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Abstract— Optimization of product and system 

characteristics is required in many fields, including design and 

control. Bayesian optimization (BO) is often used when there are 

high observing costs, because BO theoretically guarantees an 

upper bound on regret. However, computational costs increase 

exponentially with the number of parameters to be optimized, 

decreasing search efficiency. We propose a BO that limits the 

search region to lower dimensions and utilizes local Gaussian 

process regression (LGPR) to scale the BO to higher dimensions. 

LGPR treats the low-dimensional search region as “local,” 

improving prediction accuracies there. The LGPR model is 

trained on a local subset of data specific to that region. This 

improves prediction accuracy and search efficiency and reduces 

the time complexity of matrix inversion in the Gaussian process 

regression. In evaluations with 20D Ackley and Rosenbrock 

functions, search efficiencies are equal to or higher than those of 

the compared methods, improved by about 69% and 40% from 

the case without LGPR. We apply our method to an automatic 

design task for a power semiconductor device. We successfully 

reduce the specific on-resistance to 25% better than a 

conventional method and 3.4% better than without LGPR. 

Keywords—Bayesian optimization, Gaussian process 

regression, subset of data, automatic design 

I. INTRODUCTION 

Searches for parameters with favorable characteristics are 
often performed for the design of devices and materials, 
control of systems and robots, and hyperparameter tuning for 
machine learning models. This involves the repeated 
determination of parameter values for observing characteristic 
values (a point in the parameter space) and observing 
characteristic values at that point by simulations or 
experiments. Such observations are often costly in terms of 
time, money, and human labor, so it is desirable to obtain 
optimal parameters from a small number of observations. In 
many black-box optimization algorithms [1], Bayesian 
optimization (BO) [2]-[4], which guarantees an upper bound 
on regret, is often used to minimize those costs. 

In BO, Gaussian process regression (GPR) [5] is typically 
used as a surrogate model for the objective function, for which 
neither the value at each point nor the derivative is known. A 
parameter value that maximizes the acquisition function 
obtained from this surrogate model is determined as the next 
observation query point. This approach has been successful in 
many areas [6]-[11]. However, the dimensionality of the space 
increases with the number of parameters, exponentially 
increasing the complexity of full-domain observations, 
surrogate model computations, and acquisition function 
maximizations [12], [13]. BO is thus difficult to apply to high-
dimensional optimization problems. 

Inspired by LineBO [14], which limits search region to 
one-dimension, we propose a BO that trains GPR model 

locally around lower-dimensional search region to scale the 
BO to higher dimensions. We call such BO with low-
dimensionally limited search spaces BOLD. BOLD includes, 
but is not limited to, LineBO. To reduce the time complexity 
of matrix inversion and improve the accuracy of GPR 
predictions in a low-dimensional search region that requires 
calculations of the acquisition function, a local subset of data 
(LSoD) specific to that region is extracted and the local GPR 
(LGPR) model is trained. We call BOLD utilizing local GPR 
BOLDUC. The following presents the results of evaluation 
experiments, confirming the effectiveness of our method. 

A. Contributions 

The main contributions of this paper are as follows: 

• We propose BOLDUC. 

• We introduce the concept of the contribution of 
observed points for LGPR prediction in low-
dimensional search regions. We present three LSoD 
extraction strategies based on the proposed method, 
training the LGPR model on the LSoD. To our 
knowledge, no prior works on LGPR limit prediction 
targets to points in a low-dimensional search region. 

• BOLDUC inherits the theoretical guarantees in [14] 
when LineBO is adopted as BOLD. 

• Similar to the global subset of data (SoD) [15], we 
reduce the time complexity of matrix inversion in GPR 
from 𝒪(𝑁3)  to 𝒪(𝑀3) (𝑀 < 𝑁). We can overcome 
upper bounds on the number of observations, since 𝑀 
is set sufficiently small according to the low 
dimensionality of the local search region. 

• Optimization tasks involving two benchmark 
functions and an automatic design task for a power 
semiconductor device show improved search 
efficiency as compared to BOLD without LGPR. The 
latter task in particular demonstrated the automatic 
acquisition of excellent specific on-resistance (RONA) 
values. 

B. Related work 

In prior works that scale BO to higher dimensions, ADD-
GP-UCB [16] and its generalization [17] assume additivity in 
the structure of the objective function and optimize in low-
dimension groups. REMBO [18], HesBO [19], and ALEBO 
[20] assume a low effective dimensionality and embed a low-
dimensional space into the high-dimensional space. These 
methods are effective when there are many redundant 
parameters or parameters that behave like noise and have little 
effect on the objective function’s value. In DropoutBO [21], 
GPR, acquisition function maximization, and solution 
searches are performed in low-dimensional spaces defined by 
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the coordinate axes selected through dropout. Observation 
point values in dropped-out axes are determined according to 
three types of fill-in strategies. LineBO [14] limits the search 
region to one-dimensional spaces. It can be integrated with 
SafeOpt [22]. EGP [23] adopts a strategy of gradually 
decreasing the length scale of the kernel function to tackle the 
flattening problem of the acquisition function in high 
dimensions. This gradually shifts from global to local 
approximation. TuRBO [24] sets local hyperrectangles as trust 
regions in which to search for the solution. Although it is 
similar to the proposed method in that it uses LGPR, the local 
area differs from ours. BAxUS [25] extends TuRBO by using 
the embedding technique. 

Time complexity reduction methods for GPR can be 
classified into two types: global and local approximations [26]. 
The simplest method for global approximation is SoD [15]. 
This reduces the time complexity of GPR to 𝒪(𝑀3)  by 
extracting 𝑀 of the observed 𝑁 points and obtaining a small 
kernel matrix 𝐾𝑀×𝑀 . Sparse GPR [27]-[29] constructs the 
kernel matrix with 𝐿 (< 𝑁) inducing points representing all 
data to maintain the information of vanishing points in SoD as 
much as possible, reducing the time complexity to 𝒪(𝑁𝐿2 +
𝐿3) . Local approximation divides the entire domain into 
subregions and a LGPR model corresponding to a subregion 
based on the 𝑀 points belonging to that subregion [30]. This 
reduces the time complexity in each region to 𝒪(𝑀3) (𝑀 <
𝑁). When predetermined points are targeted for prediction, 
local regions specialized for them are set [31], [32]. 

C. Outline 

This paper is organized as follows: Sect.II starts with a 
problem statement of black-box optimization and prepares 
overviews of GPR and standard BO. In Sect. III, BOLDUC is 
introduced. Experimental evaluations are given in Sect. IV. 
Conclusions are drawn in Sect. V. 

II. PROBLEM STATEMENT AND PRELIMINARIES 

Let 𝜒 ⊂ ℝ𝐷  be a domain of parameter vector 𝐱 =
(𝑥1, 𝑥2, … , 𝑥𝐷)⊤  and 𝑓: 𝜒 → ℝ  the unknown objective 
function, where ∙⊤ denotes the transpose of a vector or matrix. 
We wish to find 

𝐱𝑜𝑝𝑡 = arg min
𝐱∈𝜒

𝑓(𝐱), 

considering that the optimized parameter value �̂�  is better 
when the simple regret 

𝑟(�̂�) =  𝑓(�̂�) − 𝑓(𝐱𝑜𝑝𝑡) 

is smaller. 

A. Gaussian process regression 

In GPR, a function 𝑓 is regressed from observation data 

𝒟𝑁 = {(𝐱𝑛,  𝑦𝑛)}𝑛=1,2,…,𝑁, 

where 𝐱𝑛  represents the 𝑛 -th observed point and 𝑦𝑛  is 
observed by the following equation with additive noise 𝜀𝑛: 

𝑦𝑛 = 𝑓(𝐱𝑛) + 𝜀𝑛. 
The predicted mean 𝜇(𝐱|𝒟𝑁)  and variance 𝑣(𝐱|𝒟𝑁)  of 

the function value at an unobserved point 𝐱  by GPR are 
expressed as 

𝜇(𝐱|𝒟𝑁) = 𝐤⊤(𝐾𝑁×𝑁 + 𝜎2𝐼𝑁)−1𝐲1:𝑁, (1) 
𝑣(𝐱|𝒟𝑁) = 𝑘(𝐱, 𝐱) − 𝐤⊤(𝐾𝑁×𝑁 + 𝜎2𝐼𝑁)−1𝐤, 

 Algorithm 1 Standard BO 

1: Initialize data: 𝒟𝑁0
= {(𝐱𝑛,  𝑦𝑛)}𝑛=1,2,…,𝑁0

. 

2: for 𝑡 = 𝑁0, 𝑁0 + 1, … , 𝑁 − 1 do 

3:    Estimate kernel hyperparameter 𝛉(𝒟𝑡) and train 

global GPR model ℳ(𝒟𝑡). 

4:    Suggest 𝐱𝑡+1 = arg max
𝐱∈𝜒

𝛼(𝐱|𝒟𝑡) using ℳ(𝒟𝑡). 

5:    Observe 𝑦𝑡+1 = 𝑓(𝐱𝑡+1) + 𝜖𝑡+1. 

6:    Augment the data 𝒟𝑡+1 = 𝒟𝑡 ∪ {(𝐱𝑡+1, 𝑦𝑡+1)}. 

7: end for 

8: Output �̂�𝑁 = 𝐱𝑏, where 𝑏 = arg min
𝑛=1,2,…,𝑁

𝑦𝑛. 

 

where 𝐤 = (𝑘(𝐱, 𝐱1), 𝑘(𝐱, 𝐱2), ⋯ , 𝑘(𝐱, 𝐱𝑁))
⊤

, the (𝑖, 𝑗) 

component of 𝐾𝑁×𝑁 is 𝑘(𝐱𝑖, 𝐱𝑗), 𝐲1:𝑁 = (𝑦1, 𝑦2, … , 𝑦𝑁)⊤, 𝑘(∙
,∙) is the kernel function representing the similarity between 
two points, 𝜎 is the standard deviation of the noise component, 
𝐼𝑁  is the 𝑁 × 𝑁 identity matrix, and ∙−1 denotes the inverse of 
a matrix. Both 𝜇 and 𝑣 depend on the hyperparameter 𝛉 of the 
kernel function. 𝛉 is estimated from 𝒟𝑁  by maximizing the 

marginal likelihood 𝑝(𝐲1:𝑁|{𝐱𝑛}𝑛=1,2,…,𝑁, 𝛉) whose logarithm 

is proportional to 

− log|𝐾𝑁×𝑁 + 𝜎2𝐼𝑁| − 𝐲1:𝑁
⊤ (𝐾𝑁×𝑁 + 𝜎2𝐼𝑁)−1𝐲1:𝑁

                                                                                   +const. (2)
 

Since 𝛉 depends on 𝒟𝑁 , 𝛉 is written as 𝛉(𝒟𝑁). The 𝒪(𝑁3) 
computation for the matrix inversion and determinant can 
become major bottlenecks as 𝑁 grows. 

B. Standard bayesian optimization 

Algorithm 1 shows the standard BO [2]-[4] procedure. At 
line 1, the data 𝒟𝑁0

= {(𝐱𝑛,  𝑦𝑛)}𝑛=1,2,…,𝑁0
 is prepared. At line 

3, kernel hyperparameter 𝛉(𝒟𝑡) is estimated using (2) with 𝑁 
replaced by |𝒟𝑡| (= 𝑡)  and global GPR model ℳ(𝒟𝑡)  is 
learned from 𝒟𝑡 . At line 4, the acquisition function 𝛼 
determined from ℳ(𝒟𝑡)  finds the maximum point in the 
domain 𝜒 and defines it as the next observed query point 

𝐱𝑡+1 = arg max
𝐱∈𝜒

𝛼(𝐱|𝒟𝑡). 

For example, the lower confidence bound (LCB) [3] is used 
as the acquisition function 

𝛼(𝐱|𝒟𝑡) = − (𝜇(𝐱|𝒟𝑡) − 𝜅𝑡√𝑣(𝐱|𝒟𝑡)), 

where 𝜅𝑡  is a parameter that adjusts the balance between 
exploitation and exploration. At line 5, 𝑦𝑡+1 corresponding to 
𝐱𝑡+1 is observed. At line 6, the data are augmented. At line 8, 
the optimized parameter value �̂�𝑁 is obtained. 

In this method, the search space expands exponentially 
with the number of dimensions 𝐷 , increasing the 
computational complexity and worsening the parameter 
search efficiency. When the number of observation samples 
|𝒟𝑡| is large, the time complexity 𝒪(|𝒟𝑡|3) (where |∙| denotes 
the number of elements in the set) of GPR may become 
unignorable compared to the observation time. 

III. BOLDUC 

A. BOLD 

Algorithm 2 shows the BOLD procedure. Lines 3 and 5 
differ from the standard BO. At line 3, a low-dimensional 
affine subspace passing through the best point �̂�𝑡 = 𝐱𝑏𝑡

,  



 

 

Algorithm 2 BOLD (without LGPR) 

1: Initialize data: 𝒟𝑁0
= {(𝐱𝑛,  𝑦𝑛)}𝑛=1,2,…,𝑁0

. 

2: for 𝑡 = 𝑁0, 𝑁0 + 1, … , 𝑁 − 1 do 

3:    Define low-dimensional search space 𝒮𝑡. 

4:    Estimate kernel hyperparameter 𝛉(𝒟𝑡) and train 

global GPR model ℳ(𝒟𝑡). 

5:    Suggest 𝐱𝑡+1 = arg max
𝐱∈(𝒮𝑡∩𝜒)

𝛼(𝐱|𝒟𝑡) using ℳ(𝒟𝑡). 

6:    Observe 𝑦𝑡+1 = 𝑓(𝐱𝑡+1) + 𝜖𝑡+1. 

7:    Augment the data 𝒟𝑡+1 = 𝒟𝑡 ∪ {(𝐱𝑡+1, 𝑦𝑡+1)}. 

8: end for 

9: Output �̂�𝑁 = 𝐱𝑏, where 𝑏 = arg min
𝑛=1,2,…,𝑁

𝑦𝑛. 

 

where 𝑏𝑡 = arg min
𝑛=1,2,…,𝑡

𝑦𝑛, is set as the low-dimensional search 

space 

𝒮𝑡 = �̂�𝑡 + 𝒰𝑡 = {�̂�𝑡 + 𝐮𝑡|𝐮𝑡 ∈ 𝒰𝑡}, 

where 𝒰𝑡  is the 𝑑𝑡  (< 𝐷) -dimensional linear subspace 
associated with 𝒮𝑡. 𝒮 is changed when the suggested queries 
stagnate at a nearby position or when a predetermined number 
of values are observed. At line 5, the next query 𝐱𝑡+1  is 
determined from within the search region (𝒮𝑡 ∩ 𝜒). LineBO 
[14] is a BOLD with 𝑑𝑡 fixed to 1. 

Since 𝑦 is heavily sampled in the low-dimensional region 
(𝒮𝑡 ∩ 𝜒), the surrogate model is more accurate in that region. 
𝑑𝑡 < 𝐷 makes it easier to maximize the acquisition function. 
As a result, the search efficiency in high dimensions is 
improved. However, BOLD has two problems: 

• The kernel hyperparameter 𝛉(𝒟𝑡)  is optimal for 
reproducing 𝒟𝑡  in terms of the marginal likelihood. 
However, 𝛉(𝒟𝑡)  is not necessarily suitable for 
expressing the local structure of objective 𝑓  in low-
dimensional search region (𝒮𝑡 ∩ 𝜒). Therefore, even if 
𝛉(𝒟𝑡)  is used, the GPR prediction accuracy in 
(𝒮𝑡 ∩ 𝜒) is insufficiently high. 

• 𝒟𝑡  is used to train the global GPR model. The time 
complexity of the inverse matrix is 𝒪(|𝒟𝑡|3), as with 
the standard BO, which is large. 

B. LGPR based on LSoD 

BOLDUC uses LGPR to solve the above two problems 
simultaneously. BOLD limits calculations of the acquisition 
function to the low-dimensional local region (𝒮𝑡 ∩ 𝜒). The 
LGPR model is constructed with SoD with fewer samples than 
𝒟𝑡 , excluding samples from observation points far from 
(𝒮𝑡 ∩ 𝜒) to improve GPR prediction accuracy within (𝒮𝑡 ∩ 𝜒) 
and to reduce the time complexity of GPR. The local domain 
of 𝐱 targeted for prediction differs from that in conventional 
LGPRs. They are clusters in [30], local hyperrectangles in 
TuRBO [24], and points in [31], [32], while in ours it is the 
low-dimensional search region (𝒮𝑡 ∩ 𝜒). 

Equation (1) is also expressed as 

𝜇(𝐱|𝒟𝑡) = ∑ 𝑘(𝐱, 𝐱𝑛)((𝐾𝑡×𝑡 + 𝜎2𝐼𝑡)−1𝐲1:𝑡)[𝑛]

𝑡

𝑛=1
, 

where ∙[𝑛] denotes the 𝑛 -th element of the vector, ((𝐾𝑡×𝑡 +
𝜎2𝐼𝑡)−1𝐲1:𝑡)[𝑛] is a constant determined from observed data 

𝒟𝑡, and the similarity 𝑘(𝐱, 𝐱𝑛) is a non-negative variable that 
depends on the unobserved point 𝐱. This equation is known as 

the representer theorem [5]. Because 𝑘(𝐱, 𝐱𝑛) can be regarded 
as a weight for the constant ((𝐾𝑡×𝑡 + 𝜎2𝐼𝑡)−1𝐲1:𝑡)[𝑛] , it is 

defined as follows. 

Definition 1 (Contribution to point). The similarity 𝑘(𝐱, 𝐱𝑛) 

of an observed point 𝐱𝑛 to a point 𝐱 is called the contribution 

of 𝐱𝑛 to the GPR prediction at 𝐱. 
To get good prediction accuracy for all points in (𝒮𝑡 ∩ 𝜒), 

it is useful to have samples with nonnegligible contributions 
to at least one point in (𝒮𝑡 ∩ 𝜒). ∃𝐱 ∈ (𝒮𝑡 ∩ 𝜒), 𝑘(𝐱, 𝐱𝑛) ≥ 𝜆𝑡 

is equivalent to max
𝐱∈(𝒮𝑡∩𝜒)

𝑘(𝐱, 𝐱𝑛) ≥ 𝜆𝑡, where 𝜆𝑡 is a threshold. 

Definition 2 (Contribution to low-dimensional search region). 

The maximum similarity max
𝐱∈(𝒮𝑡∩𝜒)

𝑘(𝐱, 𝐱𝑛)  is called the 

contribution of an observed point 𝐱𝑛 to the GPR prediction 

in the low-dimensional search region (𝒮𝑡 ∩ 𝜒). 
LSoD ℰ𝑡 is extracted from 𝒟𝑡 samples with nonnegligible 

contributions to (𝒮𝑡 ∩ 𝜒) to obtain high prediction accuracy at 
all points in (𝒮𝑡 ∩ 𝜒): 

ℰ𝑡 = {(𝐱𝑛, 𝑦𝑛)| max
𝐱∈(𝒮𝑡∩𝜒)

𝑘(𝐱, 𝐱𝑛) ≥ 𝜆𝑡 , 𝑛 ≤ 𝑡} . (3) 

The LGPR model ℳ(ℰ𝑡)  is trained on ℰ𝑡 . Thus, LGPR 
adaptively switches the training data according to (𝒮𝑡 ∩ 𝜒). 

From (3 ), ℰ𝑡  depends on the hyperparameter 𝛉  of the 
kernel 𝑘(𝐱, 𝐱𝑛). To grasp the global structure of objective 𝑓 
for LSoD extraction, 𝛉  should be estimated from 𝒟𝑡 . 
However, if ( 2 ) with 𝑁  replaced by |𝒟𝑡|  is used for the 
estimation, the time complexity cannot be reduced. Hence, as 
𝛉  for extracting ℰ𝑡 , we use 𝛉(ℰ𝑡−1)  estimated when the 
LGPR model ℳ(ℰ𝑡−1) was constructed at the previous time 
𝑡 − 1: 

ℰ𝑡 = {(𝐱𝑛, 𝑦𝑛)| max
𝐱∈(𝒮𝑡∩𝜒)

𝑘(𝐱, 𝐱𝑛|𝛉(ℰ𝑡−1)) ≥ 𝜆𝑡 , 𝑛 ≤ 𝑡}. 

When ℰ𝑡  is extracted for the first time, 𝛉(𝒟𝑁0
) is estimated 

from the initial data 𝒟𝑁0
 and used instead of 𝛉(ℰ𝑡−1), since 

𝛉(ℰ𝑡−1) does not exist. 

To simplify the calculation, we approximate as follows: 

max
𝐱∈(𝒮𝑡∩𝜒)

𝑘(𝐱, 𝐱𝑛) ≈ max
𝐱∈𝒮𝑡

𝑘(𝐱, 𝐱𝑛) . (4) 

Theorem 1 (Approximation of ℰ𝑡). When adopting a kernel 

function with a higher similarity as the Euclidean distance 

between two points is shorter, under the approximation 

expressed in (4), the LSoD ℰ𝑡 defined in (3) can be rewritten 

as 

ℰ𝑡 ≈ {(𝐱𝑛, 𝑦𝑛)|‖𝑃𝒮𝑡
(𝐱𝑛) − 𝐱𝑛‖ ≤ 𝜏𝑡 , 𝑛 ≤ 𝑡}, (5) 

where 𝜏𝑡 is a threshold and 𝑃𝒮𝑡
 is the orthogonal projection 

operator to the low-dimensional search space 𝒮𝑡: 

𝑃𝒮𝑡
(𝐱𝑛) = (𝐼𝐷 − 𝑃𝒰𝑡

)�̂�𝑡 + 𝑃𝒰𝑡
𝐱𝑛, (6) 

where 𝑃𝒰𝑡
 represents the orthogonal projection matrix onto 

the 𝑑𝑡-dimensional linear subspace 𝒰𝑡 associated with 𝒮𝑡. 

Derivation of Theorem 1. From the fact that the shorter the 

Euclidean distance between two points, the higher the 

similarity between them, and from ∀𝐱 ∈ 𝒮𝑡 , ‖𝑃𝒮𝑡
(𝐱𝑛) −

𝐱𝑛‖ ≤ ‖𝐱 − 𝐱𝑛‖ (Fig. 1), 

max
𝐱∈𝒮𝑡

𝑘(𝐱, 𝐱𝑛) = 𝑘(𝑃𝒮𝑡
(𝐱𝑛), 𝐱𝑛) (7) 

holds. From (4) and (7), max
𝐱∈(𝒮𝑡∩𝜒)

𝑘(𝐱, 𝐱𝑛) ≈ 𝑘(𝑃𝒮𝑡
(𝐱𝑛), 𝐱𝑛)  



 

 

 

Fig. 1.  Comparison between ‖𝑃𝒮𝑡
(𝐱𝑛) − 𝐱𝑛‖ and ‖𝐱 − 𝐱𝑛‖. 

 

Fig. 2. Geometric meaning of ( 6 ). 𝒰𝑡  component of  𝑃𝒮𝑡
(𝐱𝑛)  and its 

orthogonal complement in case 𝐷 = 3, 𝑑𝑡 = 2. The ‖𝑃𝒮𝑡
(𝐱𝑛) − 𝐱𝑛‖ in (5) 

represents the orthogonal projection length from 𝐱𝑛 to 𝒮𝑡. 

 

Fig. 3. An example of region 𝛶𝑡  covering LSoD ℰ𝑡  when 𝐷 = 2, 𝑑𝑡 = 1. 

The region 𝛶𝑡, which characterizes our method, looks like the French word 

"bolduc", which in English means gift ribbon or tape. 

 

holds. 𝑘(𝑃𝒮𝑡
(𝐱𝑛), 𝐱𝑛) ≥ 𝜆𝑡  and ‖𝑃𝒮𝑡

(𝐱𝑛) − 𝐱𝑛‖ ≤ 𝜏𝑡  are 

equivalent with the threshold 𝜏𝑡 corresponding to 𝜆𝑡, since the 
aforementioned kernel function was adopted.                        ∎ 

The kernel function adopted in Theorem 1 includes, for 

example, the squared exponential (SE) kernel, 𝑘(𝐱𝑖 , 𝐱𝑗) =

𝜃𝜎
2 exp (−

1

2

𝑟2

𝜃𝑙
2) , and the Matérn 5/2 kernel, 𝑘(𝐱𝑖, 𝐱𝑗) =

𝜃𝜎
2 (1 +

√5𝑟

𝜃𝑙

5𝑟2

3𝜃𝑙
2) exp (−

√5𝑟

𝜃𝑙
) , where 𝑟 = ‖𝐱𝑖 − 𝐱𝑗‖ , 𝜃𝜎  and 

𝜃𝑙  represent signal standard deviation and length scale, 
respectively. Figure 2 shows the geometric meaning of (6) 

when 𝐷 = 3, 𝑑𝑡 = 2 . 𝑃𝒰𝑡
𝐱𝑛  and (𝐼𝐷 − 𝑃𝒰𝑡

)�̂�𝑡  are the 𝒰𝑡 

component of 𝑃𝒮𝑡
(𝐱𝑛)  and its orthogonal complement, 

respectively. The ‖𝑃𝒮𝑡
(𝐱𝑛) − 𝐱𝑛‖  in ( 5 ) represents the 

orthogonal projection length from 𝐱𝑛  to 𝒮𝑡 . Therefore, all 
observed points belonging to ℰ𝑡 are included in the region 𝛶𝑡 
whose Euclidean distance from 𝒮𝑡 is less than or equal to 𝜏𝑡. 
An example of region 𝛶𝑡 when 𝐷 = 2 and 𝑑𝑡 = 1 is shown in  

Algorithm 3 BOLDUC 

1: Initialize data: 𝒟𝑁0
= {(𝐱𝑛,  𝑦𝑛)}𝑛=1,2,…,𝑁0

. 

2: for 𝑡 = 𝑁0, 𝑁0 + 1, … , 𝑁 − 1 do 

3:    Define low-dimensional search space 𝒮𝑡. 

4:    Extract LSoD ℰ𝑡 from 𝒟𝑡 using (3), (5) or strategies 

described in Subsect. III D–F. 

5:    Estimate kernel hyperparameter 𝛉(ℰ𝑡) and train 

LGPR model ℳ(ℰ𝑡). 

6:    Suggest 𝐱𝑡+1 = arg max
𝐱∈(𝒮𝑡∩𝜒)

𝛼(𝐱|ℰ𝑡) using ℳ(ℰ𝑡). 

7:    Observe 𝑦𝑡+1 = 𝑓(𝐱𝑡+1) + 𝜖𝑡+1. 

8:    Augment the data 𝒟𝑡+1 = 𝒟𝑡 ∪ {(𝐱𝑡+1, 𝑦𝑡+1)}. 

9: end for 

10: Output �̂�𝑁 = 𝐱𝑏, where 𝑏 = arg min
𝑛=1,2,…,𝑁

𝑦𝑛. 

 

the shaded area in Fig. 3. From the above, Theorem 1 means 
that ℰ𝑡  in (3) can be calculated from the projection length 
without calculating exponents included in the SE kernel or the 
Matérn 5/2 kernel by using the assumption of (4). Note that if 
the ARD kernel is adopted, the points belonging to 𝒟𝑡  are 
standardized with the length scale vector estimated when the 
LGPR model was built from ℰ𝑡−1 before extracting ℰ𝑡. 

C. BOLDUC Procedure 

Algorithm 3 shows the BOLDUC procedure. Lines 4–6 
differ from Algorithm 2, where ℰ𝑡  is used instead of 𝒟𝑡 . 
Regarding line 4, three strategies for extracting the LSoD ℰ𝑡 
without directly specifying 𝜆𝑡 in (3) are described in Subsect. 
III D–F. Each can be converted into the form of (3) or (5). 

ℰ𝑡 does not contain samples with negligible contributions 
to the prediction of points in (𝒮𝑡 ∩ 𝜒) . The prediction 
accuracy in (𝒮𝑡 ∩ 𝜒) can be expected to be equal to or better 
than global GPR using 𝒟𝑡 , since length scales suitable for 
representing the local structure of 𝑓 in (𝒮𝑡 ∩ 𝜒) are estimated 
at line 5. The time complexity of matrix inversion is reduced 
from 𝒪(|𝒟𝑡|3) to 𝒪(|ℰ𝑡|3). BOLDUC inherits the theoretical 
guarantees in [14] when LineBO is adopted as BOLD because 
LGPR does not affect those guarantees. 

D. LSoD extraction strategy 1 

It is preferable that the GPR calculation time is short with 
respect to the observation time to obtain as many samples as 
possible in a limited period. A strategy to control that time is 
most practical in time-critical situations. 

We generate LSoD ℰ𝑡  by extracting from 𝒟𝑡  the top 𝑀𝑡 
samples with the highest contribution to (𝒮𝑡 ∩ 𝜒) to control 
the time complexity. If 𝑀𝑡 ≥ |𝒟𝑡|, then ℰ𝑡 = 𝒟𝑡 . Here, 𝑀𝑡 is 
the number of elements of ℰ𝑡 specified by the user. 𝑀𝑡 needs 
to be set sufficiently large to maintain LGPR prediction 
accuracy in 𝑑𝑡 -dimensional space, but as long as 𝑑𝑡  is set 
small, such as 3 or less, its value will be sufficiently small 
compared with several thousand, for which the calculation 
time of an inverse matrix becomes unrealistic. When the 𝑀𝑡 is 
a constant 𝑀 independent of 𝑡, adaptive GPR can be realized 
in which the structure of 𝑓 is at first coarsely and then finely 
captured as time 𝑡 progresses. This is because GPR captures 
the global structure from 𝒟𝑡 in the early stage, when |𝒟𝑡| ≤
𝑀 holds, and LGPR captures the local structure from ℰ𝑡 in the 
later stage. Although the time complexity of sorting 
𝒪(|𝒟𝑡| log|𝒟𝑡|)  is added, it is smaller than the effect of 
reducing the calculation time for the inverse matrix. 
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Adopting the kernel function of Theorem 1 extracts 𝑀𝑡 

samples with small ‖𝑃𝒮𝑡
(𝐱𝑛) − 𝐱𝑛‖ in (5). 

E. LSoD extraction strategy 2 

At the stage when the user has specified the domain 𝜒 
based on experience and preliminary experiments, the 
objective 𝑓 within 𝜒 may have a shape that is not too smooth 
and does not oscillate excessively. When a kernel with higher 
similarity is adopted as the Euclidean distance is shorter, the 
user can specify 𝜏𝑡 in (5). If it is desired to at first coarsely and 
later finely control the search as time 𝑡 progresses, 𝜏𝑡 should 
be gradually made smaller. 

F. LSoD extraction strategy 3 

From the standpoint of regarding LGPR as a local 
approximation of global GPR, there are cases where we want 
to control or visualize the approximation accuracy. Although 
it does not fit the hypothesis that the prediction accuracy of 
LGPR can be expected to be equal to or higher than that of 
global GPR because 𝛉(ℰ𝑡−1) is better suited than 𝛉(𝒟𝑡) to 
represent the local structure of 𝑓, we assume 𝛉(𝒟𝑡)≈ 𝛉(ℰ𝑡−1) 
to discuss the approximation framework. 

In this case, first, the threshold value 𝐶𝑡  regarding the 
cumulative contribution rate in the range [0,1]  is received 
from the user. Next, the 𝑡 observed points included in 𝒟𝑡 are 

sorted in descending order of contribution max
𝐱∈(𝒮𝑡∩𝜒)

𝑘(𝐱, 𝐱𝑛) to 

(𝒮𝑡 ∩ 𝜒). Let 𝜂 = 1,2, … , 𝑡 denote their index after sorting. 
Then, let 𝑀𝑡  be the minimum ℎ (≥ 1)  at which the 
cumulative contribution rate 

𝑐𝑡(ℎ) = ∑ max
𝐱∈(𝒮𝑡∩𝜒)

𝑘(𝐱, 𝐱𝜂)
ℎ

𝜂=1
∑ max

𝐱∈(𝒮𝑡∩𝜒)
𝑘(𝐱, 𝐱𝜂)

𝑡

𝜂=1
⁄  

is equal to or greater than the threshold 𝐶𝑡 . Finally, ℰ𝑡  is 
extracted as 𝑀𝑡 samples from 𝒟𝑡 in ascending order of index 
𝜂 after the sorting: 

ℰ𝑡 = {(𝐱𝜂, 𝑦𝜂)|𝜂 = 1,2, … , 𝑀𝑡}. 

As the threshold 𝐶𝑡  increases, |ℰ𝑡| also increases, so the 
approximation accuracy in (𝒮𝑡 ∩ 𝜒) increases. Although the 
user cannot grasp 𝒪(|ℰ𝑡|3)  in advance, the approximation 
accuracy can be controlled by specifying 𝐶𝑡  in a manner 
similar to principal component analysis. 

IV. EXPERIMENTS 

A. Evaluations using benchmark functions 

We evaluated BOLDUC using two benchmark functions 
as the objective function. One was the 20D Ackley function, 

𝑓(𝐱) = 20 + 𝑒 − 20 exp (−0.2√
1

20
∑ 𝑥𝑑

220
𝑑=1 ) +

exp (
1

20
∑ cos 2𝜋𝑥𝑑

20
𝑑=1 ) , 𝑥𝑑 ∈ [−32.768, 32.768] , for all 

𝑑 = 1, 2, … , 20. The other was the 20D Rosenbrock function, 

𝑓(𝐱) = ∑ (100(𝑥𝑑+1 − 𝑥𝑑
2)2 + (𝑥𝑑 − 1)2)20−1

𝑑=1 , 𝑥𝑑 ∈
[−5,10], for all 𝑑 = 1, 2, … , 20. The minimum value 𝑓(𝐱𝑜𝑝𝑡) 

is 0 in both. Figure 4 shows the shape of each function in the 
two-dimensional case for reference. 

We adopted CoordinateLineBO (CLBO) [14] as BOLD to 
facilitate replication experiments and interpretations of 
evaluation results. In this section, we refer to CLBO utilizing 
LGPR as 1D-BOLDUC. We normalized the domain 𝜒  to 
[−0.5, 0.5]20  in CLBO. At line 3 in Algorithm 2, the one- 
dimensional search space 𝒮𝑡 was updated every 5𝑑𝑡  (= 5)  

  

(a) 2D Ackley function (b) 2D Rosenbrock function 

Fig. 4. Visualization of the benchmark functions in the 2D cases for 

reference. (a) The Ackley function has relatively weak multimodality and 

locality around the global minimum. (b) The Rosenbrock function has strong 

dependence between neighboring parameters.  

   

(a) 20D Ackley case (b) 20D Rosenbrock case 

Fig. 5. Logarithmic regrets for the evaluation of 1D-BOLDUC (LSoD 

extraction Strategy 1). Each solid line and shaded area represent the mean 
and standard deviation of 30 trials. The method names in the legend are 

arranged in descending order of the means at |𝒟𝑡| = 1000. 

 

advances of 𝑡. The direction of the line at the time of switching 
was determined cyclically in a predetermined order, but not 
randomly from the D coordinate axis directions. We used a SE 
kernel. The acquisition function was LCB with 𝜅𝑡 = 2. 𝑁0 
and 𝑁  were 𝐷  and 1000, respectively. We used the 
approximation expressed in ( 4 ) for 1D-BOLDUC. We 
compared the evaluation with the 20D Ackley function with 
CMA-ES [33], standard BO, TuRBO-1 [24] (which focuses 
on local regions like our BOLDUC), and CLBO. In the case 
of the 20D Rosenbrock function, we added REMBO [18] with 
a two-dimensional embedding space to the comparison 
methods. The comparison methods did not include REMBO 
in the Ackley case because the embedded two-dimensional 
space accidentally included the optimal point 𝐱𝑜𝑝𝑡, which is 

the origin, so the comparison lacked fairness. As the results 
varied depending on the initial data 𝒟𝑁0

, each function was 

optimized with thirty different initial data for each method. 
The same 𝒟𝑁0

 was given except for CMA-ES and REMBO. 

Figure 5 shows the thirty-time averages and standard 
deviations of the logarithmic regrets of 1D-BOLDUC with 
𝑀 = 200 in Strategy 1 and the compared methods. In (a) the 
Ackley case, a decimal 10−8  was added to prevent 
logarithmic divergence. The method names in the legend are 
arranged in descending order of their average values. In (a) the 
Ackley case, the regret of the 1D-BOLDUC was the smallest. 
In (b) the Rosenbrock case, the regret 𝑟(�̂�1000)  of 1D-
BOLDUC was the second smallest after CMA-ES, and the 
difference between the two was not large. REMBO had larger 
regret because the assumption about the effective dimension 
was invalid. 
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(a) 20D Ackley case (b) 20D Rosenbrock case 

Fig. 6. Simple regrets for the evaluation of SoD extraction methods. Each 
solid line and shaded area represent the mean of 30 trials. The method names 

in the legend are arranged in descending order of the means at |𝒟𝑡| = 1000. 

  

(a) 20D Ackley case (b) 20D Rosenbrock case 

Fig. 7. Logarithmic regrets for the evaluation of SoD extraction methods. 
Each solid line and shaded area represent the mean and standard deviation of 

30 trials. The method names in the legend are arranged in descending order 

of the means at |𝒟𝑡| = 1000.  

 

To evaluate the effectiveness of our LSoD extraction 
method, we compared four CLBOs that changed the data used 
in GPR. The four data types were 𝒟𝑡, LSoD ℰ𝑡 with 𝑀 = 200 
in Strategy 1, SoD1 with 200 samples randomly selected from 
𝒟𝑡, and SoD2 with 200 samples extracted in ascending order 
of observed values included in 𝒟𝑡 . Each function was 
optimized thirty times by each method, and Fig. 6 shows the 
simple regrets of each. We obtained the simple regret by 
CLBO at |𝒟𝑡| = 1000  by 1D-BOLDUC based on ℰ𝑡  at 
|𝒟𝑡| = 307 and 600 in cases (a) and (b), respectively, so the 
respective search improvement rates were about 69% and 40%. 
Figure 7 shows the thirty-time averages of the logarithmic 
regrets of each method, which showed respective 
improvement rates of about 35% and 41%. In both cases (a) 
and (b), the search efficiency was better when ℰ𝑡  was used 
than when SoD1 and 2 were used. This confirmed an 
improvement effect on search efficiencies by LSoD extraction 
according to contribution to 𝒮𝑡. 

Figure 8 shows the transitions of the logarithmic regrets of 
CLBO and 1D-BOLDUC with 𝜏𝑡 = 0.1, 0.2, 0.3, 0.4, 0.5 in 
the normalized domain in Strategy 2. In both cases (a) and (b), 
1D-BOLDUC had smaller regrets than did CLBO, regardless 
of the value of 𝜏𝑡. 

Figure 9 shows the logarithmic regrets of CLBO and 1D-
BOLDUC with 𝐶𝑡 = 0.1, 0.2, 0.4, 0.8, 0.9  in Strategy 3. In 
both cases (a) and (b), the search efficiency of 1D-BOLDUC 
with 𝐶𝑡 ≥ 0.4  was higher than that of CLBO. Since the 
difference was small when 𝐶𝑡 = 0.8 and 0.9, we recommend 
this level of 𝐶𝑡 value. 

  

(a) 20D Ackley case (b) 20D Rosenbrock case 

Fig. 8. Logarithmic regrets for the evaluation of 1D-BOLDUC (LSoD 

extraction Strategy 2). Each solid line and shaded area represent the mean 

and standard deviation of 30 trials. The method names in the legend are 

arranged in descending order of the means at |𝒟𝑡| = 1000. 

  

(a) 20D Ackley case (b) 20D Rosenbrock case 

Fig. 9. Logarithmic regrets for the evaluation of 1D-BOLDUC (LSoD 

extraction Strategy 3). Each solid line and shaded area represent the mean 

and standard deviation of 30 trials. The method names in the legend are 

arranged in descending order of the means at |𝒟𝑡| = 1000. 

  

(a) 20D Ackley case (b) 20D Rosenbrock case 

Fig. 10. Numbers of samples |𝒟𝑡| and |ℰ𝑡| extracted for each 𝐶𝑡  (averages 

of 30 trials). 

 

Figure 10 shows averages of numbers of samples |𝒟𝑡| and 
|ℰ𝑡|  extracted for each 𝐶𝑡 . At 𝐶𝑡 = 0.1, 0.2  in (a), the 
averages of |ℰ𝑡| were less than 100 at maximum. In the case 
of 𝐶𝑡 = 0.1, 0.2 , |ℰ𝑡|  was too small to guarantee GPR 
prediction accuracy in the low-dimensional search space, and 
the search efficiency shown in Fig. 9a was considered to be 
worse than CLBO. At each 𝐶𝑡  in (b), |𝒟𝑡|  and |ℰ𝑡|  were 
approximately proportional. Since the locality of the Ackley 
function is high, |ℰ𝑡| in (a) was smaller than that in (b) when 
comparing with the same 𝐶𝑡 and |𝒟𝑡|. 

Figure 11 shows the averages of the length scale 𝜃𝑙(𝒟𝑡)  
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(a) 20D Ackley case (b) 20D Rosenbrock case 

Fig. 11. Length scales  𝜃𝑙(ℰ𝑡), 𝜃𝑙(𝒟𝑡) estimated in each method (averages of 

30 trials).  

 

estimated by global GPR in CLBO and the length scale 
𝜃𝑙(ℰ𝑡) estimated by LGPR for each 𝐶𝑡  in 1D-BOLDUC. 
These were the values in normalized domain. Since the 
locality of the Ackley function is high, the length scale in (a) 
was smaller than that in (b), under the same conditions. In (a), 
the length scale was also larger than CLBO at 𝐶𝑡 = 0.1, 0.2, 
where the regret was larger than in CLBO in Fig. 9a. For 𝐶𝑡 =
0.4, 0.8, 0.9, where the regret was smaller than CLBO, the 
length scale was also smaller than in CLBO. If 𝐶𝑡 is too small, 
the observation points included in ℰ𝑡  cannot cover the low-
dimensional search region (𝒮𝑡 ∩ 𝜒), so the length scale that 
can reproduce the local structure of the objective 𝑓 cannot be 
estimated. However, if 𝐶𝑡 is within a certain range, a length 
scale capable of finely reproducing the local structure is 
estimated. In Fig. 11b, the smaller 𝐶𝑡 is, the smaller the length 
scale. In Fig. 9b, for any 𝐶𝑡  less than 1, the regrets were 
smaller than in CLBO corresponding to 𝐶𝑡 = 1, so we can see 
that the structure in (𝒮𝑡 ∩ 𝜒) of the Rosenbrock function was 
reproduced when 𝐶𝑡 < 1. 

B. Automatic design of a power semiconductor device 

We evaluated the effectiveness of BOLDUC by applying 
it to a design task for a power semiconductor device. We 
constructed an automatic design environment by combining 
our optimization method and technology computer-aided 
design (TCAD), which simulates characteristic values 
according to design variables on a computer. The design target 
was a MOSFET structure with a gradient field plate, described 
in [10] and shown in Fig. 12a. The design target 𝐱 input to 
TCAD was a vector consisting of six design variables, 
including the field plate width and height. The breakdown 
voltage 𝑉B  and the specific on-resistance 𝑅ON𝐴 were output 
from TCAD. 𝑉B must be greater than 110V to prevent device 
breakage. The smaller the 𝑅ON𝐴 , the less the power loss, 
reducing carbon dioxide emissions. The objective function to 
be minimized was defined as 

𝑓(𝐱) = 𝑅ON𝐴 30⁄ + 10 ReLU(110 − 𝑉B), 

as in [10], where ReLU is a rectified linear unit function. 

In BOLD, we fixed the dimension 𝑑𝑡 of 𝒮𝑡 to 2 regardless 
of time 𝑡. We set one of the two basis vectors of the two-
dimensional linear subspace 𝒰𝑡  as the cyclically selected 
coordinate axis and determined the other randomly, not 
necessarily parallel to the coordinate axes. We updated 𝒮𝑡 
every 5𝑑𝑡  (= 10) advances of 𝑡. We thus refer to this method 
as 2D-BOLD. We did not adopt CLBO [14] as BOLD because  

  

(a) Structure of gradient field-plate 
MOSFET 

(b) Simple regrets of each method 

Fig. 12. Results from the automatic design task. In (b), The method names in 

the legend are arranged in descending order of the simple regrets. 

 

Fig. 13. Obtained minimum specific on-resistances by each method. 

 

like the coordinate descent method it can, in principle, fall into 
a local minimum. We adopted LSoD extraction Strategy 1 for 
LGPR and set 𝑀 to 200, which was reasonable to cover the 
two-dimensional 𝒮𝑡 by the observation points included in ℰ𝑡. 
We performed comparisons with 2D-BOLDUC, 2D-BOLD, 
CMA-ES [33], standard BO, REMBO [18], and TuRBO-1 
[24]. Due to a limited budget for TCAD simulations, we 
optimized each method once with 𝑁 = 1000 . Other than 
CMA-ES and REMBO, we set 𝑁0 = 𝐷 (= 6) and used the 
same initial points {𝐱𝑛}𝑛=1,2,…,𝑁0

 in the Sobol sequence. 

 Figures 12b and 13 show transitions of the simple regrets 
and the obtained minimum 𝑅ON𝐴s under the condition that 𝑉B 
is 110 or more in each method. Although the parameter space 
dimensionality was 6, which is not high, standard BO was 
inferior to other methods. Our 2D-BOLDUC obtained the 
smallest objective function value and 𝑅ON𝐴 compared to the 
other methods. 𝑅ON𝐴 was approximately 25% smaller than 
CLBO in [10] and 3.4% better than without LGPR. 

V. CONCLUSION 

We proposed a novel BO algorithm, BOLDUC, to scale 
BO to higher dimensions. Focusing on the fact that BOLD 
requires prediction only in low-dimensional search regions, 
we presented a LSoD extraction framework to realize LGPR 
specialized to those regions. 

By LGPR, calculation times for matrix inversion can be 
suppressed to within a certain time, so it works even with an 
increased number of observation points. We estimated the 
length scale that models the local structure of the objective 
function from LSoD and, using benchmark functions, we 
confirmed an improvement in search efficiency as compared 
to BOLD and other methods. Constructing an automatic 
design environment for a power semiconductor device, our 
method successfully found a design vector value that yielded 
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better 𝑅ON𝐴  than [10], BOLD, and the other compared 
methods. 
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