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Abstract—Federated learning (FL) allows a set of clients
to collaboratively train a model without sharing private data.
As a result, FL has limited control over the local data and
corresponding training process. Therefore, it is susceptible to
poisoning attacks in which malicious clients use malicious training
data or local updates to poison the global model. In this work, we
first studied the data level and model level poisoning attacks. We
simulated model poisoning attacks by tampering the local model
updates during each round of communication and data poisoning
attacks by training a few clients on malicious data. And clients
under such attacks carry faulty information to the server, poison
the global model, and restrict it from convergence. Therefore,
detecting clients under attacks as well as identifying the type of
attacks are required to recover the clients from their malicious
status. To address these issues, we proposed a way under federated
framework that enables the detection of malicious clients and
attack types while ensuring data privacy. Our clustering-based
approach utilizes the neuron’s activations from the local models
to identify the type of poisoning attacks. We also proposed to
check the weight distribution of local model updates among the
participating clients to detect malicious clients. Our experimental
results validated the robustness of the proposed framework
against the attacks mentioned above by successfully detecting the
compromised clients and the attack types. Moreover, the global
model trained on MNIST data couldn’t reach the optimal point
even after 75 rounds because of malicious clients, whereas the
proposed approach by detecting the malicious clients ensured
convergence within only 30 rounds and 40 rounds in independent
and identically distributed (IID) and non- independent and
identically distributed (non-IID) setup respectively.

Index Terms—data level poisoning, model level poisoning,
federated training, adversarial attacks, identify attacks

I. INTRODUCTION

Distributed machine learning has received much attention
[1], [2] over the years. In [3], researchers examined distributed
machine learning algorithms for multiple data centers located
in various areas. But not much thought has been given to how
secure the data is and the impact of data distribution on the
performance. So, maintaining data security has always been
a critical research problem. Research in this area has been
accelerated significantly with the advent of federated learning.
Nowadays, FL is being applied in a large number of fields
[4]–[7]. The main idea behind this training is that, instead
of uploading and storing the entire set of data, which may
invoke security issues, there will be a client-server based model
[8]–[10]. This approach makes it possible to extract knowledge

from the data distributed on local devices. In recent times,
the standard federated learning system has been expanded in
several ways such as FedAvg [8], SMC- AVG [11], FedProx
[12].

Even though FL takes steps to address privacy concerns when
training models with real-world data, there are still concerns
over how robust the models are. In the past few years, there
has been a lot of research demonstrating the vulnerability of
deep neural networks to attacks. Due to its distributed nature,
FL is fundamentally vulnerable to model poisoning attacks
[13]–[16]. In model poisoning attack, it is assumed that an
authentic client will compute local model updates based on
genuine training data and further manipulate the local model
updates before sending them to the central server to poison
the model. On the other hand, data poisoning attacks assume
that malicious clients will be trained on dirty labeled data and
local model updates based on wrongly labeled data restrict
the global model from converging. In such a scenario, it is
challenging for the server to thoroughly examine the data used
for model training. Authors in [17] pointed out that dirty-label
data poisoning attacks tend to cause a lot of misclassifications,
up to 90%, when an attacker adds a small number of dirty-label
samples to the training dataset. And authors in [18] pointed
out the data poisoning attacks in FL as an issue that needs
immediate addressing.

Existing literature showed the vulnerability of deep model
in FL framework against the aforementioned attacks, and there
lies a research gap in identifying the type of attack. Based
on the real world use cases and application scenarios, FL is
of two kinds, namely cross device FL and cross silo FL. In
the cross device FL setup (designed for mobile devices), there
could be thousands of clients and we can easily discard the
malicious clients during aggregation. However, in the cross silo
federated setup (designed for organizations), a small number of
malicious clients can easily poison the global model because
of very limited number of total organizations/clients. Clients
are very limited in this setup, and so detecting the clients
under attacks is not enough. Rather, we should identify the
type of attacks and based on the attack types, further action
can be taken to recover the clients from malicious activities.
So, besides detecting the malicious clients, identifying the
attack types is also important specially in cross-silo FL setup.
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Our work addresses this problem by identifying the malicious
clients and the attack type. The major contributions we have
included in this work are:

• Effect of Compromised Clients on Convergence: In the
cross-silo federated setup with a small number of clients,
first we showed how compromised clients affect the
convergence of the global model. Experimental results
suggested that even a small number of malicious clients
can have a significant negative effect on the global model.

• Detection of Compromised Clients under Attacks: Sec-
ondly, we proposed an approach to detect malicious clients
carrying faulty information to the server during model
training. And by comparing the weight distribution of local
model updates among the clients, the proposed framework
successfully detected all the compromised clients.

• Detection of the type of Attacks: Besides detecting
malicious clients, our proposed clustering based approach
enables determining whether a client has been poisoned
at the data level or the model level while ensuring data
privacy. Label-flipping and dirty-labeling are two ways to
launch data poisoning attacks, and our proposed method
can identify both types of data poisoning attacks.

• Performance Analysis on IID and non-IID manner: After
detecting the compromised clients and discarding them
during aggregation, our approach propelled a global
model accuracy of approximately 98.26% and 96.05%
respectively while classifying MNIST digit classes in
both IID and non-IID setup.

II. RELATED WORK

In this section, we will go over the recent advancements
of federated learning algorithms, and a summary of previous
works on the adversarial attacks on federated learning.

Deep learning models, by their very nature, necessitate a
substantial amount of data to make acceptable predictions. This
specific requirement gives rise to a potential problem of data
breach. Federated learning was first introduced in [9] as a
potential solution to this problem [12]. The architecture of
vanilla federated learning was first outlined in [19]. Because of
the internal architecture of federated framework, FL allows deep
model to train on the client side without uploading private data
to the clouds. Since then, a substantial amount of research has
been conducted on the building blocks i.e., client selection [20],
communication between client and server [21], aggregation
schemes [22]. The selection of clients is an essential component
of a federated learning environment. The client represents the
devices or organizations that will help to build the global
model with their trained weights. As a result, a secure and
efficient communication structure is required to complete the
weight transfer between server and client. Finally, a suitable
update aggregation method is also required to incorporate
client-side knowledge into the server properly. Two of the
common schemes are synchronous [8] and asynchronous [18]
aggregation, and either of those can be chosen based on the
application scenario.

FL is vulnerable to data poisoning and model poisoning
attacks. Label-flipping [23] and backdoor attacks [13], [17]
are examples of data poisoning attacks. Attacker can easily
manipulate its local data by directly swapping the labels of
honest training instances of one class (the source class) to a
specific target class while keeping the features of the training
data unchanged. It is known as the label-flipping attack [24],
[25], which can cause significant drops in the performance of
global model even with a small percentage of malicious clients
[25]. A backdoor poisoning attack was proposed in [13], [26],
in which the attacker injects backdoored inputs into local data to
modify specific features of training data and implant backdoors
in the global model. An aggregation-agnostic attack, which
continuously adds noises to the model parameters to introduce
backdoors and restrict the global model from converging, was
developed in [27]. But identifying the type of poisoning attacks
from the server end in FL framework is not studied yet. So,
the research gap lies in this direction.

III. METHODOLOGY

In this section, we describe the detailed architecture and
work flow of our proposed federated training set up.

Fig. 1: Proposed Federated Framework

Our proposed framework is built on top of the FedAvg [8]
algorithm where some of the notations used in this description
are N = {1, . . . , N} signify the set of N clients, each of which
has their own dataset Dk∈N . Each of them trains a local model
using their own dataset and only shares the model parameters
with the FL server. Then, the global model, wG formation takes
place with all the local model updates which can denoted by
w = ∪k∈Nwk. The proposed federated framework is depicted
in figure 1 and complete pseudocode of our method is shown
in algorithm 1. The process based on the workload of server
and client is described below:

1) Executed at the client level
• Local training and updated parameter transmission:

Each client will be trained on local training samples
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to learn parameters after receiving the global model
wt

G from the server, where t stands for each iteration
index. For each client image data Di are fed to
the local model for training. The client tries to
minimize the loss function [18] L (wt

k) and searches
for optimal parameters wt

k.

wt∗

k = argmin
wt

k

L
(
wt

k

)
(1)

After each round of training, updated local model
parameters are sent to the server afterwards. In
addition, each client will sent the last "Relu" layer
activation value of local training samples that will
be utilized to detect data level poisoning.

2) Executed in server
• Weight initialization: The server determines the type

of application and how the user will be trained. Based
on the application, the global model is built in the

Algorithm 1: Algorithm for proposed federated training
Require: Clients number K per iteration, local epochs

number E, and learning rate µ, local
minibatch size B, image data Di

Ensure: Global model wG

1 [Server]
2 Initialize w0

G

3 Global Updater ():
4 for each iteration t from 1 to T do
5 Randomly choose a subset St of K clients from N
6 for each client k ∈ St parallely do
7 wt+1

k ← LocalTraining (k,wt
G)

8 at+1
k ← LocalTraining (k,wt

G)
9 end

10 check weight distribution wt+1
K (Detecting

compromised nodes)
11 wt

G = 1∑
k∈N Dk

∑N
k=1 Dkw

t
k (Aggregation through

average after discarding compromised nodes)
12 end
13 [Client k]
14 LocalTraining(k,w) :
15 Split local datasets Di

k where Di
k ∈ Dk to minibatches

of size B which are included into the set Bk, local
activation ak

16 for each local epoch j from 1 to E do
17 for each b ∈ Bk do
18 w← w − µ∆G(w; b) (∆G is the gradient on

b.)
19 a←Act(wx+ b) (Last layer Activation prior

to softmax layer.)
20 end
21 end
22 send w to server
23 send a to server

server. The server then distributes the global model
w0

G to selected clients.
• Weight distribution: According to the proposed

framework, updated local parameters received by
the server from the clients will be used to detect the
anomaly before aggregation. For each participant,
we’ll look at the weight distribution of local model
parameters and discard those clients whose distribu-
tions deviate significantly from the distribution of
majority clients.

• Activation analysis: In this block, last layer’s (prior
to softmax layer) activation of all local models will
be utilized by a cluster based approach to detect
the data level poisoning attack (Details in section
IV(C)).

• Aggregation and global update: The server aggre-
gates the local models from the participants by
discarding the detected compromised clients and then
sends the updated global model parameters wt+1

G

back to the clients. The server wants to minimize
the global loss function [18] L (wt

G), i.e.

L
(
wt

G

)
=

1

N

N∑
k=1

L
(
wt

k

)
(2)

This process is repeated until the global loss function
converges or a desirable training accuracy is achieved.
The Global Updater function runs on the SGD [28]
formula for weight update. The formal equation of
global loss minimization formula by the averaging
aggregation at the tth iteration is given below:

wt
G =

1∑
k∈N Dk

N∑
k=1

Dkw
t
i (3)

IV. EXPERIMENTAL SETUP AND RESULT ANALYSIS

This section will go through the procedures to set up the
experiments and the respective result analysis.

In our experiment, federated learning based deep model is
implemented on Keras running on TensorFlow backend. We
built a federated learning framework to train the model with
no shared data with the server. To initiate the training, the
server sends a global model to all the participating clients,
sets the training pace and how the users will be trained, and
then aggregates the updated weights from the participating
clients to update the global model. The early stopping criteria
controls the total number of rounds. And for each round, 1
epoch of local training is conducted on client side. We chose
image classification as application and experimented with VGG-
16 deep learning model on MNIST [29] digit dataset, which
includes 10 digit classes from 0 to 9. We simulated FL training
with only 15 clients to conduct the experiment.

A. Effect of Compromised Clients on Convergence

In our experiment, we simulated the FL training environment
in such a way that among the total 15 clients, 12 clients were
authentic and rest of the 3 clients were compromised. And

1117

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 06,2023 at 20:15:57 UTC from IEEE Xplore.  Restrictions apply. 



among the 3 compromised clients, 1 client was the victim of
model poisoning attack, and 2 clients were attacked with data
poisoning attacks.
To simulate the model poisoning attack on one client, we
tampered the real weights of that client by adding random
values at the time of weight sharing with the server. And we
simulated data level poisoning attack on 2 clients by label
flipping for one client and dirty labeling for another. Data level
poisoning also induces model poisoning. By sharing the faulty
weights with the server, these 3 compromised clients restrict
the global model from converging.

Fig. 2: Effect of Compromised nodes on Convergence, Global
Accuracy (left) and Global Loss (right) over Rounds.

And to demonstrate the effect of compromised nodes in
the cross-silo federated setup, we depicted the experimental
results in figure 2. In figure 2, the global model couldn’t reach
the optimal point even after 75 rounds with only 3 malicious
clients out of 15 clients, whereas after discarding the malicious
clients, it reached to global optima with only 30 and 40 rounds
in IID and non-IID setup respectively, depicted the result in
figure 3.

Fig. 3: Global Accuracy over rounds on the test set in IID
(Left), and non-IID setup (Right).

B. Detection of Compromised Nodes under Attacks

In targeted poisoning attacks, a common observation is
that the model updates from malicious clients have unique
characteristics compared to the ones from honest clients. We
have included two analyses to demonstrate that our proposed
federated framework can detect the compromised nodes.

The weight vectors, shared with the server every round, are
very high dimensional, and so, using dimensions reduction

Fig. 4: K-means clustering: blue and green cluster for the data
points from honest and compromised clients respectively

techniques such as principal component analysis (PCA), we
plotted the last layer weight vector of all clients to make 2
clusters in the k-means clustering, depicted in figure 4. And
we got a green cluster of weights (for compromised clients)
and a blue cluster of weights (for honest clients) based on
two different weight distribution. But from such clustering, we
get the assumptions of number of data points which is faulty
and/or authentic. But k-means clustering can not detect the
compromised clients because there is no way to look at the
weight distribution for individual clients. Moreover, cluster-
based defensive strategies cannot differentiate between model
updates from malicious clients and honest clients in non-IID
setup.

Fig. 5: Weight distribution of participating clients.
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So, to detect the compromised client, we need to look into
the weight distribution of each client. Assigning each client
with unique color, we plotted the weight distribution for all
15 clients, showed in figure 5. From this figure, it is clearly
observed that among all 15 clients, 3 clients (assigned with
orange, blue, pink colors and named as "compromised" client)
have a somewhat different distribution than majority clients.
And we detected all those 3 malicious clients under attacks
from the weight distribution. But still, we can not say which
clients were affected by model poisoning and which were
affected by data poisoning.

C. Identify the Type of Attacks

To detect the type of attack, besides weight sharing, each
client will be asked to share the activations of last layer neurons
prior to the softmax layer with the server because the last layers
of any deep model carry out comparatively more refined and
less interpretable information than initial layers. Since the
neurons’ activation of deep model can be high dimensional,
each client will perform dimension reduction technique e.g.
Principal Component Analysis (PCA), on its activation value
to convert it to lower dimension and share with the server. And
sharing only the last layers’ activation even after converting to
lower dimensions will not violate the data privacy of federated
learning protocol. So, here the server utilized the neurons’
activation shared by the clients to identify if any particular
client is being trained on wrongly labeled data to launch data
level poisoning.

In the above subsection, we detected 3 compromised client
but were not able to identify the type of attacks. As stated
earlier, we simulated data level poisoning attack on 2 clients
using label flipping for one client and dirty labeling for another.
Since we used MNIST dataset for our experiment, all 15 clients
should be trained on MNIST data. But, to launch the data
poisoning attack, we intentionally trained one client (client_3)
on MNIST but flipped the label of digit 0 and digit 1 class.
And we trained other client (client_4) on dirty labeled data
where images of public transport e.g. bus, metro and battlefield
vehicles e.g. helicopter, tank have been labeled as digit classes.
Here, we employed a cluster based representation for each
client and compared the class-wise cluster among the clients to
detect the data level poisoning. Training samples from the same
class label is also expected to have the same space in cluster
based representation. And for simplicity and easy visualization,
we visualized only five digit classes instead of 10 digit classes.
And figure 6 illustrates that client_1 and client_2 are honest
and trained on their local MNIST digit data, and it is clearly
visible that class-wise cluster position in 3D space is almost
identical for both of them. In figure 6 (lower left), for client_3,
the blue and orange clusters (assigned for digit 0 and digit 1
class respectively) have swapped their position compared with
the honest clients because label flipping attack was conducted
on digit 0 and digit 1 classes for this particular client. But
clusters for other classes were almost in the same space for
client_3 in comparison with client_1 and client_2 because of
true labeling for other digit classes. And for client_4, depicted

Fig. 6: Clustering based approach: (a) honest client, (b) honest
client, (c) client attacked with label flipping between digit-0
and digit-1 class, (d) client attacked with dirty labeling.

in figure 6 (lower right), class-wise clustering positions for all
classes were different compared to the honest clients because
client_4 was trained on dirty labeled data where the images of
bus, metro, airport, helicopter, tank were labeled as digit classes.
So from the detected 3 compromised clients (in section IV B),
our cluster based approach successfully identified data level
poisoning attacks on two clients. And rest of the compromised
clients is under model poisoning attack.

D. Performance Analysis on IID and non-IID Data

After detecting the malicious clients and discarding them
into model aggregation, we evaluated the efficacy of our FL
framework on two different data scenarios, i.e., independent
and identically distributed (IID) data and non-independent
and identically distributed data (non-IID). The fundamental
difference between the two scenarios lies in each random
variable’s distribution and mutual independence. It is highly
unlikely to achieve a situation where equal data distribution
among all clients is guaranteed in a real environment. It is even
possible that the imbalanced data distribution might not contain
all the classes throughout the clients. In IID setup, all clients
were given the training samples with a comparatively balanced
class distribution. And to design the non-IID experimentation,
we simulated an extreme non-IID setup by assigning only two
classes per client. It is thus evident that in non-IID setup, the
neural network should take considerably more rounds to reach
the same performance level as the IID scenario. As illustrated
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in figure 3, our analysis further adds credence to this hypothesis.
For example, in the non-IID scenario, we reached the saturation
point somewhere after 40 rounds, whereas the IID scenario
requires 25% fewer rounds (only 30 rounds) to achieve the
saturation level. Additionally, non-IID setup (96.05% accuracy)
has a slight (around 2%) decrease in performance compared
to IID setup (98.12%) due to the class imbalance among the
clients impacting the global network.

V. CONCLUSION

In this work, to reveal the vulnerability of the federated
training against model poisoning and data poisoning attacks,
we first showcased the effect of malicious clients on the global
model’s convergence. Secondly, we detected the compromised
clients from the server end by comparing the weight distribution
of local model updates. Thirdly, the proposed clustering-based
approach identified the data level poisoning attack from the last
layer neurons’ activation while ensuring data privacy. Finally,
our proposed framework has been trained on MNIST data in
both IID and non-IID data fashion after discarding the detected
compromised clients during aggregation.
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