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Abstract—As machine learning techniques become increasingly
prevalent in data analysis, the threat of adversarial attacks
has surged, necessitating robust defense mechanisms. Among
these defenses, methods exploiting low-rank approximations for
input data preprocessing and neural network (NN) parameter
factorization have shown potential. Our work advances this field
further by integrating the tensorization of input data with low-
rank decomposition and tensorization of NN parameters to en-
hance adversarial defense. The proposed approach demonstrates
significant defense capabilities, maintaining robust accuracy even
when subjected to the strongest known auto-attacks. Evaluations
against leading-edge robust performance benchmarks reveal that
our results not only hold their ground against the best defensive
methods available but also exceed all current defense strategies
that rely on tensor factorizations. This study underscores the
potential of integrating tensorization and low-rank decomposition
as a robust defense against adversarial attacks in machine
learning.

Index Terms—adversarial defense, tensor factorizations, ten-
sorial denoising, tensor train, tucker decomposition

I. INTRODUCTION

The recent advances in machine learning and deep learning
have empowered a multitude of applications across various
domains, from image recognition to recommender systems.
However, these models are susceptible to adversarial attacks,
wherein small, carefully crafted perturbations to the input can
cause them to output incorrect results [1]. This vulnerability
represents a significant challenge to the reliable application of
machine learning models, particularly in critical areas such as
cybersecurity [2] and healthcare [3]. This raises two primary
concerns: the impact on the credibility of current machine
learning systems and the danger of malevolent adversarial
attacks in real-world applications.

Motivated by the above-mentioned challenges, our study
seeks to enhance our understanding of adversarial attacks and
provide efficient and robust defense mechanisms against them.
We are specifically interested in exploring the capabilities of
tensor factorization as a means to defend against adversarial
incursions in the image domain. We propose effective defenses
that can be incorporated without significantly altering the
original model structure or performance. We leverage an
extensive parameter search for tensor factorization method to
counter attacks, with a focus on the preservation of core data
features in the process of eliminating adversarial perturbations.

Dataset (Metric, ϵ) Method Clean AA
CIFAR-10 (l∞, ϵ = 8/255) Rank #1 93.25 70.69

Ours 85.59 70.24
CIFAR-10 (l2, ϵ = 128/255) Rank #1 95.54 84.86

Ours 86.61 77.73
CIFAR-100 (l∞, ϵ = 8/255) Rank #1 75.22 42.67

Ours 60.12 42.68

TABLE I: Comparison of test accuracy(%) from our tensorial
denoiser to the state-of-the-art model, as in RobustBench [4].

II. RELATED WORK

Tensor decompositions as a defense against adversarial
attacks on deep learning (DL) models were first introduced
in [5] to demonstrate a simple yet effective approach to resist
the attacks without significant degradation compared to the
model’s original performance on clean data. Another work,
“defensive tensorization”, presented in [6], proposed a novel
adversarial defense technique that employed a latent high-
order factorization of network layers, then applied tensor
dropout in the latent subspace to yield dense reconstructed
weights. This work demonstrated effective versatility across
multitudinous domains, reaching low-precision architectures.
Entezari and Papalexakis investigated adversarial attacks on
recommendation systems to present defense methods such
as low-rank reconstructions as well as a transformation of
attacked data. [7]

Block-term Dropout (BT-Dropout) was proposed in [8]
whereby a network was factorized into a latent high-order rep-
resentation, imposing a low-rank block-term tensor structure
on the weights of the fully-connected layer. They applied BT-
Dropout in the latent subspace without directly pruning the
weights. He et al. [9] presented an adversarial defense method
based on tensor decomposition (TDNN), which decomposed
then reconstructed images to maintain critical features. This
process removed adversarial example perturbations, exhibiting
improved defense along with lower run times relative to
traditional tensor decomposition.

Tensor layers plus tensor dropout implemented in con-
volutional neural networks (CNNs) as a means to improve
inductive bias, robustness, and efficiency by using low-rank
tensor structures on the weights of tensor regression layers
was introduced in Ref. [10]. This work established superior
performance post-model-modification, furthering robustness
against noise and adversarial attacks.
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Samangouei et al. [11] presented Defense-GAN. This new
framework utilized generative models’ capabilities to protect
deep neural networks against adversarial attacks by modeling
the distribution of unperturbed images paired with the removal
of adversarial changes during inference. Similarly, Ilyas et.
al [12] posits that adversarial examples in machine learning
are due to non-robust features expressed as predictive data
distribution patterns but fragile for model performance, even
unintuitive to humans. These features, identified within a
theoretical framework and shown to be prevalent in standard
datasets, reflect a disconnect between human-defined concepts
of robustness due to inherent data geometry.

Current tensor-based denoising frameworks lack strategies
for selecting optimal hyper-parameters, like tensor ranks for
optimal decomposition, and their defense mechanisms are
tested only against relatively simple attacks such as FGSM
and PGD. Our work addresses this gap, inspired by previous
research on low-rank approximation tensor decomposition de-
fense strategies. Our approach combines the low-rank approx-
imated tensorized image, which reshapes into a higher-order
tensor by stacking image patches, and the reparametrization
of the neural networks (NN) with tensors. We leverage both
Tucker [13] and Tensor-Train-based [14] decompositions and
highlight the efficacy of our optimal rank selection strategy.
Furthermore, to facilitate direct comparisons with existing
state-of-the-art defense frameworks, we assess our model’s ef-
fectiveness using AutoAttack [15], a well-recognized standard
in the field. This innovative approach enhances the robustness
and efficiency of the denoising process, thereby improving the
overall system performance.

III. BACKGROUND

This section discusses our defense model’s mathematical
foundation. Our denoiser model, as illustrated in Figure 1, is
comprised of patch extract, patch merge, and tensor factoriza-
tion.

A. Tensorization of images

1) Patch Extraction: Given an input image as I ∈
RC×W×H , where C is the number of channels, W is the
width, and H is the height. Similarly, the kernel size (patch
size) is represented as K, the stride as S, the padding as P , and
the dilation as D. With the above defined, the Image I is ten-
sorized into a 4-D tensor O ∈ R

W−K+2P
S ×H−K+2P

S ×C×K×K ,
where each K×K patch in the input tensor becomes a column
in the output tensor as:

Ow,h,c,k1,k2 = Ic,S·w+D·k1,S·h+D·k2 (1)
∀k1, k2 ∈ [0,K]

∀w ∈ [0,
W −K + 2P

S
]

∀h ∈ [0,
H −K + 2P

S
]

Here, Ow,h,c,k1,k2
is the pixel value at the position (k1, k2)

in the patch at position (w, h) for the channel c in the output
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Fig. 1: Overview of the Tensorial denoiser

tensor. Ic,S·w+D·k1,S·h+D·k2 is the corresponding pixel value
in the input tensor. s is the stride and d is the dilation.

2) Patch Merge: This operation does the inverse of the op-
eration performed in patch extraction, folding the patches back
to their original locations to reform the image. Mathematically,
this operation can be expressed as follows:

Ic,w,h =
1

Cw,h

K∑
k1=0

K∑
k2=0

Ow−D·k1
S ,

h−D·k2
S ,c,k1,k2

(2)

· IS|(w−D·k1),S|(h−D·k2)

∀w ∈ [0,W ], h ∈ [0, H],

where

Cw,h =

K∑
k1=0

K∑
k2=0

IS|(w−D·k1),S|(h−D·k2) (3)

∀w ∈ [0,W ], h ∈ [0, H].

Here, Ic,w,h is the resulting image, Ow,h,c,k1,k2 are the
patches to be folded back into the image, and I· is the indicator
function that ensures the conditions inside the brackets hold.
The function returns 1 if the condition is true and 0 otherwise.

The indicator function IS|(w−D·k1),S|(h−D·k2) ensures the
original patch extraction positions in the image are correctly
restored. The positions w and h are chosen to be multiples of
the stride S and are positioned correctly for the dilation D and
the patch indices k1 and k2. This patch and merge strategies
are shown in Figure 1.

B. Tensor Decomposition

Once the image is transformed into patches, we perform
a low-rank approximation of the tensors with tensor decom-
position. We apply Tucker Decomposition [13] and Tensor
train decomposition [14] in this work. The details about these
methods are presented in the following sections.

1) Tucker Decomposition: Given the tensor patch O ∈
RM×N×C×K×K , the Tucker decomposition is:

O ≈ G ×1 A
(1) ×2 A

(2) ×3 A
(3) ×4 A

(4) ×5 A
(5), (4)
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Fig. 2: Overview of the Adversarial denoising setup

where G ∈ RR1×R2×R3×R4×R5 is the core tensor, A(n) ∈
RIn×Rn are the factor matrices for each mode (n =
1, 2, 3, 4, 5), and ×n denotes the n-mode product.

2) Tensor Train Decomposition: Tensor Train decompo-
sition, given the tensor patch O ∈ RM×N×C×K×K , is as
follows:

O(i1, i2, i3, i4, i5) ≈
∑

r1,r2,r3,r4

G
(1)
i1,r1

G
(2)
r1,i2,r2

(5)

G
(3)
r2,i3,r3

G
(4)
r3,i4,r4

G
(5)
r4,i5

,

where G(n) are the TT cores for each mode, and the
indices rn (called ranks) represent the connections between
the cores [14].

The low-rank, compressed representation of the patched
image tensor is then reconstructed using the Patch Merge
algorithm. The decompressed image, where high-frequency
noise has been removed through tensor factorization, is then
classified with the DL model. An overview of utilizing this
denoiser model for adversarial denoising is shown in Figure 2.

C. Tensorizing Neural Network

In addition to applying tensor factorizations as prepro-
cessing steps for input images, we also execute a low-rank
re-parameterization on the NN layers. While low-rank ap-
proximation of NNs was initially designed for significantly
reducing the parameters yielding great accelerations [16]–[20],
they have also demonstrated promising results for adversarial
defense [6], [9]. In an NN with a convolutional kernel pa-
rameterized as S ∈ Rd×d×P×Q, where d is the filter size,
and P and Q are the number of input and output channels
respectively, the weight tensor can be factorized using the
Tucker Decomposition. The factorization is expressed as:

S̃i,j,p,q =

Rp∑
rp=1

Rt∑
rq=1

Gi,j,rp,rqAP
p,rpA

Q
q,rq (6)

Here, G is the reduced kernel tensor, Rp and Rq are the
ranks of input and output feature map dimensions, respectively,
and AP and AQ are the factor matrices corresponding to the
input and output feature maps. This factorization transforms
a single convolutional layer into three distinct convolutional
layers: two (1 × 1) layers for AP and AQ, and a d × d
convolutional layer for G. Consequently, the complexity of

the original layer is significantly reduced, leading to potential
computational and storage efficiency.

Alongside Tucker, we employ tensor-train based reparame-
terization of the NN. Here, the TT factorization is given as:

S̃i,j,p,q =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

G1
i,r1G

2
r1,j,r2G

3
r2,p,r3G

4
r3,q (7)

Each Gk is a TT-core, and Rk are the TT-ranks. This
factorization transforms the 4D tensor S into a sequence of
matrices and vectors, which can be stored and manipulated
more efficiently. The TT-decomposition is mainly used on
high-order (> 3) tensors, providing efficient tensor operations
yet more compression than the Tucker decomposition.
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Fig. 3: Overview of the attack generation

D. Adversarial Attacks

The recent advancements in adversarial defense frame-
works are commonly evaluated for their robustness using
an ensemble of adversarial attacks bundled in a tool called
AutoAttack [15]. We, too, utilize this tool to assess the
effectiveness of our proposed defense mechanism. AutoAttack
integrates white-box and black-box attack methodologies tai-
lored to challenge a model’s performance under adversarial
conditions. The white-box attack methods include Auto-PGD
(Projected Gradient Descent) and APGD-DLR (Auto PGD
with Difference of Logits Ratio). In contrast, the black-box
attack techniques encompass FAB (Fast Adaptive Boundary
attack) and Square Attack.

Auto-PGD and APGD-DLR constitute gradient-based ap-
proaches. These methods strategically leverage gradient data
to iteratively adjust inputs until a misclassification results.



They utilize constraints by limiting the alterations within a
predefined threshold, denoted as ϵ, governed by the attack
norms (l1 or l∞). On the other hand, FAB and Square Attack
are decision-based attacks that generate adversarial examples
by making small, ϵ-bounded adjustments to the input. These
modifications are fine-tuned to observe whether they lead
to misclassification by the model. AutoAttack enables the
generation of adversarial samples that probe the performance
of our denoising model under severe black-box and white-
box adversarial attacks. This helps us determine how our
framework fares when subjected to these rigorous tests. The
overview of the attack generation process is shown in Fig-
ure 3. Initially, the adversarial attack is crafted for one DL
model, such as ResNet or WideResNet. Once generated, these
adversarial samples are processed through the denoiser before
passage to the DL model.

IV. METHOD

Figure 4 offers a comprehensive overview of our training
and inference pipeline. We use an eight fold cross-validation
approach to optimally select the parameters for the denoising
block, such as patch size, stride, and tensor decomposition
ranks. The training data is divided into eight partitions. Each
training fold consists of seven partitions used for training,
leaving one partition for validation. This process results in
eight distinct training partitions, thus yielding eight trained
DL models. While we utilized CIFAR10 and CIFAR100
datasets for the above experiments, we employed Resnet18
and WideResnet28-10 DL models for adversarial robustness
evaluation. We utilized the PyTorch Lightning framework with
appropriate seeding to ensure reproducibility across experi-
ments. We set the learning rate of 1e−2, batch size of 256, and
maximum training epoch of 200. The experiments were run on
NVIDIA A100 GPUs of 80GB memory. For hyperparameter
tuning, we exploited Ray Tune [21] framework for handling
parallel workloads.

Autoattack is subsequently employed to create attacks cor-
responding to the validation sets for each model. For a one-
to-one comparison with state-of-the-art adversarial robustness
framework, we exploited L1 and L∞ attacks with perturbation
ϵ equals to 8/255 and 128/255 respectively. Almost all
the datasets subjected to Autoattack resulted in 0 evaluation
accuracy for the DL model.

The generated attacks are then fed into the denoiser block.
Here, the block is evaluated using different combinations
of hyperparameters such as patch size, stride, and tensor
decomposition ranks. These hyperparameters were selected
using an optimization technique known as ”Tree-Structured
Parzen Estimator” [22] specifically implemented through Op-
tuna [23], a Python library for hyperparameter optimization.
Specifically, we have four hyperparameters to tune: patch size,
stride, rankp, and rankk. patch size is the size of the patches
into which the image is divided, and stride determines the
overlap between these patches. These parameters are selected
from categorical lists of potential values, specifically [4, 8,
16, 24] for patch size and [1, 2, 4] for stride. Although a

patch is 2D, the same rank (rankp) is chosen to control the
tensor decomposition’s rank along both patch axes to simplify
the search space for tucker decomposition. Lastly, parameter
rankk for tucker decomposition controls the decomposition’s
rank along the number of patches. The rank corresponding
to the channel dimension is kept as it is. Our approach is
defined-by-run, meaning the hyperparameter search space is
dynamically constructed during the optimization process since
the feasible ranges for rankk and rankp are determined by
the patch size and stride parameters (i.e., the decomposition
rank cannot be larger than the size of the corresponding tensor
dimension). A step size of 4 is used for the rank hyperparam-
eters to prune the search space further. The ranks’ maximum
and minimum allowed values are carefully calculated based
on the patch size and stride, ensuring an optimal balance
between computational efficiency and performance. For the
TT decomposition, the hyperparameters rankk and rankp have
a different interpretation. They determine the sizes of the
”connecting” dimensions in the train of tensors (TT-cores),
controlling the complexity of the multilinear relationships
between the tensor dimensions. Building upon Equation 1, let’s
consider a tensorized image, O, in its 5D form. The first two
dimensions of this tensor are contracted to form a simpler 4D
tensor, denoted as O ∈ R

(W−K+2P )(H−K+2P )

S2 ×C×K×K . For the
Tucker decomposition process, the multi-ranks are arranged in
the configuration [rankk, 3, rankp, rankp]. In contrast, the TT
ranks were configured as [1, rankk, rankp, 3, 1] for the reshaped
tensor O ∈ R

(W−K+2P )(H−K+2P )

S2 ×K×K×C . This reshaping of
the tensor is required for the appropriate selection of TT ranks.

The specific configuration of the DL model and the cor-
responding attacks on the validation dataset determine the
optimal parameters for the denoiser. The denoiser is evalu-
ated based on a fitness score metric, the average clean and
adversarial accuracy. Then, the optimal denoiser is selected
based on the parameter configuration that yields the highest
fitness score across the independent folds. For the DL model,
we adopt the model that is trained on the entire training set.
Early stopping based on validation loss is employed to find the
optimal model. Once we determine the optimal denoiser and
DL model, an attack is launched on the test set and evaluated
using the denoiser.

Moreover, we also incorporate low-rank approximation of
the neural network weights to accelerate the DL model and
provide additional robustness across adversarial attacks. We
exploited Tucker/TT based tensor decomposition to compress
the weight matrices of NN without significant loss of useful
information. The reduced complexity of the model aided in
quicker processing and efficient memory usage, accelerating
the model’s performance. Simultaneously, low-rank approx-
imation also helped in minimizing the impact of adversarial
perturbations as it aids in capturing the dominant, most impor-
tant features of the data while potentially discarding minute,
less meaningful perturbations that are commonly used in
adversarial attacks. The tensor decomposition was performed
on the final DL model, where the ranks for decomposition
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equipped with optimized hyperparameters, and the final tensor decomposition for computational efficiency and robustness.

were achieved using the Bayesian approach presented in [24].
In summary, our comprehensive framework offers a robust

and efficient solution for DL models facing adversarial attacks.
The solution is achieved through cross-validation to select
optimal parameters, a denoiser block for robustness against
adversarial attacks, and low-rank approximations for compu-
tational efficiency. This approach sets a solid foundation for
future studies to enhance the resilience and performance of
DL models in adversarial scenarios.

V. RESULTS

Figure 5 presents the comprehensive performance of our
cross-validated model when evaluated against the test dataset.
The first 10 denoiser hyperparameter setups, which deliver
the maximum test performance, are specifically reported. Both
clean and adversarial accuracy scores are provided, following
the procedure of passing the images through the denoiser and
feeding them into the Deep Learning (DL) models.

The clean accuracy results demonstrate remarkable consis-
tency, as indicated by the minimal variance in the accuracy
plot. In contrast, the adversarial accuracy shows consider-
able variability. However, relative high-performance levels
are maintained, indicating our denoising model’s effective
and consistent ability to eliminate adversarial perturbations.
Detailed performance scores can be found in tables II,III,IV,
and V, where we provide a summary of the hyperparame-
ters leading to the optimal fitness score. Tables II and III
provide the results of our denoising model when applied to
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Fig. 5: Distribution of clean and adversarial accuracy scores
achieved for top 10 denoiser hyperparameter configurations
for test dataset.

the CIFAR10 and CIFAR100 datasets, respectively, using the
WideResnet18-10 model. Meanwhile, tables IV and V present
the denoising model’s performance on the same datasets but
using the Resnet18 model instead. In all scenarios, the models
and datasets were evaluated using the AutoAttack method with
an L∞ norm of 8/255 and an L2 norm of 128/255. We present
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the denoising model’s performance under these configurations
(DL model, datasets, attack norm), employing Tensor Train
and Tucker tensor decomposition methods.

The results obtained from various model configurations
highlight the influence of different adversarial attack scenarios.
For instance, when the WideResnet architecture is employed
on the CIFAR10 dataset, with an L∞ attack and Tucker
decomposition (as detailed in table IVa), the configuration
yielding the highest adversarial accuracy (0.7160) involved a
patch size of 24, a stride of 1, a rankk of 60, and a rankp

of 12. Conversely, when the Resnet18 architecture was used
with the CIFAR100 dataset, subjected to an L2 attack and
TT decomposition (refer table Vd), the top-performing model
configuration (achieving an adversarial accuracy of 0.4633)
had a patch size of 8, a stride of 2, a rankk of 32, and a rankp
of 12. These variances in performance across different model
configurations underscore the diverse impacts of adversarial
attacks. Furthermore, in Figure 6, we present the robustness
metric, highlighting the hyperparameters corresponding to the
highest clean and adversarial accuracy average.

We have also compared our findings with the current best-
in-class adversarial robust models, using the Robustbench
benchmark [4]. This comparison is depicted in Figure 7, and
Table I presents a detailed contrast of our top-performing
denoising model against the state-of-the-art adversarial robust-
ness model that is based on denoising diffusion [25].

For the CIFAR-10 dataset, the leading adversarial robust
framework achieves a top accuracy of 93.25% on clean data
and 70.69% on an AutoAttack dataset with L∞ norm. In
contrast, our top model performs comparably with 85.59% and
70.24% accuracy, respectively. Unlike most existing denoising
models presented, our approach does not require additional
datasets for training or any form of adversarial training. This

TABLE II: Top 5 Final Adversarial Accuracies for cifar10 and
Wide-Resnet

(a) Linf Attack, Tucker Decomposition

patch stride rankk rankp clean acc adv acc

24 1 60 12 0.8393 0.7160
8 2 24 20 0.8751 0.7081
8 4 20 8 0.8029 0.6941
8 1 36 8 0.9075 0.6164
24 1 36 20 0.7159 0.6148

(b) Linf Attack, TT Decomposition

patch stride rankk rankp clean acc adv acc

4 1 12 8 0.8430 0.6369
8 1 44 8 0.9123 0.6092
8 1 40 16 0.9125 0.5815
24 1 44 16 0.8533 0.5722
16 1 64 20 0.7609 0.5681

(c) L2 Attack, Tucker Decomposition

patch stride rankk rankp clean acc adv acc

8 1 52 8 0.8043 0.7291
8 2 28 8 0.9150 0.7134
4 2 12 12 0.7921 0.7118
8 1 32 12 0.8640 0.7078
8 1 40 20 0.8951 0.6791

(d) L2 Attack, TT Decomposition

patch stride rankk rankp clean acc adv acc

8 1 48 8 0.8215 0.7182
8 2 32 16 0.8893 0.7026
4 1 12 12 0.7820 0.6923
24 1 40 12 0.8367 0.6801
8 1 36 16 0.9137 0.6674

may be one of the reasons why the clean accuracy of our ap-
proach trails behind the existing defense frameworks. Notably,
our model surpasses the top-ranked model on the CIFAR-
100 dataset, outperforming it by a margin of 0.01% on the
attacked dataset for the L∞ norm. However, our model does
not perform as well under an L2 AutoAttack, trailing behind
the best model by a margin of approximately 7%. This shortfall
could be attributed to utilizing the Tensor Train (TT) and
Tucker tensor decomposition tools with an L2 minimization
objective, which may inadvertently allow for adversarial noise
during reconstruction. To address this issue, leveraging the
Tensor decomposition tool based on L1 minimization [26],
[27] may improve resistance against adversarial noise.

Despite its simplicity, our denoising model demonstrates
competitive performance compared to the best existing models.
The most significant advantage of our model over others lies
in its real-time denoising capabilities.

VI. CONCLUSION

This study has presented a comprehensive evaluation of a
Tensor factorization based denoising model and its impact
on the performance of deep learning models under various
adversarial attack scenarios. Tensor Train and Tucker tensor
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Train(tt) for Resnet-18(Res-18) and WideResnet-70-16 (WRN-70-16) architectures.

TABLE III: Top 5 Final Adversarial Accuracies for cifar100
and Wide-Resnet

(a) Linf Attack, Tucker Decomposition

patch stride rankk rankp clean acc adv acc

8 1 40 8 0.6012 0.4268
8 1 32 12 0.4787 0.3444
8 2 36 8 0.4111 0.3430

24 1 44 20 0.6322 0.3429
4 2 12 8 0.6650 0.3422

(b) Linf Attack, TT Decomposition

patch stride rankk rankp clean acc adv acc

8 4 28 8 0.5928 0.3830
8 1 40 12 0.6131 0.3510
8 1 36 12 0.6661 0.3445
8 2 48 8 0.6650 0.3432
4 1 12 12 0.6690 0.3396

(c) L2 Attack, Tucker Decomposition

patch stride rankk rankp clean acc adv acc

8 2 32 12 0.6627 0.4565
8 1 40 20 0.5770 0.4217
8 1 52 8 0.6761 0.4176
8 1 32 16 0.4953 0.3644
8 1 40 12 0.7079 0.3551

(d) L2 Attack, TT Decomposition

patch stride rankk rankp clean acc adv acc

8 2 32 12 0.5544 0.4633
8 1 40 12 0.5521 0.4600
8 4 32 8 0.6630 0.4563
4 1 12 8 0.5594 0.4478
8 1 44 20 0.6690 0.4470

decompositions have demonstrated noteworthy results with
different configurations of deep learning models, datasets, and
adversarial attack norms. Our analysis, encompassing several
robustness metrics, has revealed the efficacy of our denoising
model under both clean and adversarial conditions. Notably,
we have achieved consistent results under clean conditions
while effectively mitigating adversarial perturbations, as evi-
denced by the considerable variability in adversarial accuracy.

TABLE IV: Top 5 Final Adversarial Accuracies for cifar10
and Resnet18

(a) Linf Attack, Tucker Decomposition

patch stride rankk rankp clean acc adv acc

8 2 16 8 0.7714 0.6547
8 1 36 8 0.8775 0.6195
8 1 20 8 0.7724 0.6060
8 2 28 20 0.6583 0.5935
8 1 28 8 0.8122 0.5782

(b) Linf Attack, TT Decomposition

patch stride rankk rankp clean acc adv acc

8 4 16 8 0.8559 0.7024
8 1 24 8 0.7960 0.6788
24 2 24 12 0.8572 0.6147
8 2 20 24 0.7779 0.5818
8 4 12 16 0.8100 0.5739

(c) L2 Attack, Tucker Decomposition

patch stride rankk rankp clean acc adv acc

8 1 28 16 0.8856 0.7713
16 1 72 20 0.8899 0.7469
16 1 68 20 0.8756 0.7212
16 1 80 16 0.8479 0.7184
8 2 32 24 0.8798 0.7177

(d) L2 Attack, TT Decomposition

patch stride rankk rankp clean acc adv acc

8 1 36 20 0.8661 0.7773
8 2 32 24 0.8408 0.7633
8 1 44 8 0.9058 0.7409
8 2 32 12 0.8552 0.7398
8 4 16 12 0.8087 0.7362

The benchmarking of our denoising model against state-of-
the-art adversarial robust models revealed that our model’s
performance is competitive, even exceeding the performance
of top-ranked models in some scenarios. In particular, our
model outperformed the leading model on the CIFAR-100
dataset under L∞ norm AutoAttack. Our findings indicate
the potential of the proposed denoising model to significantly
enhance the robustness of deep learning models against adver-



TABLE V: Top 5 Final Adversarial Accuracies for cifar100
and Resnet18

(a) Linf Attack, Tucker Decomposition

patch stride rankk rankp clean acc adv acc

24 1 32 16 0.5767 0.3902
4 1 12 8 0.4781 0.3498

24 1 56 16 0.4526 0.3399
8 4 16 8 0.6160 0.3250
8 4 16 12 0.5181 0.3232

(b) Linf Attack, TT Decomposition

patch stride rankk rankp clean acc adv acc

8 2 32 12 0.5358 0.4051
116 1 68 24 0.5785 0.3617

8 1 40 24 0.5106 0.3554
24 2 20 12 0.5636 0.3169
24 2 24 12 0.4393 0.3158

(c) L2 Attack, Tucker Decomposition

patch stride rankk rankp clean acc adv acc

8 1 32 8 0.5705 0.4785
24 1 48 16 0.6255 0.4769
8 1 36 16 0.6132 0.4629
8 2 24 24 0.6028 0.4502
4 1 12 8 0.6015 0.4444

(d) L2 Attack, TT Decomposition

patch stride rankk rankp clean acc adv acc

8 1 40 24 0.5722 0.4779
4 2 12 12 0.4992 0.4373

16 1 64 20 0.6088 0.4310
8 1 32 24 0.5572 0.4274
8 4 24 8 0.6600 0.4089

sarial attacks.
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