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Abstract—Model stealing attacks have become a serious con-
cern for deep learning models, where an attacker can steal a
trained model by querying its black-box API. This can lead
to intellectual property theft and other security and privacy
risks. The current state-of-the-art defenses against model stealing
attacks suggest adding perturbations to the prediction prob-
abilities. However, they suffer from heavy computations and
make impracticable assumptions about the adversary. They often
require the training of auxiliary models. This can be time-
consuming and resource-intensive which hinders the deployment
of these defenses in real-world applications. In this paper, we
propose a simple yet effective and efficient defense alternative.
We introduce a heuristic approach to perturb the output prob-
abilities. The proposed defense can be easily integrated into
models without additional training. We show that our defense
is effective in defending against three state-of-the-art stealing
attacks. We evaluate our approach on large and quantized (i.e.,
compressed) Convolutional Neural Networks (CNNs) trained on
several vision datasets. Our technique outperforms the state-of-
the-art defenses with a ×37 faster inference latency without
requiring any additional model and with a low impact on
the model’s performance. We validate that our defense is also
effective for quantized CNNs targeting edge devices.

Index Terms—Deep learning, Privacy, Security, Model stealing
attacks, Quantization

I. INTRODUCTION

Deep Learning (DL) achieved human-level performance
in several computer vision tasks [1]. Developing such high-
performance models is a costly process for companies [2].
They often provide their models as a service through an
Application Programming Interface (API). This enables users
to have predictions for their queries. Besides, state-of-the-art
Deep Neural Networks (DNNs) are more and more compu-
tationally expensive and require intensive memory, which in
some cases hinder their deployment in embedded devices.
Therefore, during the past years, researchers proposed to
quantize DNNs without significantly affecting their perfor-
mance [3]. This enables a DL model to run efficiently on
edge devices to enable a service for a user (e.g. smartphones)
or other applications in the system (e.g. autonomous vehicle).

Sharing models as a black box to users or between compa-
nies creates a dilemma for the model owner since there might
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be a financial risk of Intellectual Property (IP) theft. Some
research work focuses on obfuscating the model architecture
to hinder attackers from retrieving the original model archi-
tecture. Nevertheless, the model obfuscation is useless when
the attacker can retrieve a surrogate model using only the
prediction API [4]. An attacker can act as a normal user and
send input queries to the DL model. Leveraging the output
predictions, a malicious user can train a high-accuracy and
high-fidelity copy of the original model. In addition, model
stealing attacks can be used to facilitate other attacks such
as adversarial attacks where the attacker creates malicious
examples to evade the model classification [5].

Previous work proposed different defenses against API-
based model stealing attacks. Some work proposes to withhold
information about probabilities, but this reduces the model’s
transparency and utility [4]. The prediction confidence is
important information, especially for critical systems, e.g.
in an autonomous vehicle the system might take an action
only when a confidence threshold is reached. Other work
proposes to add perturbations to the prediction probabilities in
a way that reduces the attacker performance [6]–[8]. However,
these techniques often inject high perturbation which hurts the
model transparency or even reduces its performance. Addition-
ally, state-of-the-art defense techniques are computationally
expensive. Despite the focus of previous work on maintain-
ing the defender model’s performance by adding a minimal
perturbation, none of them measure their defenses’ impact
on the model inference latency [6]–[8]. In critical systems,
inference latency is very important which makes state-of-the-
art defenses infeasible. When developing DL models targeting
edge devices, it is crucial to have efficient algorithms that
neither overload the system nor reduce its utility [3].

To overcome these issues, we propose a novel effi-
cient perturbation-based defense alternative called Deception
(DCP). Our heuristic approach aims to deceive the attacker
and decrease the accuracy of his stolen model by adding an
adaptive noise that deviates the probability scores without
increasing the inference time. In order to keep the model’s
transparency, we aim to decrease the attack performance with
a low amount of perturbation. To the best of our knowledge,
our approach is the first to propose a defense that takes into
account the attack performance, the defender’s accuracy, the
perturbation level, the inference time, the energy consumptionTo appear in Proceedings of ICMLA, Florida, USA ©2023 IEEE
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TABLE I: Our approach considers multiple aspects while
defending against model stealing attacks

Approach Fast inference No auxiliary model Low perturbation

RS [8] ✓ ✓ ✗
AM [16] ✓ ✗ ✓
MAD [6] ✗ ✗ ✓

GRAD2 [7] ✗ ✗ ✓
Ours ✓ ✓ ✓

and the number of required models to perform the defense
(Table I). We test our approach on several vision datasets:
CIFAR-10, CIFAR-100 [9], SVHN [10], GTSRB [11] and
CUB200 [12]. Our evaluation proves that our technique is ef-
fective in defending against three state-of-the-art model steal-
ing attacks KnockoffNets [13], MAZE [14] and DFME [15]. We
find better or comparable results with state-of-the-art defenses
in the matter of the perturbation budget and the attack per-
formance. Furthermore, our technique outperforms the state-
of-the-art defenses GRAD2 [7] and MAD [6] with a faster in-
ference latency by consuming less energy and without relying
on other surrogate models. We validate our approach on large
(i.e., original architecture) and quantized Convolutional Neural
Networks (CNNs). We show that the latter is as vulnerable to
model stealing attacks as their corresponding original models.
Our technique succeeds in defending against these attacks in
the quantization setting which ensures that our defense extends
to real-world applications in edge devices. Our code is avail-
able at: https://github.com/KacemKhaled/defending-extraction

The remainder of the paper is organized as follows: Sec-
tion II reviews the state-of-the-art that relates to model stealing
attacks and defenses, and CNNs quantization; Section III
details our methodology; we include our experiments and
obtained results in Section IV; and Section V concludes the
paper.

II. RELATED WORK

A. Model stealing attacks

Model stealing attacks also referred to as model extraction
attacks, can be categorized into two groups: attacks that exploit
hardware access and attacks that leverage API query access.
We refer to the latter category with API-based attacks. In API-
based attacks, the adversary observes the prediction outputs
of his queries, then uses them to steal the functionality of
a model [4]. Prior works [5], [17] propose extraction attacks
using a jacobian-based data augmentation approach to produce
synthetic data. However, their success is limited to small
datasets. Reference [13] proposes KnockoffNets attack where
the adversary aims to obtain a functionally equivalent clone
of the victim model using random and publicly available data.
The attack is easy and simple to execute, yet very effective
in outperforming other state-of-the-art stealing attacks. Re-
cently, other works in extraction attacks namely MAZE [14]
and DFME [15] focus on modern techniques to generate
the adversary’s dataset instead of relying on public datasets.
They leverage generative models to generate data with an

objective that enables a successful extraction. However, they
require millions of queries instead of thousands compared
to KnockoffNets [13]. Other stealing attacks in the literature
assume that a target model can only output hard labels instead
of probabilities [18], [19].

B. Model stealing defenses

To enable model owners to claim their models if stolen,
previous work proposes watermarking the model [20], [21].
Watermarking can be done by changing the output probabil-
ities for a small subset of queries. However, this technique
does not prevent model stealing. Other defense approaches
protect against attacks by perturbing the posterior prediction.
These perturbation-based defenses can be categorized into two
categories: proactive and reactive techniques.

Reactive techniques are triggered with the detection of
an ongoing extraction attack. They continuously monitor the
interactions with the user and the defended model to be able
to assess the knowledge stolen by the attacker [22] or to
detect an ongoing attack through detecting a deviation from
the normal distribution [17] or a large number of Out-of-
Distribution (OOD) queries [16]. To detect OOD queries, [16]
proposes a technique called Adaptive Misinformation (AM)
where they flag as malicious queries the ones with low predic-
tion scores. Then they use another model for “misinformation”
that generates noise vectors which will be combined with the
prediction posteriors. However, this technique is sensitive to
false positives which deteriorates the model’s performance.
Reactive defenses help reduce the efficiency of attacks, but
they cause inference delays and increase computational costs.

Proactive defenses are always perturbing the posterior pre-
dictions, regardless an attack is detected or not. Some tech-
niques propose to truncate the probability scores or to add ran-
dom noise [13]. But, these techniques are not efficient against
state-of-the-art attacks. The Reverse Sigmoid (RS) defense [8]
leverages the last layer in a neural network, i.e., the one that
outputs the prediction probabilities of each class, and changes
its activation function to a reverse sigmoid. This technique uses
a high perturbation level which hurts the model’s transparency.
To find the suitable perturbation per query, MAD [6] tries to
solve an optimization problem where it simulates the attacker
by another network and tries to add the perturbation that
maximizes the error of the simulated surrogate model. It
adds targeted noise to the posterior probabilities to poison the
adversary’s gradient signal. GRAD2 [7] is a similar approach
to MAD that relies on redirecting the gradient signal. Besides,
it proposes to train a surrogate model on the attacker’s queries
to simulate the attacker’s knowledge. GRAD2 always assumes
that the attacker will send a large batch of queries that it
can use for training the simulated attacker. This hinders its
practicality since it assumes that the system, where the model
is implemented to perform predictions, has sufficient hardware
to perform the training.

In general, existing perturbation-based defenses are compu-
tationally expensive or they use high perturbations that hurt
the model’s transparency. However, in real-world systems that



make decisions based on predictions (e.g., a computer vision
system in an autonomous vehicle), the model has to provide
a level of confidence in its predictions. The techniques that
provide high perturbations make the model useless for these
applications. In addition, optimization-based techniques re-
quire a lot of gradient calculations, which results in enormous
inference delays and an increase in computational costs. Our
proposed defense overcomes these issues through a heuristic
approach that aims to add perturbations without requiring more
hardware resources, as shown in Table I. We offer better trade-
offs in satisfying the perturbation budget vs. the defender’s
error constraint.

C. CNNs Quantization

Quantization is a technique used to reduce the memory
footprint and computation cost of CNNs by representing their
weights and activations using lower precision data types. In
other words, quantizing the weights involves reducing the
number of bits used to represent the parameters, typically
from the standard 32-bit floating-point representation to 8-
bit or even lower precision [23], [24]. In this paper, we
consider two of the most used quantization techniques for
CNNs: Post Training Quantization (PTQ) and Quantization
Aware Training (QAT) [3]. PTQ finds the quantization param-
eters without retraining the model. It computes the resulting
distributions of the different activation functions after feeding
some batches of data to the trained model, to determine the
specific quantization of each activation at inference time. Then
the model is quantized based on the calibration results. This
technique is fast and simple, however, the quantized model
may have lower accuracy than the original one [3]. During
QAT, float parameter values are rounded to mimic int8 values,
so the weight adjustments are made while being aware that the
model will be quantized. The calibration is performed while
re-training the model. This technique often results in quantized
models with higher accuracy than with PTQ [3].

III. METHODOLOGY

In this section, we present the threat model, the attack
strategy, and our proposed defense approach.

A. Threat Model

We assume that the model owner provides the DL model
as a black box. The attacker has an API access to the victim
model without internal knowledge about the model parameters
nor the training data. The attacker is able to act as a normal
user by sending queries to the model and receiving prediction
probabilities. Fig. 1 shows an API-based model stealing attack.
In these attacks, the attacker attempts to steal the functionality
of the victim model by labeling a dataset with the prediction
outputs obtained from the attacked model. The goal of the
attacker is to obtain a clone with high fidelity to the attacked
model and high accuracy on the victim’s prediction task.

Fig. 1: In an API-based model stealing attack, the attacker
sends queries to the victim model through its prediction API,
then he uses the predictions received to create a labeled
dataset. The attacker then trains a new model, called the
Adversary Model, on that dataset. This model represents the
stolen model from the victim.

B. Attack strategy
Our aim is to comprehensively evaluate our perturbation-

based defense approach against diverse strategies for model
stealing. We consider attacks that differ in the query distribu-
tions and strategies (random vs. adaptive querying). Our de-
fense aims to perturb the prediction probabilities, thus, we use
the state-of-the-art model stealing attacks that leverage the out-
put probabilities of target victim models: KnockoffNets [13],
MAZE [14] and DFME [15].

Let FV (x; θ) be the victim model provided by the prediction
API, with x representing the input query and θ the model
parameters. The stealing attack approach has three steps:
(i) selecting a query set Q, (ii) constructing a transfer set,
and (iii) training a stolen model (the adversary’s model) FA.

MAZE [14] and DFME [15] attacks rely on generative
models to create the query set Q. They leverage the victim’s
outputs and estimate their gradients to adaptively construct
suitable image queries. In these attacks steps (i) and (ii) hap-
pen simultaneously. KnockoffNets [13] attack selects publicly
available datasets to construct the query set Q. The attacker
selects an image distribution and randomly samples images
from it. We work with different datasets to simulate two
scenarios: a knowledgeable adversary and a limited-knowledge
adversary. The former is an attacker with knowledge about the
distribution of the training data. In this case, we select Q that
comes from the same distribution as the victim’s dataset D,
so there might be overlapping data between both datasets. We
call this a distribution-aware attack. For knowledge-limited
adversary, we select a different dataset from the victimQ ≠ D.
The adversary uses the obtained output predictions to label the
data Q. Finally, using the obtained transfer set, the adversary
trains the stolen model FA using a reasonably complex archi-
tecture (e.g., ResNets [25]). The adversary’s model FA can be
trained to substitute FV by minimizing the cross-entropy loss,
defined with yi = FV (x; θ)i as:

L(y, FA(x; θ
′)) = −

∑
i

yi logFA(x; θ
′)i (1)

C. Defense strategy
The defender’s goal is to mitigate the extraction attack

threat. Since the attacker relies on the prediction probabilities



for a successful attack, in order to defend against it, the
defender can carefully modify the posteriors (i.e., the pre-
diction probabilities) to maximize the attacker’s loss Eq. (1).
However, the prediction probabilities y have to keep a certain
level of confidence score to maintain the model’s utility and
transparency. Hence, we constrain the perturbation magnitude
on the posteriors y by budget ϵ defined as the maximum ℓ1
distance between the clean posteriors y and the perturbed ones
y′, defined as:

ℓ1 = ||y′ − y||1 ≤ ϵ (2)

D. Approach

We propose a new heuristic approach to defend against
model stealing attacks that could be applied in both large
CNNs and Quantized CNNs for edge device implementations.
Our defense is characterized by a low computational over-
head that does not slow down the model’s inference while
maintaining a low perturbation of the prediction probabilities.
In contrast to the state-of-the-art defenses GRAD2 [7] and
MAD [6], our technique is not computationally expensive
since it does not rely on auxiliary models to simulate attackers.
Our technique is motivated by the small inference times of
both RS [8] and AM [16] (Table I). We revisit these defenses
and we propose a better alternative called Deception (DCP)
to overcome their limitations such as high perturbation levels
for RS or requiring an auxiliary model and deteriorating the
model’s performance with false positives for AM.

Through comparing previous defenses, we describe a gen-
eral defense mechanism that perturbs the prediction probabil-
ities FV (x; θ) in a classification problem by:

y′ = N(a · FV (x; θ) + b · r) (3)

where a, b ≤ 1 are linear combination parameters to control
the proportions of the noise function r and the prediction
probabilities FV (x; θ); N(.) is a sum-to-one normalizer so that
y′ represents the probability values for the different classes in
the prediction problem.

Our strategy in injecting the noise is to decrease the un-
certain probabilities. Our rationale is that probabilities with
low values are of less importance. We assume that if a well-
trained model is uncertain about the prediction of an input,
it is highly probable that the model made a wrong prediction
(false positive). Hence, modifying these probabilities will not
affect the defender’s accuracy Acc(FV ). However, if the model
predicts an output with a high probability, it is more likely that
it is a correct prediction (true positive). Thus, the injected noise
is minimal without affecting the defender’s performance.

In order to heuristically find which posteriors to perturb, i.e.,
low probability values, and switch between clean posteriors
FV (x; θ) and perturbed ones r(y), we leverage a detector
function α inspired from AM [16] and defined as:

α = S(ν · (ymax − τ)) (4)

where S is the sigmoid function S(z) = 1/(1 + e−z); τ is
a threshold that pushes α towards 1 when ymax > τ and
towards 0 otherwise (Fig. 2). Similar to [16], we set ν to 1000
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Fig. 2: The detector function α that switches between the clean
and perturbed posteriors using a threshold τ , which pushes α
towards 1 when ymax > τ and towards 0 otherwise, where
ymax represents the highest value in a probability vector y.

in order to have a non-smooth switch between clean and
perturbed predictions.

In contrast to AM that multiplies FV by (1 − α) in
Eq. (7) to create a combination between the clean posteriors
and the noise, which results in deteriorating the defender’s
performance in case of false positives, we set in Eq. (3) the
parameter a← 1 and b← −β · α to obtain:

y′ = N(FV (x; θ)− β · S(ν · (ymax − τ)) · r(y)) (5)

To compute the perturbation, AM leverages another previ-
ously trained model, called misinformation model FM (x; θ).
The latter is trained on the same data as the victim but in
a way that maximizes the loss L(y, FV (x; θ)). However, this
deteriorates the performance of the original model because of
false positives.

Instead of using an extra model to inject the noise, our
defense leverages a noise function r(y) inspired from RS [8].
The latter maintains the defender’s accuracy in most cases,
without being computationally expensive. However, its lim-
itation is that it uses a high perturbation, increasing the ℓ1
distance between the clean and perturbed predictions.

For simplicity, to avoid estimating the adversary’s loss
through auxiliary models, similar to RS [8], we assume that
the attacker has perfectly duplicated the victim model. Thus,
we use the victim’s predictions y = FV (x; θ) as starting point
to compute the perturbations r(y). RS uses a reverse sigmoid
function S−1(y) = log(y/(1−y)) on the predictions y in order
to retrieve the initial logits (i.e., the obtained vectors from the
last layer). Then it selects a perturbation z = γS−1(y), where
γ is a dataset-specific constant that gives more control over
the defense’s convergence [8]. After that, a sigmoid function
is applied on z: S(z) = 1/(1+ e−z). Finally, the heuristically
obtained perturbation r is:

r(y) = S(z)− 1/2 = S(γS−1(y))− 1/2 (6)

Our defense’s final prediction output is obtained through
substituting r(y) in Eq. (5), to finally obtain:

y′ = N(FV (x; θ)−β ·S(ν ·(ymax−τ)) ·(S(γS−1(y))−1/2))
(7)

where S and S−1 are respectively the sigmoid and reverse
sigmoid functions. We set τ ← β to control the perturbation
magnitude. With this setting we have y′ → FV (x; θ) when
α→ 0 and y′ → RS when α→ 1.



IV. EXPERIMENTS

In this section, we detail our setup: we explain the datasets,
the training process, the quantization techniques, the evalua-
tion metrics as well as the baselines defenses. Then, we report
and discuss our results.

A. Setup

1) Datasets: We tackle CNNs trained on 5 benchmark
vision datasets with diverse resolutions and different numbers
of classes. We leverage CIFAR-10 [9], a dataset of images
of animals and vehicles with 10 classes; CIFAR-100 [9], a
diverse real-world images dataset with 100 classes; SVHN [10]
a street view house numbers image dataset with 10 classes; and
GTSRB [11], a German traffic signs dataset with 43 classes.
All images are sized to 32×32 pixels. Furthermore, we work
with CUB-200 [12] dataset which contains images of 200
classes of bird species with 224×224 image size.

Since the KnockoffNets [13] attack requires access to an
adversary dataset, we simulate two attack scenarios: a) knowl-
edgeable adversaries and b) knowledge-limited adversaries.
Therefore, to perform the first one, since CIFAR-10 and
CIFAR-100 come from the same distribution TinyImages [9],
we select queries Q from CIFAR-10 to attack models trained
on CIFAR-100 and vice-versa. Second, for knowledge-limited
adversaries we choose unrelated datasets, we select queries
from CIFAR-10 as an adversary dataset for victims trained on
GTSRB and SVHN. To attack the CUB200 victim, we select
images from Pascal-VOC [26] which contains a diverse set of
objects, such as animals, vehicles, and household items.

2) Training: In order to have a fair comparison with the
state-of-the-art techniques and the other baseline defenses, we
follow the same training process using the same hyperparam-
eters by the latest technique: GRAD2 [7]. For the CUB-200
dataset, we leverage a ResNet-34 [25] pretrained CNN on
ImageNet [27] and we fine-tune it for 50 epochs to obtain
our victim model. For the other datasets, we train our victim
models from scratch for 50 epochs using the ResNet-18 [25]
architecture. In KnockoffNets attack [13], the adversary archi-
tecture is a pretrained WideResNet [28] for an attack against
a CUB-200 dataset victim and ResNet-34 against the small
size datasets. In this attack, we limit the query budget to 50k
queries. Similar to [7] in training, we use an SGD optimizer
with an initial learning rate of 0.01 that is annealed with a
cosine schedule. We use a Nesterov Momentum of 0.9 and
a weight decay of 5 · 10−4. In DFME [15] and MAZE [14]
attacks we train adversaries with ResNet-34-8x for small size
datasets and WideResNet for CUB-200 dataset. We train each
model using 20M queries for 200 epochs. Similar to [15], we
use SGD with an initial learning rate of 0.1 and a weight-
decay of 5 · 10−4. Additionally, a learning rate scheduler was
applied that multiplies the learning rate by a factor of 0.3 at
0.1×, 0.3×, and 0.5× the total training epochs.

3) Quantization: We train CNNs for computer vision tasks
in our work. Hence, we use two quantization techniques
from the literature that are most suited to quantizing our
models [3]: PTQ and QAT. We leverage our previously trained
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Fig. 3: State-of-the-art attacks vs. our defense. Curves are
obtained by varying the perturbation magnitude parameter β
(Eq. 7) between 0 and 1.5. The attack performance is rep-
resented on the y-axis by the Adversary’s Error. The x-axis
considers the Defender’s Error. Our defense is effective in
defending against state-of-the-art stealing attacks.

victim models to quantize them with PTQ. We use the same
previously described architectures to retrain quantized models
with QAT.

4) Evaluation metrics:
a) Classification Error and ℓ1 distance: In order to as-

sess the performance of a defense against stealing attacks, we
compute the adversary’s classification error (Adv. Clf.Error)
on the victim’s test set. This metric measures the stolen
functionality from the victim, i.e., the performance of the
extracted model on the same task. Similar to [7], [13], we
use two utility metrics: the defender’s classification error (Def.
Clf.Error) and the ℓ1 distance between the clean predictions
and the perturbed predictions by each defense technique. The
ℓ1 distance metric measures the magnitude of the perturbation
that impacts the prediction probabilities (Eq. 2). A high ℓ1
distance (e.g. ℓ1 > 1.2) entails a high perturbation that might
harm the model’s transparency and reduces its utility when
users require confident probabilities. This helps in identifying
the trade-off between the defender’s performance and the
perturbation budget for each defense. Both accuracies are
calculated using a held-out labeled test set that was not seen
before by the victim (during the training) nor the stolen model.

b) Hardware-related metrics: We compute the average
inference latency per query and the average GPU energy
consumption for all queries using Weights and Biases [29]
platform. This helps perceive the impact of the computation
cost of each defense technique in real-world applications.
To have a fair evaluation, we run all experiments on a
Linux CentOS 7 computer with 1 GPU NVIDIA Tesla P100-
PCIE-12GB and 24 CPU cores Intel E5-2650 v4 Broadwell
@ 2.2GHz.

5) Defenses: We use several baselines to compare our
proposed defenses and validate our approach. No Defense
means that we attack an undefended model. To the best of our
knowledge, the best defenses in the literature are: GRAD2 [7],
MAD [6], AM [16], and RS [8]. First, we compare our defense
using large (i.e., normally trained) models with all the other
defenses. After that, for the quantized models, we compare our
defenses only to the techniques that are more suitable for edge
device implementations. In other words, we select the defense
that maintains the inference time without requiring additional
models: RS.
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Fig. 4: Impact of the KnockoffNets stealing attack [13] on our defense vs. other baselines. Curves are obtained by varying
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TABLE II: Impact of the stealing attack on the defenses with constraints on both the variation of the Defender’s Classification
Error “∆Def.Clf.Error” and the ℓ1 distance between clean and perturbed predictions. We report the maximum attainable value
under both constraints. ∆Def.Clf.Error ranges from 1% to 5% and the ℓ1 distance is maintained at a budget of 0.9. Bold
denotes the best value and underlined denotes the second-best.

CIFAR-10→CIFAR-100 CIFAR-100→CIFAR-10 CIFAR-10→SVHN CIFAR-10→GTSRB Pascal-VOC→CUB200

∆ Def.Clf.Error ∆ Def.Clf.Error ∆ Def.Clf.Error ∆ Def.Clf.Error ∆ Def.Clf.Error
Method 1% 2% 5% 1% 2% 5% 1% 2% 5% 1% 2% 5% 1% 2% 5%

No defense 56.89 56.89 56.89 18.03 18.03 18.03 30.92 30.92 30.92 7.18 7.18 7.18 61.14 61.14 61.14
RS 64.20 64.20 64.20 19.22 19.22 19.22 51.07 51.07 51.07 14.23 14.23 14.23 83.80 83.80 83.80
AM 59.81 61.27 65.87 19.88 21.34 25.65 58.29 58.29 58.29 12.04 15.46 15.46 88.92 88.92 88.92
MAD (pre-sota) 60.27 61.51 64.94 21.54 23.08 27.24 40.42 43.55 51.98 14.84 17.65 23.52 77.11 78.45 80.61
GRAD2 (sota) 60.77 62.06 65.20 21.56 23.37 27.25 43.73 47.27 52.51 11.15 12.86 15.02 82.04 83.49 85.36
DCP (ours) 70.31 70.31 70.31 21.87 23.78 23.78 59.73 59.73 59.73 21.69 21.69 21.69 85.62 85.62 85.62

B. Results

We present the results of our experiments in Fig. 3, Fig. 4,
Fig. 5, Fig. 6, Fig. 7, Table II, and Table III. In the figures,
we visualize two utility metrics: the defender’s error and
the ℓ1 distance between the original predictions y and the
perturbed ones y′. The attack performance is measured by
the adversary’s classification error. The higher this error, the
stronger the defense.

1) DCP defense vs. state-of-the-art attacks: Fig. 3 presents
an evaluation of our defense DCP (Eq. 7) against the three
attacks KnockoffNets [13], DFME [15], and MAZE [14]. We
observe the performance of these attacks on undefended and
defended models. A good adversary produces a model with a
low classification error. As shown in Fig. 3, using our defense
approach for all datasets and attack models can significantly
reduce the effectiveness of the attacker by increasing its
error. Our defense produces reasonable operating points across
all models, with a minimal impact on the defender’s error
and a high impact on the adversary’s error. For instance, a
defended victim trained on the SVHN dataset can multiply
the adversary’s error by up to ×3.3. From Fig. 3 we notice
that the strongest model stealing attack is KnockoffNets as it
produces the lowest adversary’s error for most datasets.

2) DCP defense vs. baselines: We evaluate our defense
and the baselines against the strongest stealing attack in the
attack models evaluation: KnockoffNets. Fig. 4 shows that for

knowledgeable and knowledge-limited attackers, our defense
technique outperforms the state-of-the-art defenses in most
cases. It increases the adversary’s classification error signif-
icantly before it starts impacting the defender’s classification
error. For instance, for CIFAR-10 (Fig. 4a, right column), our
defense DCP outperforms other techniques in increasing the
adversary’s classification error by 22% with a small impact on
the defender’s performance (1%). Most baseline defenses fail
to decrease the adversary’s performance without deteriorating
the defender’s performance. For a victim trained on GTSRB,
when we constrain only the defender’s error to be lower than
1%, our defense DCP increases the adversary’s classification
error by more than 109%. The second-best is RS which
increases the adversary’s classification error up to 79%.

In order to balance both metrics measuring the impact on the
defender’s performance and the ℓ1 distance between clean and
perturbed predictions, we constrain both the ℓ1 distance with
a maximum budget of 0.9 and the defender’s error variation to
be lower than 1%, 2% or 5%. Table II shows the results of this
experiment. In most cases, our defense DCP yields comparable
to or better results than the state-of-the-art defenses while
offering reasonable trade-offs that prioritize the defender’s
performance.

Through these extensive experiments, we prove that our
results are significantly better than the state-of-the-art for
knowledgeable and knowledge-limited adversaries. We pro-



0 1
1 budget 

60

70
Ad

v'
s C

.E
rr

CIFAR-100

0 1
1 budget 

18

20

22

24CIFAR-10

0 1
1 budget 

10

20
SVHN

No Defense RS DCP (ours)

0 1
1 budget 

40

60
GTSRB

0 1
1 budget 

60

70

80

CUB200
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Fig. 6: Performance of the defenses against extraction attacks
relying on different numbers of queries. Each column con-
siders ℓ1 budget constraint. The attacks are performed on a
victim trained on the SVHN dataset. In most cases of a low
number of queries, our defense outperforms other techniques
in increasing the adversary’s classification error.

vide better robustness against stealing attacks while maintain-
ing a reasonable perturbation.

3) Ablation study:
a) Comparing ℓ1 distance of DCP and RS: In the previ-

ous experiments, we observe that RS [8] and our defense DCP
sometimes achieve the same attack performance, i.e., they both
increase the adversary’s error to comparable values with a fast
inference latency. This could be explained by the fact that our
defense uses a noise function that draws some inspiration from
RS. We evaluate both defenses from a perturbation magnitude
standpoint. Fig. 5 shows that our defense outperforms RS
in the matter of ℓ1 budget. In fact, our defense uses less
perturbation to increase the adversary’s classification error.
Hence, DCP overcomes the limitation of RS that requires a
high perturbation to perform well.

b) The impact of the number of queries used in the
stealing attack: We explore the resilience of our defense in
protecting models from multiple stealing attacks with different
budgets of queries. For each attack, we select a budget for the
number of queries ranging from 10k to 50k images. Each
victim model is protected with a perturbation-based defense
constrained by an ℓ1 budget for the distance between the clean
and perturbed predictions. Fig. 6 shows the results of this
experiment on the SVHN dataset. Our defense increases the
adversary’s classification error significantly higher than other
defenses, especially for a lower number of queries. This entails
that our defense slows down the adversary which makes him
use a larger number of queries to perform the attack.

TABLE III: The average inference latency per query and the
average energy consumption required to generate all perturbed
queries, bold means best.

CIFAR10 CIFAR100 SVHN GTSRB CUB200

Defense Inference latency (ms)

No defense 0.10 0.09 0.09 0.07 0.09
RS [8] 0.10 0.10 0.09 0.13 0.10

AM [16] 0.14 0.14 0.13 0.16 0.17
MAD [6] 58.02 499.09 59.12 225.50 121.4

GRAD2 [7] 4.09 21.83 4.39 14.47 44.17
DCP (ours) 0.11 0.09 0.09 0.13 0.09

Defense Energy consumption (Wh)

No defense 0.13 0.15 0.20 0.12 0.43
RS [8] 0.18 0.15 0.20 0.12 0.90

AM [16] 0.21 0.18 0.23 0.17 0.93
MAD [6] 2.79 22.18 6.96 12.66 80.06

GRAD2 [7] 0.42 1.20 0.94 1.19 12.15
DCP (ours) 0.17 0.17 0.20 0.12 0.59

4) Inference latency and energy consumption: To validate
the efficiency of our proposed defense, we report in Table III
the hardware-related evaluation metrics for our defense and
the baselines. For example, for the CIFAR-10 dataset, we
obtain ×37 faster inference than the state-of-the-art technique
GRAD2 and more than ×527 faster inference than MAD.
In addition, we show that our defenses have comparable
minimal energy consumption for each dataset compared to
other defenses. Finally, we only require half the memory used
by most of the baselines, since our technique does not require
an extra model to compute the perturbations. To conclude,
our defense is practical for edge device implementations:
in general, we report comparable-to-best results in inference
latency and energy consumption.

5) Model stealing defenses on quantized models: We val-
idate the extension of our techniques on quantized CNNs.
Fig. 7 shows that in most cases our defense outperforms
or matches the results of RS. For example, in PTQ results
(Fig. 7a), for a selected perturbation budget (e.g. ℓ1 = 0.5),
our technique DCP provides better protection against model
stealing attacks through increasing the adversary’s classifica-
tion error to between 5% and 20% while maintaining the
defender’s performance. Our technique sometimes achieves
the same performance while having lower perturbations. This
shows that our defense can be used in DL models targeting
embedded systems applications.

V. CONCLUSION

The motivation for our work is the non-efficiency of pre-
vious defense techniques against model stealing attacks. This
hinders their deployment in edge devices. We overcame the
heavy computation problem with a novel heuristic defense. We
empirically proved that it works efficiently on large CNNs and
their corresponding quantized versions targeting edge devices.
We found that our approach achieves comparable-to-better
performance with the state-of-the-art while maintaining low
perturbations and fast inference time. Our defense proved to
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Fig. 7: Performance of the defense against stealing attack on
Quantized CNNs with two quantization techniques PTQ (a)
and QAT (b). Our defense outperforms the baseline defense
that does not require an auxiliary model, nor increases infer-
ence delays.

be effective in amplifying the adversary’s classification error
under various attack models.

With this paper, we shed light on the need for considering
the hardware limitations during the development of security
and privacy algorithms for DL applications. We strongly
encourage the community to prioritize the practicality of their
proposed defenses, not as an undesired side-effect, but as
a crucial requirement for real-world applications. For future
work, we intend to work on developing efficient defenses
specifically tailored for edge devices and real-time systems.
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