learning algorithms due to their
ability to learn the feature representation in the latent
space. Therefore, Multi-task Learning (MTL) architecture
gives an advantage where the distinctive traits in an inflow
of multiple sources sensory data.

• Limb-wise error estimation: Lastly, to mitigate the mod-
ularity challenge, we adopt a limb-wise error estimation
module, where we compute the error and capture the
distinctive traits for each limb of the players, respectively.
Such modularity helps to estimate and predict the most-
error prone limb of the players.

IV. SYSTEM DESIGN

We discusses the problem formulation and proposed frame-
work adopted to tackle the above-discussed challenges.
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A. Problem Formulation

Multi-task learning is an inductive transfer learning ap-
proach designed to learn multiple tasks simultaneously while
exploring the feature representations corresponding to the
different task similarities and dissimilarities. Given a dataset,
D consists of N denote the number of samples, (xN

i , yNi )Ni=1

where xi and yi represent the data sample and corresponding
label, respectively. The dataset, D, can be considered a group
of n sub-datasets without overlapping them, D1, ..., Dn, where
the sub-datasets are leveraged to learn different tasks, T1, ...Tn

respectively. Equation 1, is the conventional mathematical for-
mulation of MTL algorithm [16], [17] where zNi corresponds
to the weight vector (regression parameters) for the N th task
where it maps the xN sample to corresponding yN label and
Z denote concatenating all the weight vectors [z1, z2, ..., zn].
Regularizer Reg(Z) denotes the regularisation of constraints
for Z w.r.t the prior knowledge of the data and different
hypotheses of the relationship among tasks. Additionally, β
is the regularization parameter that stabilizes and balances
between the regularizer Reg(Z) and loss function (first part)
shown in equation 1.

min
z=z1,z2..zn

N∑
i=1

L(xN
i , yNi , zNi ) + βReg(Z) (1)

We aim to measure the errors from each limb of the
participants in a collective inference environment. Therefore,
we formulate the error measurements at different limbs as
the different tasks of the proposed multi-task learning frame-
work. To accomplish our fundamental goal, we first classify
the strokes and corresponding stances by adopting the same
classification module reported in the papers [14]. Secondly,
we leveraged the computed handcrafted error metrics matrix
employed in the state-of-the-art; DeCoach [14] work obtained
from the DBEL module shown in figure 2b.
B. Proposed Architecture

The overall architecture is depicted in Figure 2b. The ar-
chitecture is built upon two majors components: MTL module
and error propagation module. We describe both components
below in detail:

1) Multi-task Learning Module: The multi-task learning
module consists of shared and dedicated layers. Shared layers
consists of CNNs layers, max-pooling layers, batch normal-
ization and fully connected layers shared, and responsible for
learning the common feature representation among different
tasks. We experimented with one-dimensional CNNs layers
followed by the max-pooling and batch normalization layers.
The extracted features are further processed by the dedicated
layers, where the dedicated layers serve as a task-specific
regressor unit. We employ four dedicated layers to learn errors
from four body sensor position. Initially, the preprocessed limb
data is fed through the share layers and the error measurement
module. Then, the final feature representation from the shared
layer is forwarded and processed by corresponding dedicated
layers, which are further processed with the error measurement
module. Only the shared layers are updated simultaneously

during the training, whereas each task-specific output layer
updates independently.

EM =
n∑

i=1,j=1

[En
H , En

P , E
n
RL, E

n
LL] (2)

Equation 2, EM represents the error matrix obtained by
Algorithm 1 for each limb of the participant, where EH , EP ,
ERL, ELL corresponds to the sum of handcrafted error metrics
for Hand, Palm, Left Leg and Right Leg, respectively and
where n denotes to number of computed error metrics.

Algorithm 1: Distance-based error learning (DBEL)
module, where the PX and Q

X
refers to the pro-

fessional’s and participant’s windowed data for each
limb respectively whereas Py and Q

y
refers to the

professional’s and participant’s activity labels of each
limb data respectively

INPUT: Acquire data from each limb of PX and QX

OUTPUT: Handcrafted error matrix for each limb
1: for each label ∈ Py ∩ Q

y

2: Extract data: PX and Q
X

3: Compute euclidean distance← Sample K (25)
instances from (PX and Q

X
∈ [label = (Py ∩ Qy)])

4: PX−avg ← Average of k closest sample instances
5: Errorlimb ← append [Compute Error(QX , PX−avg)]
6: end for
7: return Errorlimb

2) Error Propagation in MTL Module: The phenomenon
of multi-task learning is to learn the feature representation
of the tasks simultaneously and predict or classify the tasks
accordingly. We leverage the computed handcrafted error
scores from the DBEL module as ground truth for the MTL
module show in Equation 2. Algorithm 2 represents the multi-
task error learning module.

Equation 3 denotes the optimization of regressor output
function for each limb, where subscript limb corresponds to
Hand, Palm, Left and Right Legs, where N represent the
number of data instances. The LogCosh loss is calculated
independently for each limb. The logCosh loss2 is similar to
the mean squared error (MSE), but the difference is that it
does not get affected when occasionally inaccurate prediction.
The objective of the loss function is to minimize the Loss for
each limb of the players shown in equation 3 where Xactual

and Xpredicted are values obtained from the DBEL and MTL
modules, respectively.

LLimb =
1

N

N∑
i=1

log(cosh(Xactual
i −Xpredicted

i )) (3)

V. EXPERIMENTATION PIPELINE

The experiments were conducted on a Linux server. The
server housed an Intel i7-6850K CPU, 4x NVIDIA GeForce
GTX 1080Ti GPUs and 64 GB RAM. All the codes for

2https://github.com/tuantle/regression-losses-pytorch
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Algorithm 2: Multi-task learning (MTL) module
where shared weights = W, learning rate = lr, number
of epochs = E, update weight = ∆W

INPUT: QX and Errorlimb matrix
OUTPUT: EH , EP , ERL, ELL represent limb-wise error
1 Initialize the MTL pipeline
2: for epoch = 1 to E, total epochs do:
# Forward Propogation

3: for each limb:
4: EH , EP , ERL, ELL = LLimb

# Backward Propogation
5: ∆W= lr* ∂LEH

∂W
, lr* ∂LEP

∂W
, lr* ∂LERL

∂W
& lr* ∂LELL

∂W
6: end for
7: Until reach the number of epochs E
8: return EH , EP , ERL, ELL

data preprocessing and deep learning mechanisms were imple-
mented with python. Especially for deep learning tasks were
implemented using PyTorch libraries.
A. BAR Dataset Description

The BAR dataset [14] was collected to studies the partici-
pants’ performance w.r.t the professional player and also study
the relationship between the limbs (hand, palm and both legs).
The dataset acquired from a population of 11 participants (8
males and 3 females, average age: 26 years) collected 30
iterations of each of the 12 strokes. The BAR dataset was
collected in two different scenarios: controlled setting (where
the participants were selected based on their expertise and
collected in an indoor sports premises) and uncontrolled
setting (where the participants were randomly selected and
collected in an open playground). They employed four Shim-
mer3 IMU Unit wearable devices. Each IMU sensor was
equipped with a three-axis low noise accelerometer [±2g],
wide range/high noise accelerometer [upto ±16g], gyroscope,
and magnetometer sensors. They placed the four devices on the
participant’s dominant wrist, dominant palm, left leg and right
leg to capture the movements for each stroke. The data were
collected based on the participants’ expertise performance in
the game, which is listed in tables II & III. They recorded
the data collection session using an action camera to validate
the activity labelling. The recorded videos of the sessions
were used as the ground truth to assign the labels to the
activities. The dataset consists of two labels: 1) Activity Label,
2) Score Label for each stroke played. The score varies from
[0 to 4] depending on how well the participant played the
shot [14]. Further, two annotators were assigned to annotate
the BAR dataset with domain knowledge and experience in the
badminton sports. The first annotator assigned the labels, and
then it was cross-validated by the second annotator.
B. Data Preprocessing

This study considers the raw signals acquired from the
accelerometer, gyroscope, and magnetometer as input features
collected from the body-worn IMU sensor network. The raw
data is venerable to noise, such as motion artifacts. So, the
raw data acquired were preprocessed using a median filter
to eliminate the data’s noise. Further, we normalized (min-
max scaler) 48 features for the BAR dataset. The 48 features

comprise three-axis of low noise & wide range accelerometer,
gyroscope, and magnetometer sensors data. Due to the low
measurement range of the low noise accelerometer sensor,
most of the signals were clipped due to high acceleration
(more than ±2g) from jerks and swift shots. Hence, such a
phenomenon encouraged us to employ the wide/high range
accelerometer raw signals, which enable us to capture those
jerk and swift shots in nature. Next, we employed the sliding
windowing technique for the raw features. It is vastly used in
sensor-based human activity recognition problems among the
signal processing techniques and extensively removes the mo-
tion or device artifacts from the signal dataset. We employed
a sliding windowing with 50% overlap with a window size of
0.125 sec at a sampling rate of 512Hz and 25 Hz for the BAR
and DSA datasets. We employed the majority voting for data
labelling for each window segment to select the most activity
labels that occurred within each window segment. The overlap-
defined windows technique is better for extracting temporal
patterns for micro-activities than the activity and event-defined
windows [18]. Lastly, most badminton strokes are a composite
of the jerk and swift actions.

MSE =
1

N

N∑
i=1

(Xactual value
i −Xpredicted value

i )2 (4)

R2 Score = 1−
N∑
i=1

(Xactual value
i −Xpredicted value

i )2

(Xactual value
i − mean(Xactual value

i ))2

(5)
C. Evaluation Strategy and Setup

This section highlights the evaluation strategy and setup
utilized to determine the overall performance of the PerMTL
framework. We computed two evaluation metrics: mean
squared error (MSE) and R2 score as shown in equations 4
and 5, respectively. Moreover, the DBEL module, we have re-
designed each module by utilizing the exact hyperparameters
used in the studies [14]. The motivation behind employing
the same hyper-parameters is to maintain coupled experiment
pipeline throughout the study. We employ a 60-20-20% dataset
split for training, validation and testing sets. The validation set
was used to fine-tune the hyperparameters of the MTL pipeline,
which is shown in table IV. The validation and test datasets
were not utilized during the training phase.

VI. RESULTS AND DISCUSSION

This section discusses and highlights the various analysis
performed using the BAR dataset. Furthermore, the BAR
dataset is collected in controlled and uncontrolled environment
settings, as discussed above. Including a dataset collected
in an uncontrolled environment introduces real-world hetero-
geneities such as stiff movements due to uneven playground,
wind, lack of inattentiveness, etc., and contrasts the proposed
framework’s performance in the controlled environment set-
ting. Furthermore, the dataset will help us to demonstrate
the robustness of the PerMTL by overcoming the above chal-
lenges. Lastly, by employing the uncontrolled setting dataset,
we would like to predict players’ performance in the game
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TABLE II: Badminton participants detail
collected in a controlled setting (LH and RH
represents left-hand and right-hand, respec-
tively)

Participant Gender Expertise Dominance Limb

PP-1 Male Professional Player LH
PP-2 Male Professional Player RH
IP Male Intermediate Player RH
NP Male Novice Player RH

TABLE III: Badminton partic-
ipants detail collected in an
uncontrolled setting (RH rep-
resents right-hand)

Participant Gender Dominance Limb

P-1 Male RH
P-2 Female RH
P-3 Male RH
P-4 Female RH
P-5 Female RH
P-6 Male RH
P-7 Male RH

TABLE IV: Hyperparameters of MTL module

Hyper-parameters Values
No. of maximum convolution layers 3
No. of filters in convolution layers 256, 196, 128
Convolution filter dimension 5x1,5x1,5x1
No. of maximum fully connected layers 2
No. of neurons in fully connected layers 32
Batch size 256
Max number of epochs 64

and demonstrate that the proposed framework can successfully
predict the players’ proficiency and cross-validate the players’
performance based on the handcrafted scores reported in
the [14]. Before proceeding, we employed convolution neural
network (CNNs) layers as our shared layers to learn the
feature representation of the raw data from each participant’s
limb. Due to the shift-invariant property, we employed CNNs
layers to learn deep intricate and meaningful features from
the shared feature space. We also listed the hyper-parameters
employed for the MTL pipeline in Table IV. The following
segments below exemplify and enumerate the scalability and
generalizability characteristics of the PerMTL framework.

Moving forward, Fig. 3(a-c) shows the errors and losses
obtained from each limb of the three participants (PP-2, IP and
NP) collected in a controlled setting, which was examined w.r.t
the PP-1. The loss graphs show that the network successfully
learned each participant’s limb’s discrepancies and unique
traits (style, speed, definitive and repetitive patterns, limbs
movements, etc. ). Furthermore, we noticed that the loss values
reduce with each iteration of the experiment, which specifies
that the network is trying to learn the feature representation of
the limb data of the player. Finally, figures 5(a-g) shows the
errors obtained from each limb of the seven players (P-1 - P-7)
collected in an uncontrolled setting, which was examined w.r.t
the PP-2. We plotted the probability density function (pdf )
plots to exhibit the error values obtained. Moreover, the y-axis
corresponds to the normalized frequency (probability of error
occurrence) on the scale of 0-1. The x-axis corresponds to
the error scores; the higher the error scores, the pdf plot will
be closer to 1 and vice versa. Moreover, the higher overlap
between pdf plots denotes higher synchronous occurring of
errors between the limbs.

To exemplify the proposed framework’s robustness and
adaptability, we introduce cross-person validation strategy,
where we consider another professional player, PP-2 as the
reference player similarly shown in the state-of-the-art pre-
liminary [14] work. We performed the experiments with the
players collected in an uncontrolled environment setting w.r.t
the PP-2 shown in Figs. 4(a-c). The motivation is to showcase
that the PerMTL successfully learned the distinctive traits
irrespective of the dominant limbs where we experimented
with both left-handed and right-handed dominant players. We
determined that P-3 & P-6 and P-2 & P-4 are the best players
among other male and female players, respectively. We noticed
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Fig. 3: (a-c): Error and loss plots for all the players w.r.t. the
PP-1, where NF = Normalized Frequency
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Fig. 4: (a-c): Error plots of the players w.r.t. the PP-2

that the probability of an error occurring pdf plots is low
compared to the other players. To bolster our propositions, the
error plots shown in Figs. 5 and MSE and R2 scores shown
in Table VII, endorse and contemplate the similar trends.
Moreover, we can also determine that for the P-2, P-3, P-4
and P-6, the error pdf plot has higher overlapping (proba-
bility of error occurrence), which determines that the limbs’
movements were similar synchronous. It is because, for good
players, the movements of the limbs are coherent and highly
coordinated while playing badminton shots. Furthermore, we
used the recorded videos of each data collection session as
the ground truth and manually validated our conclusions and
findings. Lastly, we are confident that the PerMTL framework
can learn the micro-activities discrepancies and errors among
the limbs and can be used to determine the players’ proficiency
irrespective of the real-world heterogeneities and challenges.

Next, we examined an intrigue phenomena, Figures 3(c)
and 4(c), where each experiment examined w.r.t the PP-1
and PP-2, respectively. The study shows that the PP-1 and
PP-2 have similar trends in both experiments. To strengthen
our proposition, Figs. 3, PP-2 has the highest vulnerability
probability of receiving a low error score for the left leg,
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TABLE V: Mean Squared Error and R-Squared Score of the
players w.r.t the PP-2

Players Sensor Position MSE R2 Score

PP-1

Hand 0.0057 0.5580
Palm 0.0064 0.6266

Right Leg 0.0038 0.6952
Left Leg 0.0033 0.4786

IP

Hand 0.0011 0.7570
Palm 0.0021 0.7131

Right Leg 0.0035 0.8189
Left Leg 0.0025 0.7609

NP

Hand 0.0030 0.4709
Palm 0.0042 0.4358

Right Leg 0.0034 0.5265
Left Leg 0.0027 0.4598

TABLE VI: Mean Squared Error and R-Squared Score of
the players w.r.t the PP-1

Players Sensor Position MSE R2 Score

PP-2

Hand 0.0038 0.5979
Palm 0.0020 0.5343

Right Leg 0.0054 0.5775
Left Leg 0.0050 0.4924

IP

Hand 0.0049 0.5582
Palm 0.0032 0.4924

Right Leg 0.0038 0.4378
Left Leg 0.0041 0.2617

NP

Hand 0.0069 0.3381
Palm 0.0058 0.2938

Right Leg 0.0054 0.3689
Left Leg 0.0050 0.3839
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Fig. 5: (a-g): Error plots all the players w.r.t. the PP-2, where NF = Normalized Frequency

whereas palm has the low vulnerability probability of receiving
a high error score. Compared to, in Figure 4(c), PP-1 has
the highest vulnerability probability of receiving a low error
score for the left leg, whereas palm has the low vulnerability
probability of receiving a high error score. To bolster our
discussion, we computed MSE and R2 scores shown in
Tables V and VI, and undoubtedly we examined similar trends
on the MSE and R2 scores. We believe that such phenomena
are because the PP-1 & PP-2 are right and left-handed players.
The style, swing, posture and muscle exertion are changed w.r.t
the players’ dominant limbs. We are assertive that PerMTL
framework can successfully learn the minute and distinctive
traits of the players irrespective of the dominant limb, and also
strengthens the generalizability and adaptability characteristics
of the PerMTL framework.

We benchmark the PerMTL and highlight the hardware
(time) resource consumption shown in Table VIII. The mo-
tivation is to identify and showcase any performance bot-
tlenecks due to any PyTorch operations. Another motivation
is to mitigate the high computational resources challenge
faced in the DBEL module. In Table I, B(total), shows the
total time consumed for an experiment. Comparatively, in
Table VIII, A (total), shows the total time consumed from CPU
and Cuda (GPU) processors took 99.204 ms and 88.825 ms,
respectively. Furthermore, the execution time of the over-
all MTL pipeline is 3.24 mins with total trainable parameters
511720, which is comparatively very less than the DBEL
module. We are assertive that the inference time drastically
reduced the computational complexity and encourages us to
deploy the inference module on edge devices with limited
memory usage for real-time inference.

A. Comparison with Baseline

To better demonstrate the efficacy of our proposed approach,
we examine a public dataset to showcase how well the
proposed algorithm scales to different scenario heterogeneities.

TABLE VII: Mean Squared Error and R-Squared Score for
each player w.r.t the PP-2

Players Sensor Position MSE R2 Score

P-1

Hand 0.0296 0.4316
Palm 0.0321 0.3887

Right Leg 0.1021 0.3114
Left Leg 0.0934 0.3499

P-2

Hand 0.0181 0.7120
Palm 0.0099 0.7286

Right Leg 0.0128 0.7341
Left Leg 0.0198 0.6896

P-3

Hand 0.0242 0.7545
Palm 0.0368 0.7722

Right Leg 0.0612 0.8056
Left Leg 0.0199 0.7557

P-4

Hand 0.0271 0.6792
Palm 0.0106 0.6533

Right Leg 0.0335 0.6890
Left Leg 0.0183 0.7153

P-5

Hand 0.0364 0.5270
Palm 0.0172 0.5344

Right Leg 0.0216 0.4856
Left Leg 0.0191 0.4567

P-6

Hand 0.0081 0.7120
Palm 0.0095 0.7286

Right Leg 0.0028 0.7341
Left Leg 0.0198 0.6976

P-7

Hand 0.0242 0.5545
Palm 0.0368 0.5722

Right Leg 0.0612 0.6056
Left Leg 0.0199 0.5557

TABLE VIII: Layer-wise time complexity profiling of PerMTL

Layers CPU Time Cuda Time

CNN1D + Maxpool1D + + BatchNormal1D - (i) ≈ 1.2842 ms ≈ 13.982 ms
CNN1D + Maxpool1D - (ii) ≈ 1.1022 ms ≈ 10.987 ms
CNN1D + Maxpool1D - (iii) ≈ 1.112 ms ≈ 10.980 ms
A (Total) ≈ 99.404 ms ≈ 88.825 ms

1) Publicly available dataset: We chose the Daily, and
Sports Activity dataset [19] (DSA) has a tri-axial accelerome-
ter, magnetometer and gyroscope sensors data from eight users
(four males and females). The sensors were placed on five
body positions and collected at 25 Hz. They have performed
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Fig. 6: (a-b): Error plots for all the users w.r.t. the Male 1 and
Female 1, respectively for DSA dataset

19 different activities- jumping, standing, sitting, lying on the
back and right, playing basketball, etc. For the experiment,
we assumed the first player from users list [19] (female
and male) as our reference player. Hence, our proposition
for the DSA dataset is based on the result we obtained
through our experiments. Moreover, we perform a user-level
error propagation to showcase how well PerMTL performs to
evaluate and determine the users’ performance for activities
of daily living (ADLs) and instrumental activities of daily
living (IADLs). We implemented the same experiments as the
BAR dataset and reported the findings below. Interestingly,
we observed that each male and female user showcased similar
traits. We obtained R2 Score of 80.28% and 79.12% for female
and male users, respectively. Similar trends can be observed in
the error figures that the overlap probability between the error
plots is high, shown in figures 6 (a-b). Furthermore, we ob-
tain 96.89% and 97.34% F1-score for male and female players
respectively by employing the classification module reported
in [14]. Lastly, from the error plots and F1-score results, we are
assertive that the scale of expertise in performing ADLs and
IADLs is mostly proximate and identical among the male and
female players and also the error plots shows high overlapping
probability among the players.

VII. CONCLUSION

This paper proposes an end-to-end BSN-driven frame-
work, PerMTL that enables us to capture the distinctive
traits between players’ limbs for collective data inference
and achieve R2 Score of ≈ 82% in predicting the players’
performance. We performed a comprehensive analysis of our
multi-task learning paradigm, and we have showcased that
MTL can generate better error representation for the limbs.
We also demonstrated that the proposed framework precisely
learns the shared feature representation for each player’s
limb and will be befitting to estimate the error between the
player’s limbs w.r.t the professional players. We believe that
the model’s error can be used as feedback for the player
to improve the performance in the game as it will help the
users determine the most error-prone limb of the player while
playing the game. Moreover, we explored and showcased
the adaptability, robustness and scalability characteristics of
the PerMTL framework. We showcased that the PerMTL
can be employed across the different domains and can be
scaled to user-level error estimation. Lastly, we benchmark
our proposed framework to showcase a substantial overall
reduction in time computational cost. In the future, we would
like to deploy the inference node in a resource constraint

environment. Lastly, we would like to examine individual
characteristics such as height, weight, speed, tiredness, etc.,
affecting the players’ overall performance.
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[13] A. Khan, J. Nicholson, and T. Plötz, “Activity recognition for quality
assessment of batting shots in cricket using a hierarchical representa-
tion,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 1, no. 3, pp. 1–31, 2017.

[14] I. Ghosh, S. R. Ramamurthy, A. Chakma, and N. Roy, “Decoach: Deep
learning-based coaching for badminton player assessment,” Pervasive
and Mobile Computing, p. 101608, 2022.

[15] I. Ghosh, S. R. Ramamurthy, and N. Roy, “Stancescorer: A data
driven approach to score badminton player,” in 2020 IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops). IEEE, 2020, pp. 1–6.

[16] A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-task feature learning,”
Advances in neural information processing systems, vol. 19, 2006.

[17] Y. Zhang and Q. Yang, “A survey on multi-task learning,” arXiv preprint
arXiv:1707.08114, 2017.
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