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Abstract—Malware poses a significant security risk to individ-
uals, organizations, and critical infrastructure by compromising
systems and data. Leveraging memory dumps that offer snap-
shots of computer memory can aid the analysis and detection
of malicious content, including malware. To improve the efficacy
and address privacy concerns in malware classification systems,
feature selection can play a critical role as it is capable of
identifying the most relevant features, thus, minimizing the
amount of data fed to classifiers. In this study, we employ three
feature selection approaches to identify significant features from
memory content and use them with a diverse set of classifiers
to enhance the performance and privacy of the classification
task. Comprehensive experiments are conducted across three
levels of malware classification tasks: i) binary-level benign or
malware classification, ii) malware type classification (including
Trojan horse, ransomware, and spyware), and iii) malware
family classification within each family (with varying numbers of
classes). Results demonstrate that the feature selection strategy,
incorporating mutual information and other methods, enhances
classifier performance for all tasks. Notably, selecting only 25%
and 50% of input features using Mutual Information and then
employing the Random Forest classifier yields the best results.
Our findings reinforce the importance of feature selection for
malware classification and provide valuable insights for iden-
tifying appropriate approaches. By advancing the effectiveness
and privacy of malware classification systems, this research
contributes to safeguarding against security threats posed by
malicious software.

I. INTRODUCTION

Malware, an abbreviation for malicious software, encom-
passes software or code specifically designed to inflict harm
or compromise computer systems, networks, or users. It en-
compasses various forms, including viruses, worms, Trojans,
ransomware, spyware, and adware [1]. The proliferation of
physical communication systems such as smartphones, tablets,
Internet of Things (IoT) devices, and cloud computing has led
to a surge in the development and deployment of malware
[2]]. For instance, global malware attacks reached 5.5 billion
in 2022, indicating a two percent increase compared to the
previous year [1_1 It should be noted that malware attacks are
not only a threat to the privacy and security of individuals’
or organizations’ data, but they may also extend to critical
infrastructures and become fatal to human lives. For example,
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the Triton malware attack (2017), a state-sponsored attack, tar-
geted a petrochemical plant to take over the safety instrument
systems of the plant. The aim was to kill humans by triggering
an explosion or releasing toxic gas [3]]. Besides, the healthcare
and public health sectors are also increasingly being affected
by malware attacks; in 2022 alone, a total of 210 ransomware
incidents were reported in these sectors [4].

As mentioned before, malware can have different forms
and exploit particular sectors of targets. To determine the
level of risk and severity associated with different malware,
the types or families of malware need to be identified and
prioritized for proactive and reactive cyber defense. Analyzing
the traits of malware plays a crucial role in understanding,
identifying, and effectively countering the threats they present.
Specifically, categorizing different types of malware is of
utmost importance as it helps in crafting appropriate responses,
attributing attacks to their sources, and developing proactive
security measures to safeguard systems, networks, and users
from potentially harmful consequences.

Malware analysis can be categorized into three types: static,
dynamic, and memory-based [S]]. In static analysis, malicious
files are studied without being executed, and the required
features are extracted accordingly. As there is no need for
execution, static methods require much fewer computational
resources along with providing a fast recognition scheme.
However, recent malware files use obfuscation techniques,
such as the insertion of dead code, register reassignment, the
substitution of instruction, and code manipulation to avoid
static analysis detection [6]. In contrast, behavior analysis exe-
cutes and monitors malicious files in a controlled environment.
Unlike static analysis, behavior analysis is not vulnerable to
obfuscation techniques, but it consumes excessive time and
resources (i.e. memory and CPU usage) [7].

Memory analysis has been proven to be a powerful analysis
technique that can effectively study malware behaviors [8].
It uses memory images to analyze information about running
programs, operating systems, and the general state of the com-
puter. Examining memory can detect process/DLL hooking
techniques used by malware to appear as a legitimate process.
The analysis provides accurate information about malware be-
haviors by extracting memory-based features that can express
malware activities and characteristics. Memory-based features
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can also overcome some of the behavior analysis limitations,
such as the single view of execution and malware’s disguised
behaviors during the analysis [9]]. Dissecting memory dumps
is an effective approach for detecting and classifying malware
[LO], in addition to other approaches such as static and
dynamic analysis [S]. Given the sophisticated evasion tech-
niques employed by malware to circumvent traditional security
measures, examining the memory of infected systems becomes
essential for gaining crucial insights. Memory analysis un-
veils hidden processes, injected code, or rootkit-like behaviors
that may escape detection by antivirus or intrusion detection
systems. Exploring the memory space occupied by running
processes makes it possible to determine their objectives,
functionalities, and potentially malicious actions. This valuable
information contributes to enhancing cybersecurity defenses
by strengthening existing security measures.

Malware variants are continuing to evolve by using ad-
vanced obfuscation and packing techniques. These concealing
techniques make malware detection and classification sig-
nificantly challenging. Manually scrutinizing memory dumps
to comprehend compromised processes, network connections,
and code artifacts associated with malware is time-consuming
and requires significant effort [11]. Apart from accuracy,
timely malware detection is crucial to minimize the potential
damage and impact caused by the malware. Swift identification
of malware allows for prompt actions like isolating infected
systems, removing the malware, and restoring compromised
data or configurations. Due to this urgency, researchers have
conducted numerous studies in recent years focusing on au-
tomatic malware identification, including their existence and
more detailed analysis, such as type classification. These
studies make use of various machine learning techniques
to achieve their objectives. By leveraging machine learning,
researchers aim to expedite the detection process and enhance
the efficiency of malware analysis, thus bolstering overall
cybersecurity efforts.

Feature selection can play an important role in classification
and prediction [[12]. However, they remain mostly unexplored
in malware detection [11]. A carefully curated feature set
can improve the performance of classifiers, as shown in
earlier studies from diverse domains [[13]]. Although, in most
areas, the primary purpose of feature selection is to reduce
computational complexity and enhance accuracy, in cyber-
security domains, another crucial aspect is privacy, which
can be benefited from feature selection. As data privacy is a
critical component in the cyber-security domain, limiting the
amount of data utilized for training machine learning models
can greatly reduce the risk of security breaches.

Therefore, here, we focus on identifying influential fea-
tures from memory dumps to limit the data used in the
classification task. Since improper feature selection ( e.g.,
erroneous exclusion of essential features, introduction of bias
and errors) can lead to performance degradation, we explore
multiple feature selection approaches. As in the cyber-security
domain, computational time is an important element, we focus
solely on filter-based feature selection methods, which are

computationally efficient and do not require exhaustive search.
We consider three filter-based feature selection methods- i)
Chi-square, ii) Analysis of variance (ANOVA), and iii) Mutual
information (MI) for limiting the number of features utilized
for classification. To validate the advantage of the feature
selection, we conduct comprehensive experiments across three
levels of malware classification tasks: i) binary-level benign or
malware classification, ii) malware type classification (Trojan
horse, ransomware, spyware), and iii) malware family classi-
fication for each malware family (5 classes based on malware
family) using selected features with multiple classifiers. Our
results demonstrate that feature selection strategies enhance
the performance of classifiers across all tasks. Notably, by
selecting only 25% and 50% of input features, when using
random forest (RF) classifiers, we achieve similar or better
results than incorporating all the features (100%). MI feature
selection approach with Random Forest (RF) classifier shows
the most consistent performance.

A. Contributions

The primary contributions of this paper can be summarized
as follows-

« We investigate the effectiveness of diverse feature selec-
tion approaches for malware identification and classifica-
tion task.

o We demonstrate that the MI-based feature selection ap-
proach can effectively identify significant memory fea-
tures (e.g., 25%, 50%) and can obtain a similar or better
performance than utilizing all the input features.

II. RELATED WORK

In recent years, there has been a significant increase in
malware attacks, leading to a growing focus on malware
analysis as a critical research area in the cybersecurity domain.
Malware leaves distinct traces in computer memories, making
memory analysis a valuable tool to gain insights into malware
behavior and patterns. As our study revolves around mal-
ware detection through memory content, this section primarily
delves into works related to memory analysis.

Dener et al. [14]] applied a number of machine learning
algorithms for malware and benign type classification (2-class)
from memory data (the same dataset considered in this study).
The authors obtained accuracy close to 100% for this malware
identification task. The authors of the MalMemAnalysis-2022
dataset [1]] utilized an ensemble approach for distinguishing
benign and malware classes from memory data and obtained
an F1 score of around 0.99.

A number of studies incorporated image processing algo-
rithms for malware identification and classification tasks. For
example, Dai et al. [9] presented a method that involves ex-
tracting a memory dump file and converting it into a grayscale
image. The author(s) resized the image to a fixed size, ex-
tracted features using the histogram of gradients technique, and
then employed a classification algorithm to categorize the mal-
ware. Li et al. (2019) proposed a deep learning-based approach
for malware analysis. This method involves taking a memory



snapshot of the system and converting it into a grayscale
image. They employed a convolutional neural network (CNN)
to model the system and train the deep learning model to
distinguish between malicious and benign memory snapshots.
The authors claimed that this approach significantly reduces
analysis runtime without compromising accuracy. Bozkir et al.
[15] proposed a new memory dumping and computer vision
based method to detect malware in memory, even they do not
exist on the hard drive. The proposed approach captures the
memory dump of suspicious processes which are converted
to RGB images. The authors then generate feature vectors
utilizing GIST and HOG (Histogram of Gradients) descriptors
as well as their combination, which are then classified by
machine learning classifiers.

Mosli et al. [16] conducted a study to detect malware
by extracting Registry, DLLs, and APIs from memory im-
ages which compared malware detection performances using
machine learning algorithms. Later the authors performed a
behavior-based automated malware detection using forensic
memory analysis and machine learning techniques [[17]. Petrik
et al. [18] performed malware detection more specifically with
binary raw data from memory dumps of devices. It had the
characteristics of being independent from the operating system
and architectural structure. Demme et al. [2] demonstrated the
effectiveness of leveraging various performance counters, such
as instructions per cycle (IPC), cache behavior, and memory
behavior, to classify malware. Building upon this research,
Tang et al. [19] utilized hardware performance counters (HPC)
in conjunction with unsupervised methods to detect malware.
Sharafaldin et al. [20] proposed BotViz, a hybrid method that
incorporates hooks to enhance bot detection. Martin-Perez
et al. [21] introduced two strategies (Guided De-Relocation
and linear Sweep De-Relocation) for pre-processing memory
dumps, aiming to expedite and simplify the analysis process
by relocating file objects.

Only a limited number of works are available which incor-
porate feature selection for malware classification. Abbasi et
al. [L1] proposed a particle swarm optimization (PSO) based
meta-heuristic approach for feature selection. However, their
work focused on only ransomware detection. Besides, they
employed the costly wrapper-based feature selection approach,
which is computationally expensive. Moreover, they focused
on malware behavior-based analysis, which is fundamentally
different from our memory-based analysis. Tsafrir et al.
[12] introduced three feature extraction methodologies for
MP4 malware detection and incorporated them with machine
learning (ML) algorithms. These methodologies included two
file structure-based approaches and one knowledge-based ap-
proach. To assess their effectiveness, the researchers conducted
a series of experiments using six ML algorithms on multiple
datasets.

Some other works focused on creating tools for memory
analysis and forensics. For example, Okolica and Peterson
[22] introduced CMAT, a self-contained tool that can extract
forensic information from the memory dump. The authors em-
phasized the significance of a highly flexible memory analysis

process that can be employed across different platforms and
systems in their study. Such flexibility can significantly reduce
the time required to match the system with the corresponding
profile. Block and Dewald [23] introduced a memory analysis
plug-in, which was designed to simplify the analysis process.
The plug-in provides detailed information about heap objects
in memory and can aid memory analysis professionals in
understanding operations occurring within the system memory.
Lashkari et al. [10] developed VolMemLyzer, a Python-based
script designed to facilitate feature extraction from memory
dumps generated by another tool called Volatility. VolMem-
Lyzer extracts thirty-six features from memory dumps, encom-
passing various categories, such as processes, dynamic link
libraries, sockets, handles, callbacks, loaded modules, code
injections, and connections.

III. DATASET

The MalMemAnalysis-2022 dataset considered in this study
was introduced by Carrier et al. [1l], which includes hidden
malware families obtained by memory analysis. The dataset
consists of 58,596 memory records, equally divided into be-
nign and malicious (i.e., malware) classes, each having 29,298
instances. There are 56 features in the MalMemAnalysis-
2022 dataset, with each feature representing specific types of
memory information (more details regarding dataset creation
and features are available on [1]]).

The 29298 malware samples comprise the following three
types of malware-

1) Trojan horse: A Trojan horse is a type of malicious
software (malware) that disguises itself as a legitimate
program or file to deceive users into installing or exe-
cuting it on their computers. Once inside, it can perform
harmful actions without the user’s knowledge, such as
stealing sensitive data, providing unauthorized access
to cybercriminals, recording keystrokes, participating in
botnets, and delivering ransomware. Trojans are often
distributed through deceptive means like email attach-
ments or infected downloads, posing significant risks to
computer security.

2) Spyware: Spyware is a type of malware designed to
covertly gather information from a user’s computer
or device without their knowledge or consent. Once
installed, spyware operates in the background, tracking
browsing habits, recording keystrokes, capturing login
credentials, and monitoring other sensitive data. The
collected information is then sent back to the attacker,
who can use it for various malicious purposes, such as
identity theft, financial fraud, or targeted advertising.
Spyware’s focus is on information gathering and stealthy
monitoring of the user’s activities. It typically does not
have destructive capabilities like a Trojan.

3) Ransomware: Ransomware is a type of malicious soft-
ware (malware) designed to encrypt the files and data
on a victim’s computer or network, rendering them in-
accessible. Once the files are encrypted, the ransomware
displays a ransom note, demanding payment, usually in
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Fig. 1: Various levels of classifcation tasks considered in this study

cryptocurrency, in exchange for providing the decryption
key needed to unlock the files. It is typically distributed
through malicious email attachments, infected software
downloads, or by exploiting vulnerabilities in systems.

TABLE I: Malware Statistics in MalMemAnalysis-2022

dataset
Malware Type (#Total) | Malware Family | (#)Instances
Zeu 1950
Emotet 1967
Trojan Horse (9487) Refroso 2000
scar 2000
Reconyc 1570
180Solutions 2000
Coolwebsearch 2000
Spyware (10020) Gator 2200
Transponder 2410
TIBS 1410
Conti 1988
MAZE 1958
Ransomware (9791) Pysa 1717
ako 2000
Shade 2128

Each type of malware further can be categorized into
multiple malware families, as shown in detail in Table [}

Table [[ shows the distributions of malware types and fami-
lies in the dataset. As mentioned earlier, three types of malware
are present in the dataset, where each type further contains
malware from five different families. Considering the 3-class
malware types (i.e., Trojan horse, Spyware, and Ransomware ),
the dataset is almost class-balanced. The dataset representing
each type of malware, based on the distributions of corre-
sponding malware families, is not entirely class-balanced, as
among the five malware families, the percentage of a malware
family can range from 15% to 25%.

IV. MALWARE CATEGORIZATION

Here, we utilize memory dumps for malware detec-
tion/classification at three distinct levels (Fig EI) where each
level is associated with a particular task-

o Level/Task 1: Classify the memory data into two groups:

i) benign and ii) malware.

o Level/Task 2: Classify the malware data into 3 types: i)
Trojan Horse, ii) Spyware, and ii) Ransomware.

o Level/Task 3: Classify different types of malware into the
number of families they represent.

A. Feature Selection

In the feature selection phase, we utilize statistical ap-
proaches to identify highly class-correlated features. To ad-
dress computational constraints, we prefer filter-based statisti-
cal methods over wrapper methods, as they avoid exhaustive
searches and classifier integration. Besides, we emphasize
minimizing the number of selected features during this step
to enhance computational efficiency and minimize security
concerns in subsequent stages. Thus, our goal is to identify a
feature selection method that demonstrates robust performance
while utilizing only a minimal number of features.

We employ three filter based feature selection approaches,
identifying the most relevant features as described below.

1) Chi-square: We compute the Chi-square (x2) value
between each feature and the corresponding class. Utilizing
the Chi-square statistics, features that do not correlate well
with class labels are eliminated as they may not be significant
for classification.

The Chi-square (x2) value is calculated as follows -

0; — E;)*
x2=§:L—Efl— )

where, O, represents observed value and FE; represents
expected value of feature i. A gene with a high chi-square
value is highly correlated with the class; hence, important for
classification.

2) Analysis of Variance (ANOVA): ANOVA is a statistical
method that examines the means of two or more groups
to find whether they are significantly different from each
other. ANOVA F-test determines the variance between and
within groups, calculates the F score, and uses it to identify
informative features.



3) Mutual Information (MI) : Mutual information is a
measure of the statistical dependency between two random
variables. In the context of feature selection, it quantifies
the amount of information a feature (i.e., memory-related at-
tribute) provides about the target variable (class of the sample).
A higher score indicates a stronger relationship between the
feature and the target variable, indicating that the feature is
potentially more informative for the prediction task.

The mutual information between a feature X and a class
label Y is computed as follows-

MI(X,Y)=H(X)+ H(Y) - H(X,Y) )

where MI(X,Y) represents the mutual information be-
tween feature X and class label Y. H(X) is the entropy of
feature X. H(Y') is the entropy of class label Y. H(X,Y)
is the joint entropy of feature X and class label Y. Entropy
measures the uncertainty or disorder in a random variable. The
calculation of entropy involves probability distributions of the
variables. The specific formula for entropy calculation depends
on the type of data and probability distribution considered.
We use the default implementation of the mutual information
algorithm of scikit-learn [24]].

B. Classification

We employ a number of machine learning classifiers (de-
scribed below) for the classification tasks with selected fea-
tures. For all the classifiers, the default parameter settings of
scikit-learn library [24] are used.

1) Random Forest (RF): Random Forest is an ensemble
learning method that combines multiple decision trees. It
is known for its robustness, ability to handle large datasets
with high-dimensional features, and resistance to overfitting.
Random Forest can handle both classification and regression
tasks.

2) Naive Bayes (NB): Naive Bayes is a probabilistic classi-
fier based on Bayes’ theorem with the assumption of indepen-
dence between features. Despite its simplifying assumption,
Naive Bayes classifiers perform well in various domains,
especially with large datasets.

3) K-Nearest Neighbors (K-NN): K-Nearest Neighbors
(KNN) is a non-parametric classification method that deter-
mines the class of a data point by taking a majority vote from
its closest neighbors. This approach is known for its ease of
implementation and excellent performance, especially when
dealing with small to medium-sized datasets and clear clusters.

4) AdaBoost: AdaBoost is an ensemble learning algorithm
used for classification and regression tasks. It combines mul-
tiple weak learners, like decision trees, to create a powerful
model by iteratively giving more weight to misclassified in-
stances and adjusting the sample weights. This process focuses
on challenging data points and improves overall accuracy.
AdaBoost is versatile but sensitive to noisy data.

5) Linear Discriminant Analysis (LDA): Linear Discrimi-
nant Analysis (LDA) can be used as a supervised dimension-
ality reduction technique for classification tasks. LDA aims
to find a linear combination of features that maximizes class
separability and can be used to project the data into a lower-
dimensional space while preserving class information.

6) Extra Trees: Extra Trees, also known as Extremely
Randomized Trees, is a powerful ensemble machine learning
algorithm that constructs multiple decision trees using ran-
domized subsets of features and thresholds. Unlike Random
Forest, ExtraTrees introduces an additional layer of random-
ness in the feature and threshold selection process, effectively
mitigating the risk of overfitting. Through the aggregation of
predictions from individual trees, ExtraTrees can deliver robust
and accurate results, making it well-suited for handling high-
dimensional data, noisy features, and irrelevant variables.

V. RESULTS AND DISCUSSION
A. Evaluation Settings

To evaluate and compare the performance of various clas-
sifiers, we consider 5-fold cross-validation. Cross-validation
is generally considered better than a pre-defined training-
testing split for model evaluation because it provides more
reliable and unbiased estimates of a model’s performance. We
adopt two performance evaluation metrics: i) macro F1 and
ii) accuracy. Since some of our classification tasks deal with
a class-imbalanced dataset, the macro F1 score is a better
estimator for the classifier’s performance than accuracy, which
weights all the classes equally.

B. Performance comparison of feature selection with original
setting

Table |lIf compares the performance of various classifiers for
malware and benign type classification employing multiple
feature selection approaches. We assess their performances
under three conditions: when using 25% and 50% of features
selected by various feature selection methods, as well as in
the original configuration employing 100% of the features. As
we can see, classifiers exhibit very similar performance with
(e.g., 25% and 50%) and without (100%) incorporating feature
selection, which corroborates the effectiveness of the feature
selection approaches. This binary-level malware identification
task is relatively easy, as we can see that all the classifiers are
capable of yielding perfect or almost perfect F1 scores. One
interesting thing we observe is that for MNB, the performance
improvement is dramatic when we reduce the number of
features. When all the memory features are used, we obtain an
F1 score of only 0.64. Leveraging feature selection approaches
such as ANOVA and MI to identify the top 25% of features
can dramatically improve the performance of the classifier.

Table|l1l] shows the performance of various classifiers for the
malware type classification. Similar to the malware identifica-
tion task, we provide the performance of various classifiers
in three different settings. As we can find from Table
among all the classifiers, RF performs best; it obtains an F1
score of around 0.75-0.76. One important thing we notice, all



TABLE II: Performance of various classifiers for malware identification task (i.e., malicious or benign)

Classifier 100% percent 25% percent 50% percent
Chi ANOVA Mutual Chi ANOVA Mutual

F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc.
MNB 0.64 0.55 064 055 09 098 098 098 | 0.64 055 098 098 064 0.55
LDA 0.99 0. 99 099 099 099 099 099 099 | 099 099 099 099 099 0.99
Adaboost 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
K-NN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Extra-Tree 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Random Forest 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TABLE III: Performance of various classifiers with feature selection approaches for malware type classification task (3-class),
bold texts represent best F1 scores for each type of feature settings.

Classifier 100% percent 25% percent 50% percent
Chi ANOVA Mutual Chi ANOVA Mutual

F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc.
MNB 0.40 0.36 040 036 036 035 041 036 | 040 036 038 036 039 036
LDA 0.47 0.47 038 038 040 040 041 041 | 044 044 041 041 046 046
Adaboost 0.60 0.59 052 052 048 048 059 059 | 055 055 053 053 059 059
K-NN 0.62 0.62 058 058 048 048 069 070 | 0.60 0.60 057 057 063 0.63
Extra-Tree 0.73 0.73 066 066 057 057 074 074 | 072 072 064 064 075 0.75
Random Forest | 0.75 0.75 068 068 059 059 075 075 | 074 074 065 0.65 0.76 0.76

TABLE IV: Performance of top classifiers with various feature

selection approaches for 5-class malware family classification

tasks (bold texts represent best F1 scores for each type of feature settings.)

Malware 100% features 259% features 50% features
Family Classifier Chi ANOVA MI Chi ANOVA MI

F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc.
Adaboost 0.54 0.55 048 049 044 044 0.53 054 | 052 053 051 051 055 0.55
Trozan K-NN 0.573 0.58 054 054 042 042 0.63 0.63 | 0.57 057 051 051 058 0.59
Extra-Tree 0.72 0.72 0.65 066 050 0.50 0.73 073 | 072 0.72 0.65 065 073 0.73
Random Forest 0.74 0.74 0.69 0.69 0.54 0.54 0.73 0.73 0.74  0.74 0.69 070 0.75 0.75
K-NN 0.51 0.50 0.52  0.50 0.5 0.49 0.52 0.51 | 0.51 0.5 0.51 050 052 051
Spyware Adaboost 0.44 0.43 0.39 040 038 0.38 0.43 042 | 041 041 045 044 042 042
Extra-Tree 0.62 0.61 0.65 064 057 0.56 0.63 0.62 | 063 062 0.64 062 064 0.63
Random Forest | 0.65 0.64 0.65 064 057 0.56 0.64 0.62 | 065 064 0.66 065 065 0.63
K-NN 0.45 0.45 043 043 041 0.41 0.50 051 | 045 045 045 045 044 044
Ransome Adaboost 0.40 0.40 0.37 037 034 033 0395 039 | 038 038 039 038 040 040
Extra-Tree 0.55 0.55 0.50 050 044 043 0.55 0.55 | 050 050 053 053 055 0.55
Random Forest | 0.56 0.56 0.50 051 045 045 0.56 0.56 | 0.57 057 054 054 056 0.56

the tree-based classifiers perform better than other methods.
Regarding the features used, we find that incorporating 50%
features improves performance for all the top classifiers, and
this is true for all the feature selection approaches. When the
best results are considered, we find MI feature selection is the
most effective for classifying the top feature.

Table [LV| presents the performance of various classifiers for
the malware family classification. For the 5-class classification
problem of Trojan malware, we find RF with 50% feature (28
features) selected by MI performs best with an F1 score of
0.75, compared to the F1 scores obtained as 0.74 using all
features. For the Spyware 5-class categorization, the best F1
score of 0.66 is obtained by the RF classifier with 50% features
selected by ANOVA. MI with RF shows very similar results
of 0.65. We find classifying the Ransomware family very
challenging. For Ransomware, the best result is obtained by
Chi-Square (50% features) with RF, which is 0.57. Selecting

only 25% features through MI, RF performs similarly to using
100% features.

Based on the results of all the tasks we investigate, it is
evident that we can actually reduce the number of features
used for ML classifiers without compromising classifier perfor-
mance. In some instances, the feature selection even improves
the performance of the classifiers. For all the classification
tasks (Table [[TT] and [[V)), we notice by selecting 50% features,
we can actually obtain better results than incorporating all
the features. We can reduce the percentage of features even
further to 25% without compromising efficacy. For example,
when classifying the Trojan horse family, utilizing just 25%
of the features resulted in an F1 score of 0.73. Even using all
features, the improvement was minimal, reaching only 0.74,
a mere 1% increase. For Spyware and Ransomware, we can
actually reach the same level of performance using only 25%
of the features selected by various feature selection methods.
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Fig. 2: Comparison of confusion matrices MI with RF classifiers considering various numbers of features (100% (column 1),
25% (column 2), and 50% (column 3)) for malware family classification (A. Trojan horse B. Spyware C. Ransomware)

Among all feature selection algorithms, we observe that
the MI delivers the most consistent performance. For all the
tasks, in 25% and 50% feature settings, MI yields a similar
performance of 100% input features. Although in a few cases,
we find Chi-square and ANOVA perform a bit better than
MI, their performances are not consistent; In contrast, MI
performance is always consistent and similar to using 100%
of features.

We further investigate whether the reduced feature sets
impact the prediction patterns of the classifiers. For the highly
challenging classification task-3 (malware family classifica-
tions), we show the confusion matrix of RF classifiers with
100%, 25%, and 50% features (Fig . As we can see, in
all three malware family classification tasks, different feature
sizes show similar patterns in misclassification. The accuracy
of different classes is similar in all three settings. Besides, the
misclassification (prediction) also shows similar patterns for
all the cases.

Regarding privacy, while feature selection may not directly
address data privacy concerns, it can have an indirect impact
on privacy in certain scenarios. By reducing the number of

features, feature selection can potentially limit the exposure
of sensitive or identifiable information during model training
or analysis. This reduction in the feature space may help min-
imize the risk of inadvertently revealing private information.

C. Comparison with other studies

Note that to the best of our knowledge, only two studies
[, [14]] have utilized the MalMemAnalysis-2022 dataset for
malware analysis, as the dataset is relatively recent. However,
both studies focused solely on the malware identification task
(Task 1 of this study). The study by achieved the best
results of approximately 0.99 by employing an ensemble of
NB, RF, and DT classifiers. This number is slightly lower
than our feature selection strategy with the RF classifier.
Unfortunately, the authors did not mention their criteria for
selecting the training and testing datasets, making a direct
comparison with our method difficult. On the other hand, the
other study by [14]] achieved F1 scores ranging from 0.99 to
1.0 using various classifiers, which is similar to our results.
They used a 70% and 30% training and testing split; however,
they did not provide details on how they selected the training
and testing data, hindering a precise comparison.



Despite the missing information, all the works, including
ours, demonstrate F1 scores and accuracy close to perfection,
suggesting that classifying benign and malware samples in this
dataset is relatively trivial.

VI. SUMMARY AND FUTURE WORK

With the growth of Advanced Persistent Threats (APTs),
more sophisticated malware has been exhibited in recent years.
As malware developers continually refine their techniques and
develop novel strategies to evade security controls, the need
for advanced malware analysis frameworks becomes crucial.
Thus, this research aims to enhance the performance of mal-
ware detection and classification tasks by incorporating feature
selection approaches. We assess the performance and general-
ization capabilities of the various feature selection approaches
for five classification tasks (one malware detection task, one
malware type classification task, and three malware family
classifications) through a set of experiments. The evaluation
on the MalMemAnalysis-2022 dataset shows the effectiveness
of the feature selection approaches (i.e., Chi-Square, ANOVA,
and MI) for various scenarios. Among the three feature selec-
tion approaches, MI exhibits the best consistency and efficacy
and obtains similar or better performance than the original
100% input features by leveraging only 25%-50% features
with the RF classifier. The reduced feature set obtained by
MI can improve the efficiency of ML classifiers, as well as
can enhance privacy through data minimization as fewer data
are fed to ML classifiers for the prediction task. By selecting
robust and relevant features, models can become more resilient
against such attacks. Removing noisy or misleading features
can improve the model’s ability to generalize and reduce its
susceptibility to manipulation. However, it is important to
note that relying solely on feature selection is not enough
to ensure comprehensive data privacy. Adopting a holistic
approach that incorporates both feature selection and privacy-
preserving practices (e.g., data anonymization, encryption,
access controls) is essential to effectively mitigate privacy
risks.

Future work will focus on expanding and refining the
findings of this study. We will investigate the performance
of feature selection approaches on a broader range of memory
datasets beyond the MalMemAnalysis-2022. Besides, we will
explore other privacy-preserving practices, such as differential
privacy techniques or federated learning, to ensure a more
robust and comprehensive safeguard against privacy risks. In-
vestigating the trade-offs between model accuracy and privacy
preservation, as well as areas that require attention, which we
plan to study in our future works.
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