
IMPROVED BATCHING STRATEGY FOR IRREGULAR
TIME-SERIES ODE

Ting Fung Lam, Yony Bresler, Ahmed Khorshid, Nathan Perlmutter†
Crater Labs

Toronto, Canada
{wilton, ahmed, yony}@craterlabs.io

ABSTRACT

Irregular time series data are prevalent in the real world and are challenging to model with a simple
recurrent neural network (RNN). Hence, a model that combines the use of ordinary differential
equations (ODE) and RNN was proposed (ODE-RNN) to model irregular time series with higher
accuracy, but it suffers from high computational costs. In this paper, we propose an improvement in
the runtime on ODE-RNNs by using a different efficient batching strategy. Our experiments show
that the new models reduce the runtime of ODE-RNN significantly ranging from 2 times up to 49
times depending on the irregularity of the data while maintaining comparable accuracy. Hence, our
model can scale favorably for modeling larger irregular data sets.

1 Introduction

Time series models are ubiquitous in numerous applications such as predictive maintenance [1, 2, 3], financial forecasting
[4], and next sentence prediction [5, 6]. While statistical time series methods such as ARIMA can outperform machine
learning methods for univariate datasets [7], machine learning promises superior performance for large multivariate
datasets [8]. Recurrent Neural Networks (RNN) with memory retention such as Gated Recurrent Units (GRU) or Long
Short Term Memory (LSTM) have been the gold standard for temporal machine learning models. The hidden state hi
of a traditional RNN cell is only updated every observation, which is not a problem if the data points are equidistant in
space or time. However, this poses limitations for applications where observations are irregular or cannot be obtained
periodically [9, 10]. For instance, various measurements of patients are often obtained at irregular intervals [11], so
there is a need for a model that takes into account the time difference between data points.

To account for irregular sampling, data points are often binned into regular intervals using aggregation. This technique
has two problems: 1. The sampling interval chosen has to be larger than the smallest interval between two consecutive
data points. 2. Averaging data points destroys valuable information about the correlation between sampling intervals
and latent variables [12, 13]. Another solution is to include the time delta as an additional feature to the RNN input
hi = RNNCell(hi−1,∆t, xi), but this will not interpolate the hidden state between observations [14]. Rubanova et
al. have developed an RNN model that evolves the latent hidden states using ordinary differential equations (ODE-
RNN) [14]. First, the ODE is solved using a Neural ODE, a class of neural networks with parameters θ, which
defines the latent state as a solution to an ODE initial-value problem [15]. The latent state at time ti is defined as
h′i = ODESolve(fθ, hi−1, (ti−1, ti)) where fθ = dh′/dt. Second, the hidden state is updated using a standard RNN:
hi = RNNCell(h′i, xi) [14]. These two steps are repeated for subsequent time steps. An ODE can be solved numerically
using an adaptive step approach such as the Runge-Kutta method, or a fixed step approach such as the Euler method.
The ODE solver from Rubanova’s work can be used with both methods [16]. However, their approach requires using the
union of time values across a mini-batch (combined time). This can drastically slow down the training time, especially
with the presence of multiple non-unique time values.

†former member

ar
X

iv
:2

20
7.

05
70

8v
1 

 [
cs

.L
G

] 
 1

2 
Ju

l 2
02

2



In this paper, we propose using a fixed step approach coupled with a batching strategy that scales linearly with the
sequence length. We demonstrate that our proposed method can achieve both better accuracy and speed in comparison
to the combined time approach on public and synthetic datasets.

2 Related Work

Problem statement We consider the auto-regressive problem: Given a time series i ∈ {0, ...,N-1} of input features
xi ∈ Rdx at times ti ∈ R, given a time tN , predict yN ∈ Rdy . We perform prediction at a single future point for
simplicity. We denote in bold vectors or tensors that vary across the mini-batch, to distinguish them from scalars.

Combined time ODE-RNN model We begin by examining how Rubanova’s [14] combined method works to
demonstrate how more irregular datasets lead to increasingly slower model training. The reason for the slowdown
is two-fold: The first is that while an RNN requires only a single forward step between each input sample, the ODE
portion takes multiple steps that depend on both the size of the time jump ∆tN+1 = tN+1− tN as well as the curvature
(dfθ/dt) of the hidden state. The tuning of hyperparameters allows for some trade-off between training time and
accuracy, by changing either the acceptable error tolerance (for adaptive procedures such as dopri5) or by changing
the fixed time jump (for fixed procedures such as forward Euler). A second reason for slower training that is more
difficult to sidestep by tuning hyperparameters is due to the way the combined time method handles integration time in
a mini-batch. If the mini-batch only has a single sequence or if the irregular sequence is identical across the mini-batch,
the process is straightforward, as the model updates the hidden state using the RNN of sample xi and then uses ODE
evolver to advance from time ti to ti+1.

The process requires additional steps when the mini-batch has multiple samples that are not equal in their irregular
intervals. Consider the illustration shown in Figure 1(a) for a mini-batch of 4, each with 4 samples at different times as
indicated by the horizontal axis. Time is evolved in unison across the mini-batch. The sequence begins with all samples
at t0 = 0 (black), and the RNN with x0 (in black) can be applied. Then the hidden state is evolved forward in unison
across the mini-batch, as all 4 samples are integrated up to t = 1. An RNN update is performed only for the second
sequence (shown in red), while the other two sequences are unchanged, using a mask. Then integration continues to
t = 1.5, RNN is applied selectively to the third sequence (shown in pink), and the process continues until the last time
point is reached. Pseudocode for this is given in Algorithm 1. This process slows training: the loop iterated over the
unique times across the mini-batch which can be much larger than the length of any single item in the mini-batch.
Additionally, masking and indexing are required at each iteration to track the RNN input features. This slowdown is
more pronounced when using a large mini-batch size, or when the dataset is more irregular, and the number of unique
times across the batch grows.

(a) (b)

Figure 1: (a) The combined time method takes the union of all the time steps in a batch and loops every step. (b) Our
model only loops every step regardless of the time values of the time steps.

Other related work Recent works used various strategies to improve the efficiency and accuracy of ODEs for
learning irregular time series data. The second-order neural ODE optimizer (SNOpt) computes second-order derivative
gradients for the backward propagation to improve training efficiency [17]. Likewise, heavy ball ODE (HBODE)
combines gradient descent with momentum with ODE, to generate a 2nd order ODE with a damping factor to accelerate
training [18]. The Taylor-Lagrange Neural ODE (TL-NODE) model uses the Taylor expansion series with Lagrange
form of error approximation of the Taylor series to replace the ODESolve for doing numerical integration, to improve
the efficiency of the forward propagation of neural ODE [19]. The model order reduction method uses proper orthogonal
decomposition to reduce the dimensions of the weight matrices of the network, and a discrete empirical interpolation

2



Algorithm 1: Rubanova’s combined time ODE-RNN
Data: Data points {xi}i=0..N−1, corresponding time differences {∆ti}i=0..N−1 and final jump {∆ti}i=N
{ti}i=0..N =

∑i
j=0 ∆tj ;

ct = unique(tn) ; B combined time across mini-batch
h = 0 ;
for j = 0..len(ct)− 1 do

tcur = ct (j) ;
tprev = ct (j − 1) ;

h′ =

{
ODESolve(fθ,h, (tprev, tcur)), tcur < tN+1

h, otherwise
; B Perform ODE if needed

h =

{
RNN(h′,x(t = tcur)), tcur ∈ t

h′, otherwise
; B Update hidden state if it exists for tcur

end for
Result: h

Method to replace the activation functions with interpolation operations [20]. Lyanet uses the Lyapunov theory
from control theory to replace the loss function of neural ODE with the Lyapunov Loss to guarantee that the ODE
exponentially converse and provide adversarial robustness [21]. Skip DEQ made two improvements to the existing
DEQ model by first, add an explicit layer with some regularizations before the implicit layer to better predict the initial
state, and secondly, replace the implicit layer with an ODE that runs to infinite time using adaptive ODE solvers [22].
Finally, the neural flows method does not approximate the solution of an ODE but directly learns the solutions of the
ODE, so an ODE solver is not necessary [23].

3 Model

Our approach is to reduce training time performance by changing how time is evolved across the batch. Instead of using
the combined unique times, we allow each sample in the mini-batch to evolve independently, as shown in Figure 1(b).
As before, all sequences begin at t0 = 0, and the RNN (x0) is applied. But now each sequence across the mini-batch
is evolved to different points in time: t1 = [1, 2, 1.5]. The RNN for the observations x1 (shown in red) can then be
applied to all sequences in the batch, each sample is evolved to its next sample in time (shown in blue), and the process
continues. Full details are shown in Algorithm 2. This can have several advantages: First, the number of iterations
of the loop is set by the single longest input sequence, and not the combined unique time points across the entire
mini-batch. Secondly, it eliminates the overhead of masking the RNN updates, since they occur simultaneously across
the mini-batch.

Algorithm 2: Our batch efficient ODE-RNN
Data: Data points {xi}i=0..N−1, time differences {∆ti}i=0..N−1, and final time-jump {∆ti}i=N
h = 0;
for j = 0..N − 1 do

h′ = Evolver(h,∆tj) ; B Refer to Evolver Algorithm 3/4/5
h = RNN(xj ,h

′);
end for
h = Evolver(h,∆tN ) ; B Perform final-jump before making prediction
o = OutputNN(h);
Result: o,h

The combined time approach with the Torchdiffeq evolver allows for many choices in the integration method: fixed
time-step methods such as forward Euler, the midpoint method or Runge-Kutta, and adaptive integrators where a relative
error rate is given and the method automatically adjusts the time step to meet the estimated threshold. Keeping our
objective of improving model performance, we introduce three different evolver modules, all of which use a form of
forward Euler, each with a slightly different method of performing the integration. The first uses a fixed time step,
with a varying number of steps across the mini-batch. The second uses a fixed number of steps, with varying time
steps across the mini-batch. The third uses a geometrically increasing time step, with a varying number of steps across

3



the mini-batch. Our approach is best suited for large irregular time-series datasets where the irregularity varies across
mini-batch samples.

Our first model is the fixed dt method that uses a scalar value ∆t, which is held constant throughout training, to evolve
all hidden states. As shown in Algorithm 3, the loop is set by the largest time to evolve in the batch, and a simple
mask is used to prevent updating any hidden state once its respective ∆ti is reached. This ensures the rounding error is
independent of the time jumps but can lead to long run-time and very deep networks when the largest time jump is
much larger than ∆t.

Algorithm 3: Evolver module: Fixed dt mode
Data: Step size s, Hidden state h and corresponding time differences ∆t
n = ∆t/s ; B number of steps varies across mini-batch
N = max(n);
for j = 0..N − 1 do

mask = j < n;
h′ = fθ(h); B learning dh

dt
h = h + s ∗mask ∗ h′

end for
Result: h

Algorithm 4: Evolver module: adaptive fixed mode
Data: Number of steps N , Hidden state h and corresponding time differences ∆t

ti =
∑i
j=0 ∆tj ;

s = ∆t/N ; B step size varies across mini-batch
for j = 0..N − 1 do

mask = j ∗ s < ∆t;
h′ = fθ(h); B FC learning dh

dt
h = h + s ∗mask ∗ h′

end for
Result: h

A second method uses a fixed number of iterations in the loop that is independent of the time differences in the
mini-batch, shown in Algorithm 4. Here the step size s is no longer a scalar but a vector with values for each sequence
in the mini-batch. This has the advantage of giving a consistent run-time and depth to the forward pass regardless of the
time-jumps, though it can lead to larger rounding errors for larger valued s.

The fixed dt and adaptive fixed methods have opposing trade-offs: the first can suffer from very deep networks, while the
second may incur large rounding errors. We propose a third method in an attempt to balance the two. We hypothesize
that there is more change in curvature in the hidden state immediately after a new measurement t = ti, than there is if
the state is evolved for a later time t >> ti. The geometric adaptive algorithm starts with a small step size s0, which
is then increased using the multiplicative constant si = si−1 ∗ r with the growth factor r > 1. If the time step were
to overshoot ti+1, it is reduced to reach it exactly, and a mask is used to prevent it from being evolved further. Full
details are shown in Algorithm 5. For example, using our default values s0 = 0.001, r = 1.5, requires 5 steps to reach
t = 0.01, 15 to reach t = 1, and only 39 steps to reach t = 10, 000. Although a similar increase in step size for a flatter
derivative is possible with the adaptive routines of the combined time method, in practice we found that method to be
even slower than using the combined time method with a fixed step size.

4 Experiments

We evaluate our model on synthetic and real-world datasets including synthetic sine waves, MuJoCo physics simulation,
and MIMIC-IV clinical dataset. The task for all of our models is to predict the last time step given all the preceding
time steps in the dataset. They are trained to minimize the MSE loss in accordance with the hyperparameters and details
listed in the appendix. In the following section, we compare the training time and accuracy of these three models to a
simple RNN model as well as the combined time method baseline, using several datasets. We implement the combined
time method with a wrapper for torchdiffeq [15] 3.

3The code will be available online publicly soon.

4



Algorithm 5: Evolver module: adaptive geometric mode
Data: Initial step size s0, Growth factor r > 1, Hidden state h and corresponding time differences ∆t
N = max {dlog [(r − 1) ∗∆t/s0] /s0e} ; B Find geometric series steps needed for largest
value
tcur = 0;
s = s0;
for j = 0..N − 1 do

mask = j ∗ s < ∆t;
scur = min {s,∆t− tcur} ; B Prevent overshooting target time if s is too large
h′ = fθ(h); B FC learning dh

dt
h = h + scur ∗mask ∗ h′;
tcur += s;
s = s ∗ r; B Grow s by factor r

end for
Result: h

4.1 Synthetic dataset

We follow the procedure stated by Rubanova et al. to generate 10,000 synthetic sinusoidal wave sequence data with
variable frequencies and starting position, and constant amplitude with a few minor modifications [14] (see Appendix
A.1). To find out how the irregularity of the data influences the training time and accuracy, we generate random
sequences with 50 random time steps in each sequence. The time steps are sampled with rounding of 0.1 and 0.001
units for comparison (Figure 2).

0 1 2 3 4 5
Time

1.0

0.5

0.0

0.5

1.0

x

rounding = 0.1
rounding = 0.001

Figure 2: Points sampled from a sample sine function trajectory with step rounding of 0.1 and 0.001 time units for
comparison, with vertical grid lines of interval of 0.1 units.

Our efficient ODE-RNN models achieve superior performance in terms of run time and accuracy against the baseline
combined time method and simple RNN models. Regarding the different modes of our model, the adaptive fixed mode
gives the least mean squared error (MSE) for time values rounded to the nearest 0.001 units, while all models result in
similar MSEs for rounding of 0.1 units. Regarding the 0.001 units rounded dataset, our model achieves a significant
accuracy improvement compared to the combined time method and simple RNN due to the high irregularity of the
dataset. Moreover, the combined time method also attains significant improvement in accuracy over simple RNN.
In addition, we observe that the dopri5 solver offers only minimal improvements in accuracy for the combined time
method model as demonstrated in previous research [23], while using greater tolerance parameters to make training
feasible (Table 1).

We achieve a speed-up of training time per epoch of at least two times and up to 49 times with our ODE-RNN model for
the synthetic datasets. In addition, the time steps with rounding of 0.001 units take significantly longer for the combined
time method model to train while slightly longer for our model. Since the number of unique time steps in a batch with a
rounding of 0.001 units is much greater than for a rounding of 0.1 units, more iterations are required, thus resulting in a
tremendous increase in training time per epoch. As a result, our method achieves a speedup of 49 times against the
combined time method using the Euler solver. Also, using multi-GPU fails to speed up the training process due to the
relatively small batch size being used. For the combined time method models, we use a larger learning rate of 0.01 as in

5



Rubanova et al. to reduce the number of epochs necessary, so that the training can be feasibly performed. [14] Using
dopri5 solver for the combined time method model results in approximately 4 times longer training runtime than the
Euler solver while achieving no significant improvements as demonstrated previously [23] (Table 2).

Synthetic (Rounding) MuJoCo (% points selected, ×10−3) MIMIC-IV
MSE 0.001 0.1 50% 10%
Combined time (euler) 0.05722 0.01223 0.30516 1.94714 n.d.
Combined time (dopri5) 0.04780 0.01218 0.28009 1.94433 n.d.
Simple RNN 0.10344 0.01264 0.21902 1.96752 0.27685
Fixed dt 0.02832 0.01261 0.22483 1.26604 0.27527
Adaptive fixed 0.01295 0.01249 0.25461 1.25475 0.27648
Adaptive geometric 0.01367 0.01261 0.21853 1.37623 0.27681

Table 1: Test mean squared error for all datasets. Best results are bolded. All runs are performed with fixed random
seeds to make the results reproducible.

Synthetic (Rounding) MuJoCo (% points selected) MIMIC-IV
Wall time per epoch (s) 0.001 0.1 50% 10%
Combined time (euler) 1164.80±34.88 32.26±1.18 60.27±2.40 59.86±2.10 n.d.
Combined time (dopri5) 4414.27±297.87 137.10±6.72 204.15±9.01 215.34±7.51 n.d.
Simple RNN 11.36±0.26 8.54±0.24 9.75±0.43 3.54±0.16 113.21±1.52
Fixed dt 24.94±1.06 15.37±0.64 22.62±0.94 18.03±0.75 144.89±2.23
Adaptive fixed 29.58±1.23 27.45±0.36 29.12±1.28 8.84±1.18 499.12±19.91
Adaptive geometric 23.72±1.42 16.75±0.59 24.23±0.81 11.66±0.21 195.09±2.32

Table 2: Average training runtime per epoch after the first epoch for all datasets with standard deviation.

(a) (b) (c) (d)

Figure 3: Test MSE of a) synthetic dataset with rounding b) MuJoCo dataset with percentage of points selected c)
MIMIC-IV dataset. d) Average runtime per epoch of all datasets with standard deviation. For ODE-RNN, the models
which result in the lowest MSE are plotted

4.2 MuJoCo physics simulation

MuJoCo is a physics engine containing a module named "Hopper" for generating the physical dynamics of an imaginary
frog-like organism. Following the previously reported methods exactly [14, 23], 10,000 sequences of the "hopper" with
100 time steps and 14 features in each step are generated. Subsequently, we randomly sample 50% and 10% of the time
steps for performing comparison experiments and use them to train our model.

Our model attains better performance in terms of accuracy against the baseline and simple RNN models in a similar
fashion to the synthetic datasets. Moreover, the different methods of our model perform similarly, and the model
achieves maximum performance gain for the 10% sampled dataset, which has higher irregularity than the 50% sampled
dataset (Table 1). In addition, our implementation results in at least two times faster training runtime than the combined
time method (Table 2).

6



4.3 MIMIC-IV clinical dataset

The MIMIC-IV dataset contains clinical data of more than 40,000 intensive care unit patients in Beth Israel Deaconess
Medical Center [24]. We follow the procedure stated in [23] without any changes to process the MIMIC-IV v1.0 dataset
so that it contains time series data of 17,874 patients and 102 features.

Our results indicate that all methods of our model attain only an insignificant improvement in terms of MSE compared
to simple RNN (Table 1). Since we observe that our model overfits the training data in higher degrees compared to RNN,
we attempt to address it by adding dropout layers to our ODE evolver to reduce overfitting. Nonetheless, our model
is unable to achieve any significant improvements compared to simple RNN. A possible reason is that the observed
features of the MIMIC-IV data are too sparse for the models to train in contrast to the synthetic and MuJoCo datasets.
Notably, the results in [25] also show that the neural ODE-VAE models perform worse than simple RNN for the similar
MIMIC-III dataset. Meanwhile, the combined time model has a much higher runtime per epoch, and the training fails
to converge for this dataset.

5 Discussion and conclusion

We propose the new ODE-RNN models to improve the combined time method, including fixed dt, adaptive fixed,
and adaptive geometric modes. The new mini-batching strategy allows faster computation by reducing the number
of iterations necessary during training. Hence, these models improve the speed of ODE-RNN without sacrificing its
accuracy, as demonstrated by our experiments on both synthetic and real-life data. We believe that this method works
because unlike solving a regular ODE, the model learns fθ and may be able to compensate for coarser time steps. Our
models can be scaled for processing larger irregular time-series datasets at a more reasonable financial cost. Finally, our
models are more likely to achieve higher performance gain compared to simple RNN when the irregularity of the input
dataset increases, so it should be utilized on datasets with high irregularities.

In this paper, our task is to predict the last data point from a time series sequence. Therefore, our models can be
extended to different tasks such as interpolation and extrapolation for more than one data point. This will facilitate a
wider range of real-life applications. It will be interesting to test our model on large and irregular datasets that are not
sparse, as well as extending the evolver to use higher-order methods.

We test our model on non-public datasets that are highly irregular and common in the industry. In one experiment, the
dataset consists of phone call logs with features such as call duration, call direction, call type, and time of the call.
The task is to predict the duration of the call after a sliding window of calls. Due to the high cardinality of unique
times within the call logs mini-batch, our model is able to achieve similar accuracy to the combined time approach at a
fraction of the processing cost.

Acknowledgments

We thank Seyed-Parsa Hojjat for useful discussions and feedback, and Nausheen Fatma for contributing to the combined
times wrapper code. We also thank David Duvenaud and Yulia Rubanova for the helpful discussion at the onset of our
project.

References

[1] A. Kanawaday and A. Sane, “Machine learning for predictive maintenance of industrial machines using iot
sensor data,” in 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS),
pp. 87–90, 2017.

[2] C.-Y. Lin, Y.-M. Hsieh, F.-T. Cheng, H.-C. Huang, and M. Adnan, “Time series prediction algorithm for intelligent
predictive maintenance,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2807–2814, 2019.

[3] K. S. Kiangala and Z. Wang, “An effective predictive maintenance framework for conveyor motors using dual
time-series imaging and convolutional neural network in an industry 4.0 environment,” IEEE Access, vol. 8,
pp. 121033–121049, 2020.

[4] R. P. Masini, M. C. Medeiros, and E. F. Mendes, “Machine learning advances for time series forecasting,” Journal
of Economic Surveys, 2021.

[5] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,”
arXiv preprint arXiv:1301.3781, 2013.

7



[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for
language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[7] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and machine learning forecasting methods:
Concerns and ways forward,” PLOS ONE, vol. 13, 03 2018.

[8] V. Cerqueira, L. Torgo, and C. Soares, “Machine learning vs statistical methods for time series forecasting: Size
matters,” arXiv preprint arXiv:1909.13316, 2019.

[9] M. Saeed, M. Villarroel, A. T. Reisner, G. Clifford, L.-W. Lehman, G. Moody, T. Heldt, T. H. Kyaw, B. Moody,
and R. G. Mark, “Multiparameter intelligent monitoring in intensive care ii (mimic-ii): a public-access intensive
care unit database,” Critical care medicine, vol. 39, no. 5, p. 952, 2011.

[10] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi, B. Moody, P. Szolovits,
L. Anthony Celi, and R. G. Mark, “Mimic-iii, a freely accessible critical care database,” Scientific data, vol. 3,
no. 1, pp. 1–9, 2016.

[11] I. Silva, G. Moody, D. J. Scott, L. A. Celi, and R. G. Mark, “Predicting in-hospital mortality of icu patients: The
physionet/computing in cardiology challenge 2012,” Computing in cardiology, vol. 39, pp. 245–248, 2012.

[12] Z. C. Lipton, D. Kale, and R. Wetzel, “Directly modeling missing data in sequences with rnns: Improved
classification of clinical time series,” in Machine learning for healthcare conference, pp. 253–270, PMLR, 2016.

[13] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent neural networks for multivariate time series
with missing values,” Scientific reports, vol. 8, no. 1, pp. 1–12, 2018.

[14] Y. Rubanova, R. T. Q. Chen, and D. K. Duvenaud, “Latent ordinary differential equations for irregularly-sampled
time series,” in Advances in Neural Information Processing Systems (H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), vol. 32, Curran Associates, Inc., 2019.

[15] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equations,”
in Advances in Neural Information Processing Systems (S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran Associates, Inc., 2018.

[16] R. T. Q. Chen, B. Amos, and M. Nickel, “Learning neural event functions for ordinary differential equations,”
International Conference on Learning Representations, 2021.

[17] G.-H. Liu, T. Chen, and E. Theodorou, “Second-order neural ode optimizer,” in Advances in Neural Information
Processing Systems (M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.), vol. 34,
pp. 25267–25279, Curran Associates, Inc., 2021.

[18] H. Xia, V. Suliafu, H. Ji, T. Nguyen, A. Bertozzi, S. Osher, and B. Wang, “Heavy ball neural ordinary differential
equations,” in Advances in Neural Information Processing Systems (M. Ranzato, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, eds.), vol. 34, pp. 18646–18659, Curran Associates, Inc., 2021.

[19] F. Djeumou, C. Neary, E. Goubault, S. Putot, and U. Topcu, “Taylor-lagrange neural ordinary differential equations:
Toward fast training and evaluation of neural odes,” arXiv preprint arXiv:2201.05715, 2022.

[20] M. Lehtimäki, L. Paunonen, and M.-L. Linne, “Accelerating neural odes using model order reduction,” arXiv
preprint arXiv:2105.14070, 2021.

[21] I. D. J. Rodriguez, A. D. Ames, and Y. Yue, “Lyanet: A lyapunov framework for training neural odes,” arXiv
preprint arXiv:2202.02526, 2022.

[22] A. Pal, A. Edelman, and C. Rackauckas, “Mixing implicit and explicit deep learning with skip deqs and infinite
time neural odes (continuous deqs),” arXiv preprint arXiv:2201.12240, 2022.

[23] M. Biloš, J. Sommer, S. S. Rangapuram, T. Januschowski, and S. Günnemann, “Neural flows: Efficient alternative
to neural ODEs,” Advances in Neural Information Processing Systems, 2021.

[24] A. Johnson, L. Bulgarelli, T. Pollard, S. Horng, L. A. Celi, and R. Mark, “Mimic-iv,” 2021.
[25] E. De Brouwer, J. Simm, A. Arany, and Y. Moreau, “Gru-ode-bayes: Continuous modeling of sporadically-

observed time series,” in Advances in Neural Information Processing Systems (H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), vol. 32, Curran Associates, Inc., 2019.

8



A Data pre-processing

A.1 Synthetic data

The protocol reported by Rubanova et al. is followed [14]. We generate 10,000 one-dimensional sequences with 50
random time points rounded to the nearest of 0.1 as well as 0.001 units in the interval [0, 5]. We use the sine function
with amplitude of 1 and frequency sampled uniformly from the interval of [0.5, 1], and sample the starting point from a
normal distribution with a mean of 1 and standard deviation of 0.1.

A.2 MuJuCo physics simulation

The code published by Bilos et al. and Rubanova et al. is used directly to obtain the data for this experiment [23, 14].
They generate 10,000 sequences of the "hopper" with 100 time steps with 14 features. We use that data without any
changes, and sampled 50 or 10 time steps randomly for the experiment.

A.3 MIMIC-IV clinical dataset

We followed [23] for processing MIMIC-IV dataset without any changes. They also follow and modify the procedure
from [25] which pre-processes MIMIC-III to pre-process MIMIC-IV. After running the code, the data contains time
series of 17,874 patients with 102 features. We zero-padded the time series sequences to the longest sequence of 919
time steps at the beginning of the sequences. Also, the data was used directly without any additional normalization.
Because a lot of the features are not observed in each time step, the data contains a mask dataset of 102 features
consisting of 0s and 1s indicating whether that corresponding features are observed or not.

B Training

B.1 General procedure

All the data used in the experiments below are split into train, validation, and test sets with an 80:10:10 ratio. The
models are trained with early stopping using the validation set, and the results are reported for the test set. We used a
machine with 187 GB of RAM, as well as one or two NVIDIA Quadro RTX 8000 48GB GPUs to train our models for
single and multi GPU modes respectively. We find the optimal hyperparameters for each model individually as time and
available computation resources allow. We use a fixed random seed for all runs.

B.2 Packages

Please refer to requirements.txt in our code for the complete list of packages.

• pytorch-lightning: 1.5.10

• pytorch: 1.10.2

• CUDA: 11.3

• torchdiffeq: 0.2.2 [15]

C Default hyperparameters for both our model and the combined time method

• All experiments: Adam optimizer

• Multi-GPU: False

• Early stopping patience epochs: 10

• Min/max epochs: 50/1000

• Learning Rate: 0.01 (Combined time) 0.001 (All other models)

• Default Mode: Fixed dt

• Number of adaptive steps for adaptive fixed mode: 5

• Dynamic step growth factor for adaptive geometric mode: 1.5

• Combined time method dopri5 tolerances: 10−3 (rtol) 10−4 (atol)

9



C.1 Synthetic data

• Batch size: 50 (single-GPU), 25 (multi-GPU)
• Hidden size: 10
• Evolver dropout: False
• Step size: 0.1 (ODE-RNN fixed dt and Combined time with euler)

C.2 MuJoCo physics simulation

• Batch size: 50 (single-GPU), 25 (multi-GPU)
• Hidden size: 20
• Evolver dropout: False
• Step size: 0.01 (ODE-RNN fixed dt and Combined time with euler)

C.3 MIMIC-IV clinical dataset

• Batch size: 100
• Hidden size: 64
• Evolver dropout: 0.4
• Step size: 0.05 (ODE-RNN only)

D Additional results

Synthetic (Rounding) MuJoCo (% points selected)
Wall time per epoch (s) 0.001 0.1 50% 10%
Fixed dt, multi-GPU 26.13±1.19 16.55±0.40 22.76±0.48 18.32±0.45
Adaptive fixed, multi-GPU 31.05±1.58 32.47±1.25 29.35±1.09 10.53±0.22
Adaptive geometric, multi-GPU 23.75±0.61 18.09±0.41 23.73±0.65 10.36±0.26

Table A1: Training runtime per epoch after the first epoch for multi-GPU mode using synthetic and MuJoCo datasets
with standard deviation. Due to the large size of the dataset, our instrument does not have enough memory to run the
multi-GPU modes.

10


	1 Introduction
	2 Related Work
	3 Model
	4 Experiments
	4.1 Synthetic dataset
	4.2 MuJoCo physics simulation
	4.3 MIMIC-IV clinical dataset

	5 Discussion and conclusion
	A Data pre-processing
	A.1 Synthetic data
	A.2 MuJuCo physics simulation
	A.3 MIMIC-IV clinical dataset

	B Training
	B.1 General procedure
	B.2 Packages

	C Default hyperparameters for both our model and the combined time method
	C.1 Synthetic data
	C.2 MuJoCo physics simulation
	C.3 MIMIC-IV clinical dataset

	D Additional results

