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Abstract—This study addresses the challenges in parameter
estimation of stochastic differential equations (SDEs) driven
by non-Gaussian noises, which are critical in understanding
dynamic phenomena such as price fluctuations and the spread
of infectious diseases. Previous research highlighted the potential
of LSTM networks in estimating parameters of «-stable Lévy
driven SDEs, but faced limitations including high time complexity
and constraints of the LSTM’s chaining property. To mitigate
these issues, we introduce the PEnet, a novel CNN-LSTM based
three-stage model that offers (a) an end-to-end approach with
superior accuracy and adaptability to varying data structures, (b)
enhanced inference speed for long-sequence observations through
initial data feature condensation by CNN, and (c) high generaliza-
tion capability, allowing its application to various complex SDE
scenarios. Experiments on synthetic datasets confirm PEnet’s
significant advantage in estimating SDE parameters associated
with noise characteristics, establishing it as a competitive method
for SDE parameter estimation in the presence of Lévy noise.

Index Terms—SDEs, Parametric estimation, Neural networks,
Convolutional neural network, Long short-term memory

I. INTRODUCTION

Stochastic Differential Equations (SDEs) have emerged as
powerful tools for studying the dynamics of various phenom-
ena influenced by inherent randomness in the real world. The
application of SDEs spans multiple disciplines, including ecol-
ogy [1f [2], finance [3]], and epidemiology [4]. For instance,
The potential-based model [5]] in ecology employs an SDE
driven by Gaussian noise, with a drift term capturing the
Gaussian mixture attractor surface, to analyze and predict the
movement patterns of wildlife. In all these types of systems,
the dynamics are fully determined by the trend and noise-
related parameters. Therefore, the inverse problem, estimating
the SDE’s parameters from observations, plays a key role in
gaining insights into system trends, forecasting system dy-
namics, and facilitating informed decision-making processes,
which has garnered considerable interest in recent years.

For SDEs driven by Gaussian noise, the closed-form likeli-
hood functions enable Maximum Likelihood Estimation-based
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methods to effectively estimate the model parameters [6]]
[7]. However, in real-world phenomena, in addition to small-
scale fluctuations, systems may also exhibit strong ‘jumps’ at
random time points, as observed in stock prices and other
similar processes. When modeling such phenomena, it is
often more appropriate to consider non-Gaussian driven noises
rather than Gaussian ones [8]. Lévy processes, as a general-
ization of Gaussian processes, possess the flexibility to cap-
ture both small-scale fluctuations and large jumps at random
times, making them powerful tools for characterizing complex
stochastic phenomena. The jumps behavior, controlled by the
parameterized Lévy measure of the noise, leads to significantly
different stochastic properties compared to the Gaussian case.
As a result, it is crucial to develop methods that can offer
accurate, reliable, and efficient parameter estimates in the Lévy
case. However, while non-Gaussian noise has provided greater
flexibility to SDE models, it has also introduced challenges in
estimation.

Unlike the Gaussian cases, Lévy noises are generally not
closed under convolution. For example, the distribution of
the Student-Lévy noise is unknown unless the observation
frequency h = 1 (i.e., the time interval between observations),
making it infeasible to use traditional Maximum Likelihood
Estimation (MLE). In such cases, Quasi-likelihood estima-
tion [9] [10] is employed to estimate the system’s parameter,
utilizing the limiting behavior under high-frequency observa-
tions. However, this approach has a significant drawback of
making strong assumptions about the observation frequency,
namely, h tending to zero. If this assumption cannot be
satisfied, the estimated accuracy will be subject to significant
errors.

In scenarios such as « stable Lévy-driven Ornstein-
Uhlenbeck (OU) processes, the drift parameter of the model
can be estimated using least squares estimation (LSE) [11]]
[12], which alone is insufficient for estimating all parameters
of the system. A simultaneous estimation is achieved by the



moment method through complex iterative algorithms [13]],
while it only has limited applicability and cannot be easily
generalized to complex systems. Furthermore, even in simple
cases where MLE is applicable, the speed of the algorithms
is typically slow due to the need for complex numerical
integration in likelihood function calculations [[14].

In recent years, deep learning has attracted significant at-
tention from researchers due to its powerful feature extraction
capabilities, opening up new possibilities for SDE parameter
estimation. For linear SDEs driven by Gaussian noises, a
network structure based on multilayer perceptron (MLP) has
shown good performance in estimating drift parameters and
noise intensity. However, this method is limited by its simple
network structure, which restricts its applicability to more
complex SDE models. Additionally, even with increased input
length and sample size, the performance of the method does
not improve significantly [15].

For more general driven noises, a two-step Parameter
Estimating Neural Network (PENN) based on the vanilla
long short-term memory (LSTM) neural network has shown
promising results [[16] on c«-stable Lévy-driven SDEs and
demonstrates excellent performance in processing sequences
of lengths up to 500. However, when the length of input data
increases, the sequential nature of LSTM poses considerable
challenges, resulting in a substantial decrease in prediction
speed. Additionally, the memory requirements for training
become increasingly burdensome and difficult to accommo-
date. For SDE models that are flexible enough, the parameter
estimation often requires input sequences of sufficient length.
Taking the Switching SDE as an example, where the system
exhibits multiple hidden states and the transitions between
states are governed by a continuous-time Markov process,
a sufficiently long observation length is necessary to ensure
the exploration of each hidden state, thus obtaining a full
parameter estimation [17]. Currently, there is a lack of para-
metric estimation method that can simultaneously estimate all
parameters from variable-length long sequences for general
Lévy driven SDEs.

To address this issue, this paper proposes a three-stage
parametric estimation approach based on the convolutional
neural network (CNN) and LSTM, named PEnet, which offers
the following advantages:

1) End-to-end capability: The method does not rely
on handcrafted features [18]] [[19] or preprocessing
steps [20], providing a seamless and automated param-
eter estimation process.

2) Flexibility in handling variable-length sequences: The
approach can accommodate varying lengths of input se-
quences and observation intervals, which is particularly
advantageous in scenarios where the underlying driven
noise is not closed under convolution, surpassing the
limitations of traditional methods.

3) Efficiency: The method is capable of processing long
sequences efficiently, thereby enabling parameter esti-
mation for more complex systems.

4) Generalizability: By modifying the input data and labels
during training, the proposed network structure can be
applied to parameter estimation tasks of other SDE
models, demonstrating its generalizability.

The paper is organized as follows. In Section 2, an overview
of Lévy-driven SDEs and several representative driven noises
is provided, along with a detailed description of the pro-
posed network structure. Section 3 presents the numerical
experiments conducted to validate the accuracy and scalability
of our proposed method. Section 4 concludes the paper by
summarizing our findings and discussing future works.

II. METHODOLOGY
A. Lévy Driven SDEs

A stochastic differential equation is a mathematical equation
that describes the evolution of a stochastic process. It is
an extension of ordinary differential equations (ODEs) that
incorporates random disturbances. The general form of a
parameterized SDE is given by:

dX(t) = ae, (X(t)v t)dt + b@b (X(t)’ t)dWQNozse (t)’ (1)

where X (t) represents the system state at time ¢, ag, (X (¢),t)
and be, (X (t),t) are deterministic functions with parameters
®, and ©;, which are vectors capturing the system trend
and diffusion respectively. dWe,.,..(t) is a random term
determined by parameter ® y,;s. and can be regarded as the
infinitesimal increment of driving noise at time t, representing
the random disturbance on the system.
The dynamics of the system is totally determined by the
packaged parameter
e .= [0l el e%

Noise

1T =101,...,0m]", 2

where M is the number of considered parameters and the
superscript 7' is the transpose operator. We aim to estimate
the parameter ® of the system from discrete observed data
x. The sample trajectory x = [z4,,..., 2]’ is observed at
equally spaced discrete time points {t; }jvzl We denote the
data frequency by h, and thus the observation time points and
terminal time are t; = jh and T' = Nh respectively.

B. Examples of Driven Noises

Lévy noises or Lévy processes more precisely, are a class
of stochastic processes that play a fundamental role in the
theory of stochastic analysis and its applications. A Lévy
process is a continuous-time process with stationary and inde-
pendent increments, signifying that the magnitudes of changes
within any given time interval are independent of the changes
observed in other non-overlapping time intervals [21]]. The
subsequent section provides an overview of several prominent
Lévy driven noises, on which the efficacy of the proposed
estimation method will be validated.

o Wiener Process

The most well-known and widely studied Lévy process is
the Wiener process, also known as the Brownian motion or



Gaussian noise. A Wiener Process W (t) is a Lévy process
with Gaussian distributed increments, namely for ¢, u > 0,

W(t+u)—W(t) ~N(,u). 3)

The Wiener process employed here does not incorporate
learnable parameters; instead, it serves as a limiting case of
other noise sources for comparative purposes.

¢ «a-stable Lévy noise

The o stable Lévy process is a generalization of Brownian
motion and encompasses a wide range of stochastic processes
with heavy-tailed and asymmetric distributions. The a-stable
Lévy process is characterized by stable probability distribu-
tions, which exhibit stable scaling properties under addition.
This means that the sum of independent a-stable random
variables remains «-stable. Here we consider a standard a-
stable Lévy motion Z, (t) [22]] [23]], where the increments are
stable distributed, namely for 0 < s < ¢,

Za(t) — Zo(s) ~ Sa ((t— s)é). )

A random variable X is stable distributed, denoted as X ~
Sa(€), if it has characteristic function

¢x (u) = exp{—e*|u|"}, (5)

where o and e are the stability index and noise intensity
respectively. The jumping behavior of X is controlled by «
and it reduces to Gaussian with variance 2¢2 when o = 2.
Note that if X ~ S, (1), then eX ~ S,(€), through which the
noise intensity parameter influences the amplitude.

o Student Lévy noise

For both the Wiener process and the a-stable process, their
distributions are closed under convolution. This means that
their increments A = X (¢ + h) — X (¢) belong to the same
distribution family as the stochastic process itself at any
given observation frequency h. However, for more general
Lévy noise, this property does not always hold, namely the
increments of the random term may not necessarily follow
the same distribution as the random term itself and may even
be unknown, which poses significant challenges to traditional
parameter estimation methods based on the distribution func-
tion. As we aim to develop parameter estimation methods for
sufficiently flexible SDE models, we inevitably have to deal
with such situations.

In this study, the Student Lévy noise is chosen as a repre-
sentative of the case for its high representativeness [24] and
the challenges associated with its parameter estimation [25].

Here we consider Student Lévy driven noise J(t), where
J(1) ~ t(v). A random variable X is Student-t distributed,
denoted as X ~ ¢(v), if it has density function

o Tesh 2\
f(z;v) = W (1—1—1/) . (6)

The parameter v > 0, referred to as the degrees of freedom,

determines the kurtosis and heavy-tailedness of the distri-
bution. The effectiveness of the proposed method on the

Student Lévy case will be validated with a comparison with
a traditional Cauchy quasi-maximum likelihood estimation
(CQMLE) through subsequent numerical experiments.

C. The network structure

This study proposes a three-stage parameter estimation
approach, known as PEnet, which simultaneously estimates all
parameters © of the target SDE given discrete observations x
and its observation frequency h:

© = PEnet(x, h). (7

The architecture of PEnet is illustrated in Fig. [I| Initially, a
1D CNN is utilized to condense the information from the raw
long input sequences [26]]. This type of CNN, specifically de-
signed for processing sequential data, consists of convolutional
and pooling layers [27]. The convolutional layers employ
learnable kernels to map the original 1D input to a high-
dimensional feature space, generating a series of feature maps
through window operations and convolution computations.

Following the convolutional layers, max pooling layers are
applied to reduce the feature maps’ length, retaining essential
features while condensing information, decreasing the original
input length from n to a much smaller n’. This not only lowers
the time complexity for the next stage but also alleviates the
issues encountered by LSTM neural network when handling
long sequences.

In the second stage, the condensed information obtained
from the first stage undergoes deep feature extraction using
a LSTM neural network [28[]-[30]. The LSTM, a prevalent
tool in natural language processing, is adept at extracting deep
features from variable-length time series. This stage utilizes
L LSTM cells to recursively translate the output from the
preceding layer into hidden states or deep features for the next
layer. The LSTM extracts hidden features forming a matrix
of dimensions Djg,, X n’, which are then condensed using a
mean pooling operator to capture global information, resulting
in a vector ¥st, of length Djgp,. To enhance the model’s
accuracy in parameter estimation of the underlying SDE, the
observation frequency information, denoted as h, is integrated
at this stage. This information is pivotal as varying observation
frequencies can correspond to different SDE families even
with identical observed data. The final output feature of this
stage is obtained by concatenating i with the vector extracted
by the LSTM, as expressed below:

20 = [Fism: 1) - (8)

In the third stage, vector zg is then passed through a fully
connected neural network with Lpc + 1 layers, mapping the
extracted deep feature zo to the parameter space. For the
each layer of this stage, the input z;_; and output z; can
be described as follows:

fELU(fBN(fg;\);(Zk—l)))y k=1,
feru( éli\);(zk—l))v k=2,...,Lrc, )
N (zr—1), k= Lpc+1,

VA
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Fig. 1: The architecture of the proposed method

where frn, feru and fpy are the linear (LN) layer, the
activation function of exponential linear units (ELU) [31]
and the batch normalization (BN) layer [32], respectively.
The ELU function is a smoothed version of the ReL.U func-
tion [33]], which performs better than ReLU and tanh activation
functions on capturing nonlinear mappings [31]]. The BN layer
standardizes input features in every training batch, which has
the effect of stabilizing the training procedure and accelerating
the rate of loss reduction. This allows for the utilization of
a relatively large learning rate, which in turn speeds up the
training process [16]]. To prevent the network from becoming
excessively flexible and impeding convergence, batch normal-
ization is only applied to the first block of the network.

We adopt a weighted L1 loss for network training.

M
= \ilf; — 6
i=1

{6} and {6, are the M components of © and © respectively.
The weights {\;} are used to balance the scale differences
among different parameters which are determined in advance
by the training range, avoiding slow convergence of certain
components. Moreover, L1 loss is more robust to outliers
compared to L2 loss, making it suitable for training data with
multiple sources of noise.

(10)

III. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of PEnet
in three different scenarios to demonstrate its effectiveness.
Specifically, we compare the performance of PEnet with other
machine learning-based estimation methods (i.e., PENN and
MLP) in the Gaussian and « stable noise scenarios, and also
with the traditional CQMLE in the case of Student Lévy noise.

The experimental results demonstrate that PEnet exhibits
a superior ability to capture essential information related
to jumps in the data, resulting in more precise and robust
parameter estimation of the stochastic component. Importantly,

PEnet achieves exceptional computational efficiency, signifi-
cantly reducing the training time per epoch to an average of
164.3 seconds on an NVIDIA GeForce RTX 3080 12GB GPU
for a dataset containing 200,000 samples. In contrast, PENN
requires an average training time of 640.8 seconds per epoch,
and MLP, while faster with an average training time of 20.2
seconds per epoch, significantly lags behind both PEnet and
PENN in terms of performance.

A. Experimental configuration

To generate each sample in the experiment dataset, we
uniformly select parameter values ®, sample size N and time
span T from the predetermined training ranges. Subsequently,
we employ the Euler-Maruyama method [34] to generate
sample paths under these selected parameter values, which are
then added to the dataset. In the « stable experiment, the a-
stable Lévy noise is generated using the Chambers-Mallows-
Stuck method [35]] [36]], while the modified rejection method
[37] is employed to generate the Student Lévy noise.

For all experiments, a consistent network architecture was
employed, and the network configurations are outlined in
table Il The networks were implemented using the PyTorch
library [38]], and optimization was carried out using the ADAM
method [39] with a learning rate of 0.001.

B. Case 1: Gaussian case

In this section, we assess the effectiveness of PEnet on
Gaussian-driven OU processes. Since Gaussian noise does

TABLE I: Network Configuration

Parameter Value
Number of convolutional layer Loy 2
Size of convolutional kernels kcor 3x1
Number of convolutional kernels Doy 25
Number of LSTM layers L1 s 4
Length of LSTM hidden state Fr,s7ar 25
Number of fully connected layers Lo 3
Number of neurons in linear layers Lpc | 20




TABLE II: Parameter of Gaussian driven SDE

Parameter Range | Parameter Range
Spanning Time 7" | [5, 15] | Length N [3000, 4000]
Drift n [0, 5] Noise Intensity € | [0, 0.05]

Gaussian driven OU process
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Fig. 2: Three paths of Gaussian-driven OU processes

not involve any learnable parameters, this section primarily
highlights PEnet’s capability to capture the system’s trend
parameters and the noise intensity. We consider the following
SDE with parameters listed in table

dX (1) = —nX (t)dt + edW (1),
W (t) ~ N(0,1)

t €[0,+00). (11)

(12)

The model is determined by parameters @ = {n, ¢}, and
therefore the output of the network is two-dimensional vector
e = [7),€]T. To train the network, Kjyqi, = 200000 samples
are generated from table [l and three paths with different
lengths and time spanning are shown in Fig. [2]

The estimation performance of the trained network is tested
on the test set of size K5 = 5000 and summarized by Fig. EL
One can see that when the true value of the system trend 7 falls
within the middle region of the range [0, 5], it can be estimated
unbiasedly, but with a relatively larger deviation compared
with the case when the true value approaches the boundary
of the range. On the other hand, the estimation is biased
close to the boundary of the training range. Specifically, when
n approaches 5, the estimated values tend to underestimate,
while it tend to be overestimated when 1 approaches 0. This
discrepancy is attributed to the lack of extreme cases in the
training set. On the other hand, when estimating the noise
intensity parameter ¢, PEnet yields good unbiased estimation
across the entire range [0, 0.05] of true values.

To provide further insights into the performance of PEnet,
we conducted a comparative analysis with two prominent
machine learning-based parameter estimation methods. This
evaluation was carried out on a test dataset comprising 5000
samples and involved various combinations of parameters.
Specifically, we compared PEnet against the vanilla LSTM-
based PENN [16], which has demonstrated comparable per-
formance to traditional LSE [11] on non-long sequences, as
well as an MLP-based method [15]], which is known for its
efficiency and accuracy in the context of linear SDEs. The
comprehensive results are presented in table In the five

5 { —— Expected | — Expected

Estimated values
Estimated values

o 2 a 0.00 0.02 0.04
True values True values
(an (b) €
Fig. 3: 7 and € estimated by the PEnet on 200,000 trajectories
of OU process driven by Gaussian noise.

control groups, the proposed PEnet consistently outperformed
previous methods in several performance metrics. Particularly,
when the value of 7 approached the boundary of the interval,
all three methods exhibited significant biases, with PEnet
demonstrating the smallest bias. This highlights the superior
stability of PEnet compared to other machine learning-based
estimation methods, especially in extreme scenarios. More-
over, PEnet consistently achieved lower mean absolute error
(MAE) in estimating the noise intensity e, showcasing its
higher competitiveness among machine learning approaches.

C. Case 2 : «-stable case

The « stable-driven SDEs serve as a generalization of the
Gaussian-driven SDEs, offering a parameter, «, that allows
for the adjustment of the noise jump behavior. Consequently,
it exhibits greater generality and applicability in practical set-
tings compared to the Gaussian-driven SDEs. In this section,
we consider a « stable-driven OU process [40] {X (¢)}i>0
satisfying the Langevin equation

dX(t) = —nX (t)dt + edZo(t), te€[0,+00).  (13)

The parameter set includes three parameters © = {n, ¢, a}
and the output of the network is a three-dimensional vec-
tor ® = [i},é a]7. Similar to Section we generated
Kirain = 200000 training data samples to train the network.
Each sample path was generated using the Euler-Maruyama
method with parameters uniformly sampled from the ranges
provided in the table [V] Three paths with different lengths
and time spanning are shown in Fig. f] Compared to Fig.
[] the paths of the a-stable noise-driven SDEs display more
prominent jumps due to the introduction of the stability index
«, which controls the jump behaviors of the system. The
estimation performance of the trained network is tested on
the test set of size Ki.s: = 5000 and summarized by Fig. E}

Compared to Fig. [3] it is evident that the estimates of
noise intensity € exhibit a larger variance compared to the
Gaussian case. This can be attributed to the incorporation
of the stability index «, which adds flexibility to the SDEs
model but also introduces increased uncertainty. Similarly
to Fig. B estimations of 7 and e are more accurate within
the interior of the interval but exhibit larger bias near the
boundaries. Fig. 3] and Fig. [5] collectively indicate that the
uncertainty in the estimation 7 and € increases linearly with the



TABLE III: Estimation errors of PEnet, PENN and MLP-based method on Gaussian

driven OU process

Method n n € €x0.01
Mean + SD | MAE Mean + SD MAE
PEnet 1.5 | 1.832+0.816 | 0.661 | 0.003 3.101+0.166 0.156
PENN 1.5 1.912+0.616 0.551 | 0.003 3.354+0.186 0.355
MLP 1.5 1.874+0.806 0.657 | 0.003 3.058+0.187 0.419
PEnet 2.5 | 2.692+0.809 | 0.695 | 0.001 1.072+0.047 0.077
PENN 2.5 2.801+0.677 0.595 | 0.001 1.143+0.071 0.146
MLP 2.5 2.779+0.889 0.765 | 0.001 0.989+0.175 0.138
PEnet 35 3.343+0.678 0.549 | 0.003 3.121+0.160 0.162
PENN 35 3.527+0.566 0.467 | 0.003 3.144+0.163 0.176
MLP 35 3.427+0.776 0.641 | 0.003 2.781+£0.471 0.405
PEnet 4.0 3.601+0.564 0.716 | 0.002 | 2.081+0.0975 | 0.102
PENN 4.0 3.800+0.495 0.575 | 0.002 2.121+0.128 0.144
MLP 4.0 3.692+0.721 0.577 | 0.002 1.939+0.373 0.301
PEnet 4.5 3.812+0.449 0.688 | 0.004 4.180+0.174 0.217
PENN 4.5 4.009+0.426 0.512 | 0.004 4.231 £0.164 0.245
MLP 4.5 3.834+0.652 0.684 | 0.004 3.591+£0.452 0.457

*The bolded numbers indicate the estimates by the PEnet achieve a more unbiased mean, lower standard deviation (SD), or
lower MAE. The numbers are underlined if the previous methods perform better. Table{Y] and apply a similar setting.

TABLE IV: Parameter of « stable driven SDE

Parameter Range Parameter Range
Spanning Time 7" | [5, 15] Length N [3000, 4000]
Drift n [0, 5] Noise Intensity € | [0, 0.05]
Stability index « [1.01, 2]

a-stable driven OU process
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Fig. 4: Paths of « stable driven OU processes

true values, whereas the estimation of o« demonstrates stable
variance across the entire interval. The performance of PEnet
is compared with PENN and MLP. The results are detailed
in table [V] Across all six control groups, PEnet consistently
outperforms the other two estimation methods in terms of
certain metrics. Particularly, when it comes to the random
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Fig. 5: 7, € and estimated & by the PEnet on 200,000 trajectories

of OU process driven by « stable noise.

term parameters, PEnet consistently exhibits lower standard
deviation and MAE in all control experiments, indicating
its superior robustness compared to the other methods. This
can be attributed to the effective information compression of
jump patterns achieved by the convolutional network in the
first stage, which prevents the algorithm from being easily
affected by sudden large jumps. It is worth noting that although
PENN also achieves relatively small biases in some metrics,
especially in the estimation of drift parameters, it trains at a
considerably slower pace on long sequence datasets. Taking all
of this information into consideration, we can conclude that
PEnet is a competitive method compared with other machine
learning methods in addressing parameter estimation problems
for long sequence SDEs.

D. Case 3 : Student-Lévy OU process

The Student Lévy driven OU process shares remarkable
similarities with the « stable case, as evident from Fig. @
In both scenarios, the system’s dynamics are determined by
the drift parameter, noise intensity, and the noise parameter
controlling jump behavior (stability index « in the case of «
stable noise and degrees of freedom v for Student-Lévy noise).
This is further confirmed through comparative experiments
with other machine learning estimation methods (i.e., PENN
and MLP), as the conclusions show no significant differences.

However, a striking contrast lies in the adaptability of the
two cases to closed-form statistical methods. Due to the non-
closed nature of the convolution in Student-Lévy noise, its
compatibility with traditional closed-form statistical methods
differs significantly from « stable case. Consequently, this
chapter focuses on the comparison between PEnet and a
conventional statistical parameter estimation method, known
as Cauchy quasi-maximum likelihood estimation (CQMLE),
particularly in estimating the noise parameter v.

We consider the following Student Lévy driven OU process

dX(t) = —nX(t)dt + edJ,(t), te€[0,+00), (14)
Jy, (1) ~ t,(0,1). (15)



TABLE V: Estimation errors of PEnet, PENN and MLP-based method on « stable Lévy driven OU process

Method n n € € x 0.01 « &
Mean + SD MAE Mean + SD MAE Mean + SD MAE
PEnet 1.5 1.811+£0.613 0.495 0.003 | 3.102+0.314 | 0.264 | 1.7 1.687+0.0612 0.0504
PENN 1.5 1.751+0.470 0.389 0.003 3.598+0.452 0.381 1.7 1.691+0.100 0.0812
MLP 1.5 1.795+0.740 0.576 | 0.003 3.297+0.378 0.456 1.7 1.590+0.147 0.127
PEnet 3.5 3.570+0.552 0.463 0.003 | 3.121+0.318 | 0.266 | 1.7 | 1.684+ 0.0620 | 0.0513
PENN 3.5 3.617£0.510 0.432 | 0.003 3.123+£0.374 0.308 1.7 1.701+0.101 0.0816
MLP 3.5 3.504+0.744 0.618 0.003 2.881+0.600 0.493 1.7 1.571+0.154 0.149
PEnet 2.5 2.776+0.655 0.549 0.002 | 2.081+0.206 | 0.206 | 1.1 | 1.099+0.0411 0.032
PENN 2.5 2.759+0.576 0.489 0.002 2.193+0.298 0.263 1.1 1.191£0.105 0.109
MLP 2.5 2.807+0.825 0.721 0.002 2.142+0.585 0.459 1.1 1.445+0.165 0.346
PEnet 2.0 | 1.997+0.150 | 0.104 | 0.004 4.081+0.288 0.242 | 1.7 | 1.698+0.0544 | 0.0440
PENN 2.0 2.297+0.339 0.337 0.004 4.064+0.319 0.261 1.7 1.730+0.0866 0.0748
MLP 2.0 2.323£0.706 0.568 0.004 3.592+0.517 0.486 1.7 1.551£0.157 0.161
PEnet 2.5 2.666+0.488 0.380 | 0.003 | 3.170+0.412 | 0.359 | 1.5 1.486+0.0598 0.0493
PENN 2.5 2.750+ 0.476 0.400 | 0.003 3.264+0.462 0.426 1.5 1.500+0.115 0.0949
MLP 2.5 2.694+0.802 0.662 0.003 3.211+0.639 0.537 1.5 1.519+£0.174 0.154
PEnet 2.5 2.726+0.684 0.571 0.001 | 1.032+0.191 | 0.147 | 1.8 1.785+0.0524 0.0427
PENN 2.5 2.754+0.611 0.518 0.001 1.052+0.231 0.177 1.8 1.788+0.0875 0.0687
MLP 2.5 2.720+0.861 0.725 0.001 1.727+0.894 0.834 1.8 1.611+0.130 0.189

TABLE VI: Parameter of « stable driven SDE

Parameter Range Parameter Range
Spanning Time T’ [3, 15] Length N [3000, 4000]
Drift n [0, 5] Noise Intensity € | [0, 0.05]
degrees of freedom v | [2.01, 4]

The parameter set includes 3 parameters ® = {7, ¢,v} and
the output of the network is © = [f}, ¢, o]

we generated Kypqi, = 200000 training data samples to
train the network. Each sample path was generated using a
modified rejection method [37] with parameters uniformly
sampled from the ranges provided in the table Three paths
with different lengths and time spanning are shown in Fig. [
Similar to Fig. ] the paths of the Student Lévy-driven OU
process exhibit significant jumps at random times compared to
the Gaussian noise case. This characteristic diminishes as the
degrees of freedom parameter increases, eventually converging
to a smoother path without significant jumps as the degrees of
freedom tend to infinity.

Student driven OU process

0.04 — Path1
Path 2
0.03 — Path 3

X(t)
°
2

Fig. 6: Paths of Student Lévy driven OU processes

Based on the findings depicted in Fig. |/} although the prop-
erties of Student Lévy noise impose substantial obstacles for
conventional statistical methodologies, these challenges do not
pose a significant impediment to data-driven PEnet. Analogous
to the alpha-stable case, 7) and € showcase relatively minor bias
within the range interior but exhibit pronounced errors near the

— Expected . 0.05 | — Expected . 40 | — Expected

Noow e
Estimated values

Estimated values
Estimated values

s =

0 000 0.02 004 20 25 30 35 40
True values True values

(b) € (c)v

2 4
True values
@n

Fig. 7: 7, € and estimated © by the PEnet on 200,000
trajectories of OU process driven by Student Lévy noise.

TABLE VII: Estimation errors of PEnet, CQMLE on Student
Lévy driven OU process

Method v 1%
Mean + SD MAE
PEnet 2.5 | 2.622+0.0511 | 0.0487
CQMLE | 25 2.979+0.616 0.642
PEnet 3.0 | 3.032+0.0761 | 0.0620
CQMLE | 3.0 3.328+0.818 0.765
PEnet 3.5 | 3.612+0.0923 | 0.0699
CQMLE | 3.5 3.940+0.944 0.891

interval boundaries, accompanied by an increase in uncertainty
that scales linearly with the true values. Conversely, the
estimation of the degrees of freedom v, demonstrates a more
consistent variance.

Table [VII| reveals that the data-driven PEnet outperforms the
likelihood-based CQMLE across various metrics. This supe-
riority can be attributed to the fact that many samples in the
dataset do not fit the high-frequency observation assumption,
leading to significant estimation errors when employing the
CQMLE. This result also highlights the substantial advantage
of PEnet over statistical approaches in estimating SDEs driven
by such complicated noise.

IV. CONCLUSION

SDEs offer powerful tools for modeling random phenom-
ena. However, traditional statistical estimation methods are
often limited to Gaussian noise-driven SDEs, highlighting the



need for effective data-driven parameter estimation approaches
for Lévy cases. In this study, we propose a CNN-LSTM
architecture, named PEnet, that can effectively handle long
input sequences with variable lengths. By employing a CNN
network to condense the data and extract features through
an LSTM network, followed by mapping the features to the
parameter space using a fully connected neural network, we
achieve more robust and computationally efficient estimation
compared to previous methods. Our approach’s performance
has been validated on SDEs driven by Gaussian, a-stable, and
Student-Lévy noise.

As limitations of the PEnet, relatively large estimation errors
at the boundaries of the training ranges were observed in
the numerical experiments, and the data condensation stage
in the CNN may result in information loss, leading to large
estimation errors for the drift parameter. To address these
limitations, future research will explore the incorporation of
model-based knowledge and the adoption of more powerful
backbones, such as attention mechanisms, to mitigate these
limitations.
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