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Abstract—This work introduces a novel interpretable machine
learning method called Mixture of Decision Trees (MoDT). It
constitutes a special case of the Mixture of Experts ensemble
architecture, which utilizes a linear model as gating function
and decision trees as experts. Our proposed method is ideally
suited for problems that cannot be satisfactorily learned by
a single decision tree, but which can alternatively be divided
into subproblems. Each subproblem can then be learned well
from a single decision tree. Therefore, MoDT can be considered
as a method that improves performance while maintaining
interpretability by making each of its decisions understandable
and traceable to humans.

Our work is accompanied by a Python implementation, which
uses an interpretable gating function, a fast learning algorithm,
and a direct interface to fine-tuned interpretable visualization
methods. The experiments confirm that the implementation
works and, more importantly, show the superiority of our
approach compared to single decision trees and random forests
of similar complexity.

I. INTRODUCTION

Machine learning (ML) has been and continues to be an
enormous success story. Historically, it has been the goal of
researchers to develop problem-solving ML algorithms with
ever-increasing accuracy. However, in recent years, the public
and research interest in interpretable machine learning (IML)
and its overarching field explainable artificial intelligence
(XAI) has soared [1], [2]. This development is fueled by the
desire of humans to understand how algorithms and machines
operate in an increasingly digitized and data-driven world.
While algorithms are developed that continuously claim more
domains where they are outperforming humans, the inner
workings of these algorithms tend to become more complex.
As humans are arguably not even able to focus on more
than one task at once, it becomes clear that it is almost
impossible to comprehensively understand the plethora of
internal factors that contribute to a complex model’s decision.
Still, humans want to use, evaluate, and trust algorithms. To
accommodate the two latter desires, methods of IML can be
used to simplify, distill, and translate algorithmic decisions
into a human-comprehensible format.
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There is a plethora of methods in the field of IML that can
be categorized along multiple dimensions. A typical criterion
is whether an IML method can be used on any underlying ML
model (model-agnostic), or if it is only suitable for a specific
type of model (model-specific) [3]. On another dimension,
IML methods that are used after the creation of the to-be
analyzed ML model are grouped under the term post-hoc
interpretability [3]–[5]. Examples of model-agnostic post-hoc
methods are LIME [6] and SHAP [7]. In contrast, there are
IML methods where interpretability is already gained at the
time of the creation of the ML model. These intrinsically
interpretable models are by definition always model-specific
[1], [8]. Examples of an intrinsically interpretable method are
a (simple) linear regression, decision trees (DTs), or the here
presented new method.

A DT is an ML technique that can be highly interpretable.
This is due to the simple and intrinsic way to visualize
a DT model and the ability to decompose it into easily
understandable decision rules. A DT can be used to solve ML
problems directly, however, it is not the most powerful method.
Depending on the problem, there can be alternatives like
deep neural networks or random forests that achieve higher
performance but are in turn not interpretable anymore [8].
Therefore, research aims at developing algorithms that exceed
the performance limitations of DTs but still remain inter-
pretable. An approach by Vasic et al. [9] successfully merges
DTs and the Mixture of Experts (MoE) architecture. MoE is
an ensemble technique that was initially proposed in 1991
by Jacobs et al. [10]. It uses a so-called gating function to
assign the input data to distinct experts. While there have been
plenty of publications that explore the possibilities of MoE, the
technique remains a niche. Vasic et al. [9] demonstrate that it
is possible to successfully combine the technique with DTs,
however, do not discuss the implications for IML.

In this paper we introduce a variant of the MoE architecture
using DTs that specifically focuses on interpretability. To
the best of our knowledge, such an approach has not been
published before. A ready-to-be-used implementation of this
approach is written in Python and can be found on GitHub1. In
order to highlight the methods’ reliance on DTs, the approach
is given the name Mixture of Decision Trees (MoDT). Our
method builds on top of the one by Vasic et al. [9] who
use a similar architecture, however, do not utilize its potential
for interpretability. The main contributions of MoDT are a
novel interpretable gating function that can reduce a multi-

1https://github.com/simsal0r/mixture-of-decision-trees
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dimensional gating problem to a two-dimensional one, the
usage of a fast linear regression for finding promising model
parameters, and a visualization method that matches DTs and
gating function. Thereby, MoDT is the first modification of the
MoE architecture using DTs that is fully optimized towards
interpretability.

In the following, fundamental techniques and a problem
setting for MoDT are introduced. The developed method is
described in detail in Sec. III. Next, MoDT is put onto the test
bench with an experimental study that investigates its general
performance boundaries. In Sec. V, the implications of this
experiment and the usage of MoDT as a method of IML are
discussed. Finally, the paper is briefly summarized.

II. PROBLEM FORMULATION

In the following, it is assumed that a training dataset D is
given comprising pairs (xi, yi), with i = 1 . . . n, where xi is
the feature vector (extended by an element with value one)
of dimension p + 1 and yi is the output (class label). All
feature vectors are stored in a matrix X = [x1 x2 . . . xn]

T

and y = [y1 y2 . . . yn]
T is the target vector comprising all

outputs. Then, a supervised classification model tries to learn
the relationship between x and y such that it is able to predict
y′ for vector x′ of a potentially different dataset D′.

A DT is a supervised ML method that decomposes a prob-
lem into a series of decisions. This decomposition resembles
the human decision process. Therefore, DTs are considered to
be more accessible to humans than other techniques of ML and
often given as a prime example of an IML method [1], [11].
Yet, while small trees are considered to be very interpretable,
DTs can quickly become hard to understand if too many nodes
(decision splits) are included. Therefore, the complexity of a
DT is typically limited when interpretability is desired. This
can be achieved by limiting the maximum tree depth d.

In 1991, the original MoE model was introduced by Jacobs
et al. [10]. The general idea behind MoE is that multiple
smaller problems are easier to solve than a single larger one.
MoE can be seen as an ensemble method that uses multiple
submodels (called experts) to solve a supervised ML problem.
The number of experts e needs to be set in advance. Then,
each expert is trained independently on a subset of the input
space. This is beneficial if the subsets incorporate different
input-output relationships such that the experts can learn these
distinct patterns. In MoE, the assignment of the subsets to
the experts is conducted by a so-called gating function, which
itself is subject to optimization. The gating function can be any
function that maps an input data point to a subset of the input
space. It is optimized alternately with the experts in an iterative
fashion using the Expectation-Maximization (EM) algorithm
[11]. Thereby, a “chicken and egg” dilemma can be avoided
as the optimization of the gates depends on the optimization
of the experts and vice versa. After training, when an MoE
model is used for prediction, the gating function decides which
expert is used for the prediction of a data point. Here, it is
possible to only use the expert with the highest gating value
or, alternatively, multiple experts whose outputs are combined
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gating 

function
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Figure 1. Architecture of an MoE prediction model for a single data point
xi. Depending on that point xi, the gating function outputs weights which
are used to aggregate the expert’s individual predictions.

using weights provided by the gating function. Figure 1 depicts
the architecture of a trained MoE model.

For an input data point xi, the corresponding prediction yi
of the MoE model is given by yi =

∑e
j=1 gj · zj where e

denotes the number of experts, gj the gating weight for expert
j, and zj the prediction of expert j [11]. It holds that gj ∈ [0, 1]
and

∑e
j=1 gj = 1 [11]. This is often achieved through the

usage of the softmax function. In the case where only one
expert is used for the overall prediction, one weight is set to
one while the others are set to zero. This is mostly a necessity
for interpretability, as a combination of multiple experts can
be difficult to understand for humans. Another necessity is
that the gating function must be interpretable. Common MoE
gating function choices like artificial neural networks are thus
not appropriate for IML.

MoDT is an instance of MoE where a linear model is used
as gating function and DTs are used as experts. A known
problem of DTs is their inability to efficiently capture linear
relationships due to the decision splits being always aligned
with the dimensions of the input space. If two classes are
optimally separated by a 45◦ boundary with respect to two
dimensions, a DT can only approximate this with a large
number of splits [11], which is not suitable in the context of
interpretability. This problem can be addressed by MoDT by
employing a linear gating function in conjunction with DTs.

III. MIXTURE OF DECISION TREES

The key components of MoDT are introduced in the follow-
ing. In Sec. III-A an overview of the entire MoDT architecture
is given. Sec. III-B describes the training based on the EM
algorithm, while Sec. III-C briefly addresses the prediction of
the output y given a trained MoDT and an input vector x. The
visualization capabilities of MoDT to support interpretability
are demonstrated in Sec. III-D by means of a toy dataset.

A. Overview of the MoDT Architecture

The proposed method MoDT can be categorized as an
ensemble method that uses multiple DTs as predictors. To



facilitate interpretability, only a small single-digit number of
DTs should be used. Unlike many other ensemble methods like
random forests (RFs) that combine the predictions of multiple
DTs, MoDT only uses a single DT for a single prediction.
Again, this is motivated by the requirement of interpretability:
A single DT is usually considered to be interpretable while an
aggregation of multiple DTs is not.

The number of regions and thus DTs e has to be specified
by the user. Alternatively, our implementation also includes
methods to estimate a suitable number, e.g., based on Gaussian
mixture models [11]. Each region is associated with a distinct
DT that is trained on the subset of X that falls into the
region. The core idea is that the regions contain distinct
patterns that can be represented best by distinct DTs. To allow
interpretability, the complexity of the DTs needs to be limited,
which is achieved by setting a maximum DT depth d.

The gating parameter matrix θ ∈ R(p+1)×e defines how
the gating function splits the input space into regions and is
initialized randomly. In MoDT, the gating function is a linear
model including a bias term (intercept), which explains the
additional dimension in xi. The j-th column of θ comprises the
parameters of the linear gating function corresponding to the
j-th DT, with j = 1, . . . , e. The outputs of the gating function,
called gating values in the following, determine which parts
of the input data are used for the training of each DT. The
matrix of gating values G ∈ Rn×e is the result of a softmax
on a matrix multiplication using the gating parameters θ and
the input data X according to

G = g(X, θ) =

1/|a1| 1/|a1| · · · 1/|a1|
...

...
...

1/|an| 1/|an| · · · 1/|an|

 ◦A , (1)

where A = [a1 a2 . . . an]
T = exp(X · θ − max(X · θ)),

ai is the i-th row of A, ◦ is the Hadamard (element-wise)
product, and g(.) is the gating function. Hence, each row
of G sums to one. The calculation on the right-hand side
of Eq. (III-A) corresponds to a row-wise application of a
variation of the softmax function, where in each row of X · θ
the row-wise maximum of X · θ is substracted inside the
exponential function. The resulting gating values G determine
the allocation of each data point to the regions. One element
gij of G represents the probability of choosing expert j for
data point i.

For MoDT, it is possible to use a gating function that either
considers all p features of X, or alternatively, just two features.
Due to their linear nature, both variants behave relatively
predictable. Yet, the two-dimensional (2D) gating function is
beneficial for interpretability as it has the great advantage
of being comprehensibly visualizable using a 2D plot. For
the 2D gating function, the question arises, which two out
of all p features should be selected for the gating function.
In the implementation of MoDT, multiple feature importance
methods (for example based on DTs, linear models, or princi-
pal component analysis) are included for selecting promising
candidates. From an interpretability perspective, users can also

manually select two features that are well known to them. The
reduced dimension in case of a 2D gating function affects the
size of θ and only the two selected feature columns of X are
considerede for calculating A in (III-A). In our experiments
(see Section IV), it will be tested how the limitation to two
features impacts performance in comparison to the “full”
gating function using all features.

The “goodness” of a region depends on the “goodness” of
the associated DT and vice versa. To avoid a “chicken and
egg” dilemma, the training algorithm thus uses the two-step
EM algorithm, which alternately updates the gating function
and the DTs. More precisely, during the E-step of the EM
algorithm, a DT is trained for each region. Technically, this
is achieved by using the output vector of the gating function
for each data point x as weight vector during the training
of the DTs. Then, the expected “goodness” of the current
combination of DT and the gating parameters θ with respect
to the true prediction targets y is calculated. This expectation
is used in the M-step to optimize θ and the gating function,
respectively. The E-step and M-step are repeated until a
stopping criterion or a fixed number of iterations is reached.

B. Training
In contrast to other MoE architectures, where the training

of the experts is conducted in the M-step [11], [12], we prefer
training the experts during the E-step. Further, regardless of
the choice of the 2D or the full gating function, the following
training procedure is the same.

During the training, the complexity of the DTs is controlled
by a hyperparameter d that limits the maximum depth of the
DTs. There are also other possibilities to limit the complexity
of a DT (like the number of leaf nodes), however here, the
maximum depth is preferred as it potentially reduces the
variance of the DTs between iterations, resulting in a more
stable training process.

Once the DTs are trained, the expectation E, which gives
the E-step its name, can be calculated. For this purpose, the
gating function and a so-called confidence function, denoted
as c(T ,X, y), are necessary, where T is the set of all DTs.
At first, the gating values G are calculated by means of
Eq. (III-A). Secondly, the confidence function c(T ,X, y)
outputs the DTs’ confidences for the correct predictions. For
this purpose, as a first step, all trained DTs zj ∈ T perform
predictions for the input X. Instead of assigning a particular
class to a data point xi, each DT zj calculates a vector
comprising the prediction probabilities for all possible classes
of xi. This vector and the true classes y are then used to
extract the probability for a correct prediction of each DT for
each data point of X. Thus, the output of c(.) corresponding
to one data point xi is the vector ci, where the j-th element
of ci corresponds to the probability of DT zj outputting the
true class yi of input vector xi. Finally, the expectation E can
be calculated according to

E =

1/|b1| 1/|b1| · · · 1/|b1|
...

...
...

1/|bn| 1/|bn| · · · 1/|bn|

 ◦B , (2)
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Figure 2. Overview of the training process of MoDT.

where B = [b1 b2 . . . bn]
T = G ◦ C with C =

[c0 c1 . . . ce] ∈ Rn×e being the output matrix of function
c(T ,X, y). Each row of E sums to one.

The calculation of one row of E in Eq. (III-B) is illustrated
in a numeric example: Given an MoDT model with three
experts, assuming the gating values for a data point being
[0.7 0.2 0.1], and the experts’ probabilities for the correct
prediction are given by [1.0 0.9 0.5], the expectation for this
data point is [0.70 0.18 0.05] / 0.93 = [0.753 0.194 0.054].
If these values were directly interpreted as new gating values,
it can be noticed that the probability for the best-performing
expert increases, while the opposite is true for the weaker
experts. This observation is crucial for the training algorithm
of MoDT.

The newly calculated expectation does not replace the gating
values but is used as a basis for a controllable optimiza-
tion during the M-step of the EM algorithm. The original
gating values and the expectation are used to calculate an
optimization direction similar to a gradient that is applied to
the gating parameters θ, governed by an adjustable learning
rate parameter. In classic MoE architectures, the expectation
is used within a log-likelihood function that then serves as
the loss for iterative and possibly computationally expensive
optimization algorithms [11], [12]. However, an experiment by
Yang and Ma [12] compares multiple optimization algorithms
and concludes that a rather simple least squares linear regres-
sion is favorable for an MoE architecture with a linear gating
function. Therefore, MoDT primarily uses a linear regression
for the update of the gating parameters θ which does not
require a gradient descent. The linear regression creates a
linear model with coefficients β that fits X to a target. For
this purpose, the residual sum of squares (RSS), i.e., the sum
of squared deviations of the predicted targets to the correct
targets is minimized. The target of the regression is not the
earlier calculated expectation E, but the difference of E and
the gating values G. This target E − G ∈ Rn×e can be

interpreted as the direction towards the desired new gating
values. Formally, the coefficients β are chosen to minimize

RSS(β) =
n∑

i=1

(
(ei − gi)− xTi β

)
·
(
(ei − gi)− xTi β

)T
,

with ei and gi being the i-th row of E and G, respectively [13].
The resulting coefficients β ∈ R(p+1)×e can be seen as the
internals of a linear model that matches X to E−G, similar
to the linear gating function of MoDT which matches X to G.

To calculate the new gating parameters θnew, the update
equation θnew = θold + γ · β is employed, with θold being the
current gating parameters and γ > 0 being the learning rate.
The update of θ concludes the M-step.

Once the EM algorithm has terminated, the trained MoDT
model can be used to create visualizations for both the gating
function (if the 2D variant is selected) and the DTs. An
overview of the training process is given in Figure 2.

C. Prediction

The prediction process takes unseen data X′ as input of
the gating function which outputs the gating values G. It is
important to note that the earlier outlined calculation of G
(see Eq. (III-A)) is only used for the training and the gating
function for the prediction is slightly different. In particular,
the gating function for the prediction will only output the
expert (DT) with the highest probability. The final prediction
yi for a data point xi is thus given by

yi =

e∑
j=1

zj(xi) · 1(j = arg max
k

(gik)) ,

where zj is the prediction of the j-th DT and 1 is the indicator
function. The indicator function returns one if a proposition
is true, i.e., if data point xi belongs to expert ej . Otherwise,
zero is returned.

In contrast, it would also be possible to use the probabilities
of the experts in place of the argmax function. In this case,
the final prediction would be the result of a weighted sum of
the predictions of all DTs. This architecture would resemble
the common structure of MoE as seen earlier in Figure 1.
This setup is also used in the paper of Vasic et al. [9] where
it is called soft-gate prediction. However, for MoDT, such a
combination of DTs is avoided as the increased complexity is
unsuited for interpretability.

D. Visualization and Application Example

In order to allow interpretability, a reasonable and compre-
hensive visualization is indispensable. If the feature space is
two-dimensional or the 2D gating function is used, the gating
function and the resulting regions can be plotted as depicted in
Figure 3. Given the plot in Figure 3, a user can understand that
MoDT solves the classification problem by dividing the dataset
into three regions that incorporate three distinct patterns. A
legend that enumerates the regions/DTs (Figure 3, top right)
and a legend for the classes of the data points (Figure 3, bottom
right) is added to the plot. The colors are chosen such that
the data points remain visible on top of the regions. One
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Figure 3. Exemplary decision area of the 2D gating function.
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Figure 4. DT corresponding to the green region in Figure 3.

of the three DTs, i.e., the DT for the top-most green region
can be seen in Figure 4. Here, the region is expressed by a
simplistic DT with a single decision criterion, which often is
called a decision stump. The top-right legend corresponds to
the classes of the classification problem. The DTs for the blue
and red regions are not depicted.

An example of the visualization of the 2D gating function
on a more complex problem, namely the steel dataset [14],
is depicted in Figure 5. The two features Log_Y_Index
and Steel_Plate_Thickness have been selected using
feature importance. Again, three experts are used. Although
the corresponding DTs are not depicted in this paper, it can
be seen how the regions incorporate distinct behavior. On
this dataset, a MoDT model can reach a training accuracy of
around 68% when three DTs with a maximum depth of two are
used (see Chapter IV-B). Here, MoDT uses at most 3 · 7 = 21
nodes (a DT of depth two has a maximum of seven nodes). For
comparison, as a negative example, Figure 6 depicts a single
DT that reaches the same accuracy. It uses almost twice the
number of nodes (39) and—in contrast to MoDT—is too large
to be conveniently plottable and interpretable. This dataset is
revisited also in the experiments in Sec. IV.

For visualizing DTs, many software packages are freely
available. Although the Python library dtreeviz (https://github.
com/parrt/dtreeviz) does not check all interpretability boxes, it
is a good match for MoDT. A great advantage of the library
is that the colors of the classes can be adjusted with ease.
This way, the colors of the DT correspond to the colors of
the classes in the gating plot, thereby leveraging the joint
comprehensibility of both graphics.

Regions

Classes

Figure 5. Decision area of the 2D gating function on the steel dataset.

Figure 6. An example of a classic DT that is not very interpretable.

IV. EXPERIMENTS

In the following, the general performance of MoDT in
terms of classification accuracy is tested and compared against
itself and other classic tree-based ML models with varying
complexity. MoDT is also compared to non-interpretable ML
methods which generally should not be used for typical
IML scenarios in which safety and ethical standards must be
guaranteed [15]. However, as these methods are typically way
more powerful regarding pure predictive performance, it can
already be seen as a success if an interpretable method comes
close to the performance of a non-interpretable method.

A. Experimental Setup

To estimate an upper bound of MoDT’s performance, a
hyperparameter optimization algorithm is used that aims at
finding a well-performing combination of hyperparameters.
For this, the Python library Optuna [16] is utilized. The
experiment is conducted with eight publicly available datasets
[14], summarized in Table I. As some of the datasets contain
categorical features that are not supported by the scikit-
learn DT implementation, MoDT uses a one-hot-encoding for
categorical features.

Each dataset is shuffled into training data (75%) and test
data (25%). Then, the experiment is conducted independently
for each dataset. Each training dataset is firstly used for the
hyperparameter search which is repeated 500 times. Instead of
choosing the single best hyperparameter combination, the ten

https://github.com/parrt/dtreeviz
https://github.com/parrt/dtreeviz


Table I
DATASETS USED IN THE EXPERIMENT.

dataset data points classes features (num./cat./enc.) description
abalone 4,177 3 7 1 10 Predict age group of abalones (sea animals) based on physical measurements.
banknote 1,372 2 4 0 4 Predict authenticity of banknotes.
breast 569 2 10 0 10 Predict breast cancer based on properties extracted from images.
cars 1,728 4 0 6 21 Predict quality of cars based on categorical features only.
contraceptive 1,473 3 2 7 24 Predict contraceptive method.
iris 150 3 4 0 4 Predict species of a flower. Popular dataset.
steel 1,941 7 27 0 27 Predict defects of steel plates.
students 666 4 0 11 49 Predict performances of students on an entrance examination.

best combinations are identified. These are then used to train
ten distinct MoDT models on the training data. Lastly, the final
performance per combination is measured with 100 repetitions
on the held-out 25% test data. In addition, the standard devi-
ation and the training accuracy are denoted. The idea is that,
by using the ten best combinations, the results are not overly
optimistic but represent a reasonable performance that could
be reproduced with an average hyperparameter search. While
it is theoretically possible that the found hyperparameters are
biased towards the 75% training data, the evaluation on the
independent test data should not yield over-optimistic results.

MoDT is used with three experts (e = 3) and a DT
depth of two (d = 2). Derived from earlier experiments, this
configuration seems to be an appropriate compromise between
expressiveness and simplicity. Since DTs are well-known for
their interpretability, and MoDT builds upon them, MoDT
is compared to DTs with a maximum depth d between two
and four. Since d = 4 can already be problematic for inter-
pretability (see Section V), a greater depth is not tested. As the
Python library scikit-learn [17] is used for the DTs within the
implementation of MoDT, the DTs for the comparison are also
created with scikit-learn. Furthermore, MoDT is compared to
RFs, which are valued for their good performance [1] and are
also based on DTs. Although RFs are not interpretable, the
comparison allows assessing MoDT from a pure performance
perspective. Firstly, RFs are used with a configuration of d = 2
and e = 3 that is identical to the here used configuration
of MoDT. Secondly, the default configuration of scikit-learn
is used, which employs 100 DTs and imposes no restriction
on the depth. The accuracy is evaluated using a 75/25%
training/test split and 100 repetitions.

To allow a fair comparison, the same preprocessing steps
that are included in MoDT are also applied to the training
data of the alternatives. However, no extensive hyperparameter
searches are conducted for the DTs and random forests. Yet,
it is assumed that the default scikit-learn hyperparameters
already yield reasonable results, especially in the deployed low
complexity configurations. In addition, it would be problematic
to compare the default DTs within the MoDT ensemble
with optimized individual DTs. The complete above process
is firstly performed for an MoDT configuration using the
assumingly more interpretable but less powerful 2D gating
function, and secondly for the full gating (FG) function.

B. Results

The average accuracies and the standard deviations using
the MoDT classifier model with the 2D and FG function are
erported in Table II. The best-performing interpretable meth-
ods on test accuracy (without consideration of the standard
deviation) are highlighted with a grey background. RFs (as
they are not interpretable) and the training accuracy of MoDT
are not considered for this highlighting. The best overall
methods on test accuracy are highlighted in bold.

In comparison to DTs with d up to four, MoDT using a
2D gating function achieves a better test accuracy on 6 out
of 8 datasets, hereby neglecting the standard deviations. In
all cases, the test accuracy is close to the training accuracy
(within 1–4 percentage points) except for the students dataset,
where the test accuracy is significantly worse than the training
accuracy. On this dataset, the DTs collectively outperform
MoDT. In comparison with MoDT using the 2D gating
function, the RFs’ configuration with the same complexity
as MoDT achieves lower scores on all datasets. Some of
the differences are relatively large, e.g., MoDT performs 15
percentage points better on the steel dataset. MoDT achieves
equal or better performance than the significantly more com-
plex RF configuration with 100 DTs in 4 of the 8 datasets.

The full gating function exploits all features of X instead
of just two. Is therefore can be more expressive but it is less
interpretable. Therefore, it should be investigated, how this
variant compares to the 2D gating variant. Using the full gating
function, MoDT achieves a higher performance than the DTs
in 6 out of 8 datasets. In contrast to the 2D variant, MoDT
using a full gate now outperforms the DTs on the cars dataset.
The opposite is observable for the contraceptive dataset, here,
a DT with d = 4 now beats the performance of MoDT with
a full gate. The full gate variant of MoDT achieves equal or
better performance than the random forests configuration with
100 DTs in 5 of the 8 datasets.

Although the full gating function is in theory more powerful
than its 2D counterpart, a direct comparison suggests that the
full gating variant is not universally better. In 5 of the 8
datasets, both variants achieve roughly similar performance
(±2 percentage points). The full gating variant achieves a
10 percentage points better performance on the cars dataset.
Conversely, the contraceptive and students datasets benefit
from the 2D gate variant. Here, the test results are 5 and 4,



Table II
PERFORMANCE OF MODT WITH FG AND 2D GATE, DTS AND RFS. BEST INTERPRETABLE METHOD: GREY BACKGROUND, BEST OVERALL: BOLD.

MoDT 2D d=2 e=3 MoDT FG d=2 e=3 DT RF
dataset training test training test d=2 d = 3 d = 4 d=2 e=3 d=* e=100

abalone .74±.00 .71±.01 .75±.01 .73±.01 .67±.01 .69±.01 .70±.01 .67±.01 .73±.01
banknote 1.00±.00 .99±.00 1.00±.00 1.00±.00 .91±.02 .93±.01 .95±.02 .89±.04 .99±.00

breast .96±.00 .94±.01 .97±.01 .95±.02 .91±.02 .92±.02 .92±.02 .91±.02 .94±.02
cars .82±.01 .78±.01 .92±.01 .88±.01 .78±.02 .79±.01 .81±.02 .71±.02 .96±.01

contraceptive .59±.01 .58±.01 .57±.01 .53±.02 .48±.02 .52±.03 .55±.02 .46±.04 .52±.02
iris .99±.01 .95±.02 .99±.01 .96±.02 .94±.03 .94±.04 .94±.03 .92±.06 .95±.03

steel .68±.01 .68±.01 .70±.02 .67±.01 .53±.02 .53±.02 .61±.02 .53±.02 .78±.02
students .58±.02 .45±.01 .53±.01 .41±.03 .48±.04 .51±.03 .50±.04 .44±.06 .49±.03

respectively, percentage points higher. The training time of
both variants is almost identical and ranges between 0.1 s for
the iris dataset and 1.4 s for the abalone dataset.

V. DISCUSSION

The comparison with interpretable DTs and RFs shows that
MoDT is working as intended and can provide a benefit over
individual DTs. On average, MoDT clearly outperforms single
DTs with d = 2. MoDT continues to outperform DTs with
d = 4, which are arguably already rather complex and can be
hard to interpret. A DT of d = 4 can use more nodes (31)
than MoDT with d = 2 and e = 3 (21). Therefore, it can be
assumed that the gating function works as intended and cannot
be replaced by a small number of additional DT splits.

On average, MoDT is clearly superior to a RF with the same
complexity. As expected, the RF variant with a vastly more
complex structure mostly outperforms MoDT. However, the
resulting RFs are also not interpretable.Therefore, considering
the way simpler structure of MoDT, it can be seen as a
success that an interpretable method can achieve similar and
sometimes even higher scores.

The comparison of the 2D gate and the full gate reveals
that in all but one cases, namely the cars dataset, a 2D gating
function is sufficient. This is an important result as the 2D
gate is highly beneficial for interpretability. The variant can
achieve similar and sometimes even better performance than
the full gate. Possibly, the reduced complexity can prevent
overfitting. However, the fixed number of iterations used in
the experiment might be disadvantageous for the full gating
variant. Since the variant is more complex, there are possibly
more directions for optimization, and the training algorithm
might need more iterations to explore them.

The most important hyperparameters of MoDT are the
maximum depth d of the DTs and the number of experts e.
While it might seem difficult to set these values, a conceptional
analysis of interpretability suggests a rather small range of
suitable values. In one of the most cited papers in the field
of psychology [18], the hypothesis known as Miller’s law
is introduced, which says that the average human can only
keep approximately seven different chunks in their working
memory. According to this, a binary DT with d = 3 (and thus
up to 15 nodes) can already be difficult to understand. If such
DTs are used within an ensemble, the comprehensibility be-
comes additionally difficult. DTs with d = 1 (decision stumps)

are naturally very comprehensible, however, the limited ex-
pressiveness diminishes their usefulness. Therefore, DTs of
d = 2—thus, a maximum number of seven nodes—seem
advisable. Regarding the number of experts, we assume that
2–5 experts are best suited for interpretability. Alternatively,
it is also computationally feasible to simply test multiple
configurations of MoDT with different numbers for d and e.

If an MoDT model is used for prediction, potentially as
a surrogate model of a more complex ML model like an
artificial neural network, every decision can be retraced by
a human. This allows experts to decide whether the prediction
rules make sense. Additionally, in scenarios where potential
misclassifications are dangerous, experts can rule out the
possibility that the model will output certain predictions.

MoDT usually outperforms a DT with comparable com-
plexity regarding prediction accuracy. Still, the model can re-
main completely comprehensible for humans if the 2D gating
function is selected. The separation into smaller subregions
reduces the cognitive load for a human. However, in edge
cases, the visualization of the gating function can potentially
lead to inaccuracies when it is used to retrace a decision of the
model, e.g., when a data point is close to the border of two
regions. Although this scenario is rare, the users of MoDT are
implicitly enforced to incorporate this potential inaccuracy in
their analysis.

It can be seen as a disadvantage for interpretability that the
generated insights are not necessarily valid for the complete
data, but only for distinct subregions. It might instead seem
more desirable to have an analysis that generalizes to the
complete dataset, e.g., by training just a single DT on the
complete data. However, when the complexity of a DT must
be limited such that it can be comprehensible by humans, the
resulting DT might represent the real-world scenario poorly.
In fact, a single short DT might be misleading as it can
overly generalize complex relationships. Humans are prone
to accept just one or two reasons as the sole explanations of
possibly complex problems [19]. Therefore, a single short DT
might lead humans to a rather incorrect analysis. Instead, with
MoDT, a user is forced to reflect on multiple explanations
for multiple subproblems. Possibly, this is a more realistic
scenario for real-world problems.

MoDT has similarities to the commonly used IML method
LIME [6]. Both methods can be used for explaining decisions



in local subregions. Yet, MoDT also enables global explana-
tion as it does not need to fit a separate surrogate model for
each observation. Further, MoDT’s explanations are stable, i.e.,
identical inputs lead to identical explanations.

Generally, MoDT is not suited for all types of datasets
and problems, respectively. If a dataset can be represented
appropriately by a single DT, it does not make much sense
to use MoDT instead of a DT. When MoDT is used on
such a problem, it usually reduces itself to a single DT,
regardless of the specified number of experts. Conversely, if an
individual DT of arbitrary complexity seems entirely unsuited
for a dataset, i.e., when a tree-based method cannot learn any
meaningful pattern, MoDT is likely also not a good choice for
the dataset. MoDT excels when a problem can be divided into
multiple subproblems that incorporate different input-output
relationships. Here, MoDT can outperform regular DTs as its
gating function is more powerful and more flexible.

Although DTs are usually among the first examples of
interpretable methods in IML literature, it is often not precisely
defined how a DT can enable interpretability. While there are
many implementations and extensions of DTs, most of them do
not consider interpretability but purely focus on performance.
We believe that there is potential for the improvement of
DT algorithms and associated visualization methods. The
algorithms should not treat interpretability as a byproduct but
should be designed specifically with interpretability in mind.
As MoDT builds upon DTs, MoDT would directly benefit
from any improvements.

While there are numerous ways to improve MoDT from a
technical perspective, we suggest that further work should ini-
tially focus on evaluating the method’s benefit for interpretabil-
ity in practice. This could be done with user surveys [20] or
in-depth case studies. Ideally, the studies compare MoDT with
regular DTs and a wide range of other IML methods [1]. For
this, we believe that many existing studies wrongfully reduce
interpretability to single-dimensional properties like compre-
hensibility, trust, correctness or usefulness; but in practice,
interpretability should be seen as the combination of multiple
and sometimes competing objectives.

VI. CONCLUSION

To the best of our knowledge, MoDT is the first ready-to-be-
used DT ensemble method based on the MoE architecture that
is specifically tailored for interpretability. The method employs
a linear gating function that divides the input into disjoint
subregions that are solved by distinct DTs. A novel approach
is introduced that optionally limits the complexity of the gating
function and thereby facilitates interpretability. Internally, the
implementation uses a variation of the EM algorithm that
employs a linear regression for finding model parameters
instead of a more complex gradient-based optimization method
which is typically found in MoE architectures. Enabling
interpretability, MoDT provides a method to visualize the
gating function which is adjusted to match the plots of the
DTs. The experiments show that the implementation works
and consistently outperforms individual DTs with similar

complexity. Notably, the especially interpretable and simplistic
2D gating function can often compete with the more complex
full gating function.
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APPENDIX

In Fig. 7 the 2D gating functions of MoDT with d = 2 and e = 3 for all datasets listed in Table I is plotted.
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(b) Banknote dataset.
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(d) Cars dataset. It is worth mentioning that the dataset only incorporates
two values for the selected gating dimensions.
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(e) Contraceptive dataset.
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Figure 7. 2D gating functions of MoDT.
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(g) Steel dataset.
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Figure 7. 2D gating functions of MoDT.
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