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Abstract—Machine learning (ML) is becoming increasingly
popular for predicting material properties to accelerate materials
discovery. Because material properties are strongly affected by its
crystal structure, a key issue is converting the crystal structure
into the features for input to the ML model. Currently, the
most common method is to convert the crystal structure into a
graph and predicting its properties using a graph neural network
(GNN). Some GNN models, such as crystal graph convolutional
neural network (CGCNN) and atomistic line graph neural
network (ALIGNN), have achieved highly accurate predictions
of material properties. Despite these successes, using a graph to
represent a crystal structure has the notable limitation of losing
the crystal structure’s three-dimensional (3D) information. In this
work, we propose DeepCrysTet, a novel deep learning approach
for predicting material properties, which uses crystal structures
represented as a 3D tetrahedral mesh generated by Delaunay
tetrahedralization. DeepCrysTet provides a useful framework
that includes a 3D mesh generation method, mesh-based feature
design, and neural network design. The experimental results
using the Materials Project dataset show that DeepCrysTet
significantly outperforms existing GNN models in classifying
crystal structures and achieves state-of-the-art performance in
predicting elastic properties.

Index Terms—Deep Learning, Neural Network, Materials In-
formatics, Crystal Structure, Tetrahedral Mesh

I. INTRODUCTION

Machine learning (ML) has emerged as a powerful tool
for accelerating the design of new materials [1]. The primary
application of ML is to predict material properties based on
chemical and structural information without time-consuming
experiments. Conventional methods for predicting material
properties involve the application of ab initio calculations by
applying, amongst others, density functional theory (DFT),
which has proven computationally expensive. By the adoption
of ML, predictions are expected to be significantly faster
than DFT calculations, leading to the efficient design of new
materials with desired properties.

Because most inorganic materials, such as metals and
ceramics, are crystalline and their properties are strongly
affected by their crystal structures, a key issue in predicting
the properties of crystalline materials is the conversion of
the crystal structure into features for input to the ML model.
Currently, the most common and practical method is to convert
the crystal structure into a graph, as illustrated in Fig. 1 (b).
To date, various graph neural network (GNN) architectures

Fig. 1. Illustration of a crystal structure of NaCl with three representations:
(a) a 3D point cloud, (b) a graph used in existing studies [2]–[5], and (c) a
3D tetrahedral mesh used in our work. The cubes in (a) and (c) illustrate unit
cells.

have been rapidly developed to predict the properties of
crystalline materials [2]–[5]. The crystal graph convolutional
neural network (CGCNN) [2], a representative model, has
achieved highly accurate predictions of properties such as
formation energy and band gap.

Despite these successes, using a graph to represent a crys-
tal structure has the notable limitation of losing the crystal
structure’s three-dimensional (3D) information. The crystal
structure is originally composed of 3D atomic coordinates
and a space lattice representing the 3D periodicity of these
coordinates, as shown in Fig. 1 (a). It is known that the 3D
atomic coordinates and the 3D shape of the unit cell, the
periodic unit of the space lattice, are related to certain material
properties, such as magnetic [6] and elastic [7] properties.
Therefore, prediction accuracy can be further improved by
designing a data representation that takes advantage of the
3D crystal structure.

In this work, we propose DeepCrysTet, a deep learning-
based approach for predicting material properties, which uses
crystal structures represented as a 3D tetrahedral mesh to over-
come the limitations of graph-based approaches. DeepCrysTet
provides a valuable framework comprising three core com-
ponents: a 3D mesh generation method, mesh-based feature
design, and neural network design. The 3D tetrahedral mesh
of the crystal structure used in DeepCrysTet, as shown in Fig. 1
(c), is generated by Delaunay tetrahedralization [8]. Further-
more, we designed two types of features: structural features
of the crystal structure and chemical features of constituent
atoms, using triangular faces in the tetrahedral mesh as a

ar
X

iv
:2

31
0.

06
85

2v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  7
 S

ep
 2

02
3



basic unit. Finally, we designed a neural network that predicts
various material properties using a set of triangular faces as
inputs.

The main contributions of this paper are summarized as
follows.

• To our knowledge, DeepCrysTet is the first work to pre-
dict material properties using a 3D mesh representation
of a crystal structure.

• The framework of DeepCrysTet, including the 3D mesh
generation method, mesh-based feature design, and neural
network design, can be utilized as a promising alternative
to the mainstream approach that uses graphs for predict-
ing material properties.

• The experimental results show that DeepCrysTet signif-
icantly outperforms existing GNN approaches in clas-
sifying crystal structures and achieves state-of-the-art
performance in predicting elastic properties.

II. RELATED WORK

A. Prediction of Crystalline Material Properties

ML has been increasingly employed to predict the properties
of crystalline materials [1]. A critical issue in the application
of ML is the conversion of the crystal structure into features
that are compatible with the ML model. There are currently
two main approaches to converting crystal structures: hand-
crafted descriptors [9]–[11] and graph representation [2]–
[5]. Although ML models based on hand-crafted descriptors
have achieved some success in predicting properties, these
descriptors are designed by humans with specific domain
knowledge, which inherently limits them.

In recent years, GNNs have attracted considerable attention
for predicting the properties of crystalline materials, offering
more substantial performance improvements than approaches
based on hand-crafted descriptors. The CGCNN [2] is a
pioneering GNN architecture for accurately predicting the
properties of crystalline materials. CGCNN builds a convo-
lutional neural network directly on a graph with one node
for each constituent atom and edges corresponding to the
originally defined interatomic connections. Recent variants,
such as materials graph network (MEGNet) [3], improved
crystal graph convolutional neural network (iCGCNN) [4], and
atomistic line graph neural network (ALIGNN) [5], have been
developed to improve predictive performance. MEGNet im-
proved CGCNN by incorporating global state inputs, including
temperature, pressure, and entropy. In another effort, iCGCNN
outperformed CGCNN by incorporating information from the
Voronoi tessellated crystal structure. Notably, ALIGNN, which
explicitly encodes the bond angle information, is currently
among the state-of-the-art models with the best performance
on the Materials Project dataset [12].

B. Deep Learning on 3D Mesh

A 3D mesh consists of a collection of vertices, edges, and
faces, and is currently a widely used data representation in
fields such as computer vision and computer graphics. Vertices

are connected by edges that define connectivity, indicating how
each vertex is connected to the other. The resulting closed
sets of edges form the faces. Owing to the combination of the
geometric structures of vertices, edges, and faces, a 3D mesh
can be more expressive than other 3D representations, such as
point clouds and voxels.

However, dealing with 3D meshes is difficult because they
consist of multiple elements, and the permutations of these
elements are arbitrary. Recently, considerable effort has been
devoted to developing deep learning models for 3D mesh data
to address these difficulties. MeshNet [13] is a pioneering
model on 3D mesh that treats the mesh face as a basic unit
and extracts the spatial and structural features of each face.
MeshNet adopts per-face processes and symmetric functions,
which are similar to PointNet [14], to satisfy the permutation
invariant of elements in mesh data. MeshNet++ [15] is a deep
learning model designed to learn local structures at multiple
scales and achieves state-of-the-art performance over MeshNet
in 3D shape classification.

III. DEEPCRYSTET: DEEP LEARNING APPROACH USING
TETRAHEDRAL MESH

In this section, we present DeepCrysTet, a deep learning
approach that uses a crystal structure represented as a 3D
tetrahedral mesh for predicting material properties. The overall
framework of DeepCrysTet is shown in Fig. 2. First, we
introduce a method for converting a crystal structure into a
3D mesh. Then, we describe the design of the input features
derived from the generated mesh. Finally, we explain the pro-
posed neural network architecture for addressing the designed
features.

A. Mesh Generation

We adopted Delaunay tetrahedralization [8] to generate a
3D tetrahedral mesh of the crystal structure. Delaunay tetra-
hedralization divides a 3D space into a set of tetrahedra from
a given set of 3D vertices. The resulting tetrahedral mesh was
filled with tetrahedra without gaps inside the crystal structure,
as shown in Fig. 1 (c). Although Delaunay tetrahedralization
is a fundamental technique in various applications, such as
finite element analysis and computer graphics, few studies
have applied it to crystal structures [16].

The crystal structure originally comprises 3D atomic coor-
dinates and a space lattice representing the 3D periodicity of
these coordinates. A periodic unit in the space lattice is termed
a unit cell and is represented by a cube as in Fig. 1 (a). The
periodicity of the crystal structure enables us to express the
structural features of the entire crystal structure by a collection
of tetrahedra that exist near the unit cell.

Here, we describe concrete methods for generating the
mesh. First, point cloud data were created from the 3D
coordinates of each atom contained in 5×5×5 unit cells. Next,
Delaunay tetrahedralization was applied to the point cloud
data, and the set of tetrahedra contained in one unit cell located
at the center of 5×5×5 unit cells was extracted as the mesh
data to be used. If the central unit cell contained at least



Fig. 2. Overall framework of DeepCrysTet.

one of the four vertices of a tetrahedron, the tetrahedron was
extracted. Note that we allowed a deviation of ±0.05 Å to
determine whether a vertex is in the unit cell. Finally, the
vertices in the mesh of each crystal structure were parallel-
shifted such that the centroid of the vertices coincided with
the coordinate origin.

B. Feature Design

In this section, we elaborate on the design of input features
derived from a tetrahedral mesh, as illustrated in Fig. 3.
The mesh data generated by Delaunay tetrahedralization is
a set of tetrahedra. Because each tetrahedron consists of four
triangular faces, the mesh data can also be regarded as a set of
triangular faces. To take advantage of a mesh that contains 3D
connectivity between constituent atoms, we designed features
of two types, structural and chemical, using the triangular faces
as the basic units. For each face, we defined the following four
features.

• Structural features
– Center: Coordinates of the centroid of the triangle.
– Edge: Lengths of triangle sides sorted in ascending

order.
– Corner: Vectors from the centroid to three vertices.

• Chemical features
– Atomic features: Average of the feature vectors of

the three atoms constituting the triangle.
As features for the atoms, we used a 92-dimensional binary

vector discretized from the nine atomic features used in the
CGCNN, as shown in Table I.

C. Neural Network Architecture

In this section, we describe the neural network architecture
of the model shown in Fig. 2. As the model’s input is set data,
the model should satisfy two critical requirements [17], [18].
First, it must be permutation invariant. Otherwise expressed,
even if the permutation of the input set elements changes, the
model’s output must not change. Second, the model should

TABLE I
PROPERTIES USED IN ATOMIC FEATURES.

Property Unit Range #categories

Group number - 1, 2, ..., 18 18
Period number - 1, 2, ..., 9 9

Electronegativity - 0.5–4.0 10
Covalent radius pm 25–250 10

Valence electrons - 1, 2, ..., 12 12
First ionization energy eV 1.3–3.3 10

Electron affinity eV −3–3.7 10
Block - s, p, d, f 4

Atomic volume cm3/mol 1.5–4.3 10

process input sets of different sizes. The mesh data used in
this work have different numbers of triangular faces for each
material.

To satisfy these two requirements, the proposed model is
based on the PointNet architecture [14]. Given an unordered
set {x1, x2, ..., xn} with xi ∈ Rd, we can define a model
function f that maps a set to a vector as

f({x1, x2, ..., xn}) = g
(
MAX
i=1,...,n

{h(xi)}
)

(1)

where g and h are the multi-layer perceptron (MLP) and
MAX is a max pooling operation over the elements of the set.
First, each element in a set is independently processed by the
same function h, that is, the weights of h are shared for each
element. The max pooling operation then processes the outputs
of h to aggregate the information from all elements. Note that
the output obtained through the max pooling operation is a
fixed-dimensional vector regardless of the set size n. The final
output is obtained using the MLP g. The model function f
satisfies both requirements, as mentioned above.

Next, we present the detailed design of DeepCrysTet based
on Equation (1). As described in section III-B, we designed
four features from each set element, that is, a triangular face,
and each of the four features is initially processed indepen-
dently. The center, edge, and atomic features are processed



Fig. 3. Design of the input features derived from a tetrahedral mesh.

by the MLP with shared weights for each element. The
corner is processed by the face rotate convolution proposed in
MeshNet [13], which captures the inner structure of the faces.
Each of the four processed features is combined and processed
by the MLP with shared weights and is then transformed into
a vector with fixed dimensions by the max pooling operation.
Finally, the output value is obtained by processing with the
MLP.

IV. EXPERIMENTS

We experimentally applied DeepCrysTet to two tasks: crys-
tal structure classification and material property prediction.
First, we evaluated the classification accuracies of the crystal
systems and space groups to confirm whether DeepCrysTet
can capture 3D crystal structures. Next, we evaluated the
prediction errors of the four material properties.

A. Experimental Settings

1) Dataset.: We used the 2018.10.18 version1 of the Ma-
terials Project dataset [12]. The dataset contained the crystal
structures and various types of properties of 83,989 crystalline
materials. We selected six properties: the crystal system, space
group, formation energy, band gap, bulk modulus, and shear
modulus. Regarding the bulk and shear moduli, missing and
negative values were removed, respectively leaving 7,643 and
7,432 remaining materials.

2) Baselines.: We compared the performance of DeepCrys-
Tet with the following two baselines:

• CGCNN [2]: CGCNN is a pioneering GNN model for
predicting material properties using crystal graphs.

1Materials Project Data: https://figshare.com/articles/dataset/Materials
Project Data/7227749

• ALIGNN [5]: ALIGNN is the latest GNN model inspired
by CGCNN and currently achieves state-of-the-art perfor-
mance on the Materials Project dataset by incorporating
bond angle information.

We adopted the hyperparameters reported in the original pa-
pers for both baselines. We used the original implementations
of CGCNN2 and ALIGNN3 provided by the authors.

3) Model Training.: The models were trained for 200
epochs using the Adam optimizer and an initial learning rate
of 0.001. The batch size was 32 for the bulk and shear moduli
and 128 for all other properties. We randomly split the dataset
into training, validation, and test sets at a ratio of 80:10:10.
All the results presented here are based on the performance of
the 10 % of the test sets that were not used during the training
or model selection procedures.

4) Implementation.: We used the Qhull library [19] pro-
vided by Scipy [20] for Delaunay tetrahedralization and the
Pymatgen library [21] to handle and generate crystal struc-
tures, respectively. We implemented our neural network model
using PyTorch [22]. Our source code is publicly available at
https://github.com/tsurubee/DeepCrysTet.

B. Classification of Crystal Structure

We evaluated the classification accuracies of the crystal
systems and space groups to confirm whether DeepCrysTet
can capture 3D crystal structures. The crystal structures are
classified into seven crystal systems based on the 3D shape of
the unit cell. The crystal structures are further classified into
230 space groups based on the symmetry of the 3D atomic
coordinates in the unit cell. These two classifications strongly
reflect the 3D crystal structure.

2CGCNN: https://github.com/txie-93/cgcnn
3ALIGNN: https://github.com/usnistgov/alignn

https://figshare.com/articles/dataset/Materials_Project_Data/7227749
https://figshare.com/articles/dataset/Materials_Project_Data/7227749
https://github.com/tsurubee/DeepCrysTet
https://github.com/txie-93/cgcnn
https://github.com/usnistgov/alignn


Fig. 4. Confusion matrices of (a) DeepCrysTet and (b) ALIGNN for the classification of crystal systems.

TABLE II
SUMMARY OF THE CLASSIFICATION ACCURACIES FOR CRYSTAL SYSTEMS

AND SPACE GROUPS ON THE TEST SETS. THE BEST PERFORMANCE IS
HIGHLIGHTED IN BOLD.

Classification #classes DeepCrysTet CGCNN ALIGNN

Crystal systems 7 97.5 % 63.4 % 75.6 %
Space groups 230 90.3 % 49.9 % 64.3 %

Table II lists the classification accuracies of DeepCrysTet
and the two baselines. The classification accuracies of Deep-
CrysTet for the crystal systems and space groups were 97.5 %
and 90.3 %, respectively, which significantly exceeded those
of CGCNN and ALIGNN. This result indicates that the graph
representation used in the baseline models has difficulty cap-
turing the 3D crystal structure. Although the better accuracy
of ALIGNN compared to CGCNN implies that the bond angle
information has a positive effect on capturing the 3D crystal
structure, its accuracy did not match DeepCrysTet.

Fig. 4 shows the confusion matrices normalized over the
true labels of DeepCrysTet and ALIGNN for the classification
of the crystal systems. As shown in Fig. 4 (a), DeepCrysTet
achieved almost equally high classification accuracies for
all classes. In contrast, ALIGNN exhibits variations in the
classification accuracy for each class, as shown in Fig. 4 (b).
Furthermore, we found that ALIGNN is likely to misclassify
the triclinic and monoclinic systems. Several previous stud-
ies [23], [24] have also shown that it is more difficult to
classify the triclinic and monoclinic systems than others, which
is consistent with ALIGNN’s tendency. Conversely, Deep-
CrysTet succeeded in classifying the triclinic and monoclinic
systems with high accuracy. These results demonstrate that
DeepCrysTet can capture 3D crystal structures more accurately
from 3D mesh representations than graph-based approaches.

C. Prediction of Material Properties

We evaluated the prediction performance of DeepCrysTet
and two baselines using four material properties as target
variables: formation energy, band gap, bulk modulus, and

TABLE III
SUMMARY OF THE PREDICTION PERFORMANCE (MAE) FOR FOUR

DIFFERENT PROPERTIES ON THE TEST SETS. THE BEST PERFORMANCE IS
HIGHLIGHTED IN BOLD.

Property Unit DeepCrysTet CGCNN ALIGNN

Formation energy eV/atom 0.062 0.043 0.024
Band gap eV 0.279 0.271 0.211

Bulk modulus log(GPa) 0.061 0.076 0.068
Shear modulus log(GPa) 0.106 0.129 0.115

shear modulus. In this experiment, the mean absolute error
(MAE) was used as the evaluation metric. Table III lists
the experimental results of the prediction performance of
DeepCrysTet and the two baselines. The two baselines are
shown to outperform DeepCrysTet in predicting the formation
energy and band gap. However, the predictive performance of
DeepCrysTet for the two elastic properties, the bulk and shear
moduli, exceeds that of the two baselines. These results are
probably due to the data representation of the crystal structure
between DeepCrysTet and the baselines, being entirely differ-
ent. In addition, the experimental results suggest that the 3D
crystal structure captured by DeepCrysTet contributes more to
predicting the elastic properties than the other properties.

Here, we discuss why DeepCrysTet is superior in predicting
elastic properties. Previous studies [25], [26] have shown that
the elastic modulus is strongly correlated with the planar
density, which is the fraction of the crystal plane area occupied
by atoms. The planar density is determined by the plane area
and radii of the constituent atoms. Although the crystal plane
is not the same as the triangular face used in DeepCrysTet,
both are two-dimensional planes formed by adjacent atoms
in a 3D crystal structure. Furthermore, the features used in
DeepCrysTet include the size and shape of each triangular
face and radii of the constituent atoms, which can be regarded
as features similar to the planar density. Hence, these features
may contribute to the predictive performance of elastic prop-
erties.



V. CONCLUSION

We propose DeepCrysTet, a novel deep learning approach
for predicting the properties of crystalline materials. To ad-
dress the limitations of existing graph-based approaches, the
proposed method focuses on representing the crystal structure
as a 3D tetrahedral mesh acquired through Delaunay tetrahe-
dralization. To our knowledge, DeepCrysTet is the first work
to predict material properties using a 3D mesh representation
of a crystal structure. To evaluate the model’s performance,
two tasks: crystal structure classification and material property
prediction, were performed using the Materials Project dataset.
DeepCrysTet enables accurate classification into crystal sys-
tems and space groups, which is difficult to achieve with
current GNN models thereby demonstrating that DeepCrysTet
can capture 3D crystal structures. Furthermore, DeepCrysTet
achieved a prediction accuracy comparable to that of state-of-
the-art GNN models for predicting the elastic properties of ma-
terials. In the future, we plan to improve DeepCrysTet further
to achieve highly accurate predictions of the formation energy
and band gap in addition to the elastic properties. Because
current GNN models have demonstrated the importance of
convolutional layers in aggregating neighboring node features,
we will explore the design of convolutional layers to aggregate
features from neighboring triangular faces in a 3D tetrahedral
mesh.
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