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Abstract—Fast screening of drug molecules based on the ligand
binding affinity is an important step in the drug discovery
pipeline. Graph neural fingerprint is a promising method for
developing molecular docking surrogates with high throughput
and great fidelity. In this study, we built a COVID-19 drug dock-
ing dataset of about 300,000 drug candidates on 23 coronavirus
protein targets. With this dataset, we trained graph neural fin-
gerprint docking models for high-throughput virtual COVID-19
drug screening. The graph neural fingerprint models yield high
prediction accuracy on docking scores with the mean squared
error lower than 0.21 kcal/mol for most of the docking targets,
showing significant improvement over conventional circular fin-
gerprint methods. To make the neural fingerprints transferable
for unknown targets, we also propose a transferable graph neural
fingerprint method trained on multiple targets. With comparable
accuracy to target-specific graph neural fingerprint models, the
training and data efficiency of the transferable model is several
times higher. We highlight that the impact of this study extends
beyond COVID-19 dataset, as our approach for fast virtual ligand
screening can be easily adapted and integrated into a general
machine learning-accelerated pipeline to battle future bio-threats.

Index Terms—Graph Neural Networks, Transfer Learning,
Bioinformatics

I. INTRODUCTION

The knowledge of the protein-ligand interaction is essen-
tial to many fields in the life sciences, such as biophysics,
structural bioinformatics and drug discovery [1]. Detailed
information on the atomic structures and energetics of the
protein-ligand complex in the docking conformation is key
to unravelling the docking mechanism, which is governed by
multiple factors including, e.g., shape matching, electrostatics,
hydrogen bonding and van der Waals forces.

To understand the specific action of a protein on a substrate
the lock-and-key model was first proposed by Fischer in
1894 [2]. The lock-and-key model proved useful in a variety
of contexts including protein-protein interactions as well as
protein-ligand interactions. With the emergence of increasingly
capable high performance computers, it became possible to au-
tomate the search for optimal protein-ligand alignments. This
led to the first docking code being developed in 1982 [3]. In
addition, it was realized that the lock-and-key model could be

used for rational drug design [4]. This realization quickly led
to the design and deployment of docking programs specifically
for this purpose [5]. Despite remaining challenges, thanks
to the growing computing capabilities and improvements in
methods and software, docking became a key component in
rational drug design.

One outstanding challenge is that the accuracy of the
docking results is limited by the approximations required to
accelerate the method. These approximations involve the way
the scoring function accounts for entropy and desolvation
effects [6]. Other limitations stem from the extent to which
docking allows for the flexibility of the protein [6]. These
approximations are to a degree due to the scale of the problem
that needs to be solved. While docking a single ligand using
empirical force field can be done in seconds, the chemical
space of drug-like molecules is vast. The size of this space
for small molecules with up to 30 atoms has been estimated
to be of the order of 1060 molecules [7]. While this formidably
large chemical space can never be fully explored, smaller but
still huge subsets have recently explicitly been considered.
The GDB-17 database has 166 billion molecules [8]; ZINC15
contains over 750 million purchasable compounds [9]; ENAM-
INE enumerates over 22.7 billion compounds, with a database
of 4.5 billion REAL molecules for download [10]. Exploring
such large molecular spaces is still very expensive, even using
fast docking programs, calling for yet more efficient screening
techniques.

One promising path forward is to develop machine learn-
ing (ML) models that predict the docking score directly
from ligand structures or ligand-target protein structure com-
plexes [11], [12]. Early efforts along these lines have been
made since at least 2010 using multiple linear regression,
partial least squares regression, random forests, support vector
machines, and artificial neural networks [13]. Since then, a va-
riety of machine learning models have been developed, includ-
ing multiple linear regression [14], multivariate adaptive re-
gression splines [14], gradient boosted trees [15], [16], boosted
regression trees [14], random forests [17], [18], k-nearest
neighbors [14], [19], support vector machines [14], [19],
logistic regression [18], [19], artificial neural networks [15],

ar
X

iv
:2

30
8.

01
92

1v
3 

 [
q-

bi
o.

B
M

] 
 1

5 
Se

p 
20

23



[20], convolutional neural networks [21]–[23], and graph con-
volutional neural networks [24], [25].

Other than the details of the machine learning methods,
there are several distinct differences in these models, such
as the choice of ground truth in the training set and target
applications. For models aimed at generic binding properties,
common choices for ground truth on experimental data such
as PDBBind [26] are used [13], [14], [18], [21]; Binding
MOAD [27] and Astex [28] have also been considered [29].
While highly valuable, these experimentally obtained datasets
tend to be relatively small. For example PDBBind 2020
contains 19,443 experimentally characterized protein-ligand
complexes, which is a small number compared to the possible
combinations of more than 188,430 experimental structures
in the PDB and billions of theoretically available ligands. An
alternative way of obtaining larger ground truth datasets is
using computational docking programs to generate simulated
datasets. For example, Autodock Vina [19], [23], [25], [30] and
Gold [17], [31] have been used to provide ground truth data.
The caveat with using these datasets is that they are affected
by the same limitations that docking scores in general tend to
have.

Our work has three contributions: 1) we build a COVID-
19 drug docking dataset of about 300,000 drug candidates on
23 coronavirus protein targets; 2) we conduct a systematic
study of the popular neural fingerprint models and compare the
model performance on this large docking dataset with conven-
tional circular fingerprint models; and 3) we demonstrate the
learned neural fingerprints can be used for emerging protein
targets under a transfer learning setting.

II. COVID-19 DOCKING DATASET

Since the first documented case at the end of 2019,
coronavirus disease 2019 (COVID-19), caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has
quickly evolved into a worldwide pandemic. Unlike previ-
ous coronaviruses, such as SARS-CoV and the Middle East
Respiratory Syndrome (MERS), SARS-CoV-2 is proved to
be significantly more contagious, leading to its exponential
spread and a large number of fatalities. With roughly 6.95
million deaths and 768 million infections as of July 2023 [32],
the disastrous impact of this pandemic calls for urgent phar-
macological progress in, e.g., vaccines, drugs, and interferon
therapies to combat COVID-19 [33].

Potential antiviral treatments of SARS-CoV-2 can be di-
vided into two categories acting on either the human immune
system or the coronavirus [34]. In this work, we focus on the
drug molecule docking study of the latter. In general, virus
proteins fall into three categories: 1) structural proteins (SPs),
which form the virion particles, 2) non-structural proteins
(NSPs), which are involved with the virus replication in the
host cell, and 3) accessory proteins, which interfere with
the host cell’s innate immune response [35]. A ligand drug
molecule may act on SPs to prevent virus from assembling
or binding to human cell, or on critical NSPs to inhibit virus
RNA synthesis and replication [34].

Since 2020, over 1300 SARS-CoV-2 protein structures
(either by themselves or in complexes with other compounds)
have been resolved from experimental facilities around the
world. The atomic structures of these proteins have been
determined to high accuracy, which provide the essential
structural information of the drug docking sites on SARS-
CoV-2. A detailed explanation of the functions of SARS-CoV-
2 proteins in the virus life cycle can be found in a recent
review [35]. Among them, proteins of particular interest are
PLPro (an NSP3 domain) and 3CLPro (NSP5), which are
the proteases that cut the polyproteins encoded by the viral
RNA into active proteins, and ADP Ribose phosphatase (also
an NSP3 domain), an innate immune response antagonist.
The CoV protein is the receptor binding domain that is the
part of the spike protein that binds to the ACE2 receptor
triggering the infection. NSP9 is an RNA binding protein that
is involved in the viral RNA replication although its precise
role is still unclear. NSP10 is the co-factor in the NSP16-
NSP10 complex that methylates the cap of newly synthesized
RNA, an essential step for RNA stability and function. NSP15
is thought to modify viral RNA at 3’ Uracil locations to evade
detection by the cell’s innate immune system [36]. In addition,
researchers leverage the knowledge of the protein functions in
other coronaviruses, such as SARS-CoV and MERS as well
as the interaction map of SARS-CoV-2 and human proteins
[37]. In this work, we consider 23 pertinent SARS-CoV-2 NSP
docking sites as described in Table I.

TABLE I
DESCRIPTION OF THE 23 SARS-COV-2 NSP TARGETS. np INDICATES

THE NUMBER OF POCKETS.

Protein np Description

3CLPro 1 3C-like protease [38]
ADRP-ADPR 2 ADP-ribose phosphatase in complex with ADP

ribose [39]
ADRP 3 ADP-ribose phosphatase [39]
COV 4 Receptor binding domain
NSP9 2 Component of RNA polymerase complex [40]
NSP10 3 Component of 2’-O-RNA methyltransferase

complex [41]
NSP15 2 Nidoviral RNA uridylate-specific endoribonu-

clease [42]
ORF7A 1 Interferon response antagonist [43]
PLPro monomer 3 Papain-like protease monomer [44]
PLPro dimer 2 Papain-like protease dimer

III. METHODS

A. Docking score prediction workflow

The schematics of our workflow is shown in Fig. 1, which
includes generating a docking dataset from large scale docking
simulations (top, shaded in blue) and training surrogate models
(bottom, shaded in purple) that can efficiently screen COVID-
19 drug candidates in the vast drug-like molecule space. Our
ML model predicts the docking scores of drug candidate
molecules. While predicting the docking pose using ML
models is an exciting open question, it is beyond the scope of



this study. The technical details of this workflow are explained
below.

First, we performed docking simulations of 310,693 com-
pounds, including the drug bank compounds, onto each of
the 23 coronavirus protein targets using Autodock [45]. The
set of targets was generated by using Fpocket [46] on each
protein to identify the top 4 most druggable pockets. The set
of pockets was further reduced based on prior experimentally
identified binding motifs and visual inspection. Subsequently
all the molecules in the ligand set were processed one-by-one
by first converting the molecule’s SMILES string to a three
dimensional structure using OpenBabel [47] and the subse-
quent docking simulations using AutodockTools and Autodock
4.2 [48]. Autodock 4.2 uses an empirical force field to estimate
the ligand binding free energy, which contains pair-wise terms
to calculate the interaction between two molecules and an
empirical model to estimate contributions from environmental
water [49]. The scoring function in Autodock contains the van
der Waals, hydrogen bonding, electrostatic, and desolvation
energies [50]. For each ligand-pocket pair the hybrid genetic
algorithm and local search (GA-LS) procedure was executed
for 20 times. Each procedure went through maximum 2.5
million energy evaluations to find the lowest energy pose.
The final 20 poses were clustered at the end of the AutoDock
run and ultimately the best one was selected. The simulation
outputs include the optimal docking pose and docking score.
The datasets of docking scores are available on Github1.

Fig. 1. A schematic flowchart that illustrates two individual processes to com-
pute the docking score of a drug candidate molecule from its SMILES string.
The upper route shows the conventional docking simulation, where the dock-
ing pose of an exemplary molecule (NC(=O)C(=C)N) on ADRP pocket13 is
shown. The bottom route shows the graph neural fingerprint model that is
trained on the docking simulation data and is able to provide fast and high-
fidelity predictions on unknown molecules for drug screening.

B. Machine learning-based surrogate models

Starting from the SMILES code of molecules, we con-
sidered two types of fingerprinting methods based on the
featurization of molecules: conventional circular fingerprints
(CFP) [51], [52] and neural fingerprints (NFP) [53]. A CFP,
such as de Morgan and extended-connectivity fingerprints, ab-
stracts molecular structure information as a vector via hashing,
which has been used widely for molecular similarity search

1See our dataset on https://github.com/BC3D/BC3D 2021

for its fast processing time. It is convenient to use CFPs as
the input feature of a neural network to perform molecular
property predictions, such as the docking score for a particular
docking target as shown in Fig. 2a. Despite the utility for
similarity search, the limited structural and chemical informa-
tion content retained in CFPs impairs their performance for
prediction tasks. On the other hand, a NFP-generating model
typically has three components: 1) the graph representation
and feature embedding, 2) a graph neural network (GNN)-
encoder, mapping molecules to a NFP in a fixed-size vector
representation, and 3) a multilayer feedforward regressor, e.g.,
a multilayer perceptron (MLP), to predict a target property.
These three components are trained together end-to-end as
shown in Fig. 2b. Although it is quite likely that the learned
NFP of the same bit-length can outperform the CFP in the
docking score prediction task, a systematic comparison is
warranted.

In this study, we conducted a systematic study of five types
of molecular fingerprinting methods using both CFP and NFP.
For conventional CFP methods, we considered de Morgan
circular fingerprint (Morgan) and extended-connectivity finger-
print (ECFP) implemented in the open-source cheminformatics
software RDKit [54]. For GNN methods, we considered three
popular GNN variations: Gated Graph Convolutional Network
(GatedGCN) [55], [56], GraphSAGE [57], [58] and a boil-
erplate Message-Passing Neural Network (MPNN) [59]. We
ensured the fingerprints have the same bit-length of 2048.
Specifically, the CFPs have a fixed length of 2048 bits, while
the NFPs are represented by a vector of 16-bit floating points
of length 128. We found that the NFP model performance
remained the same when we reduced the NFP length from
128 to 70 in GatedGCN and GraphSAGE models. Then both
types of fingerprints were fed into a 3-layer perceptron for
target-specific regression as shown in Figs. 2a and 2b, except
for the MPNN where we used only a single layer perceptron.

To process molecular structures into features suitable for
GNN training, we first converted the molecular SMILES [60]
representation to a multi-attribute undirected graph representa-
tion, where nodes and edges correspond to atoms and chemical
bonds, respectively, as shown in Figs. 1 and 2b. We followed
Gilmer et al. [59] to encode the chemical attributes, such as
atomic types and bond types, in node and edge features, unless
otherwise stated.

Such categorical features were then mapped to short train-
able vectors of real values known as feature embeddings.
Therefore, each molecule can be represented as a triplet of
matrices of (A,V,E), where A is the adjacency matrix of a
graph with added self-loops, and V and E are node and edge
embedding matrices, respectively.

We explored various GNNs [53], [61] to encode a graph
topology A, its node embedding V and edge embedding
E into a fixed-length fingerprint. GNNs are among the best
deep learning models for handling networked data due to its
permutation invariance property. Namely, the order of nodes
represented in an adjacent matrix does not affect the predic-
tion. Most GNN models consist of an iterative sequence of
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Fig. 2. Comparison of three fingerprinting schemes: traditional circular fin-
gerprint, target-specific neural fingerprint and transferable neural fingerprint.

alternating two steps: communication and aggregation. During
communication, each node will gather its neighboring node
embeddings and incident edge embeddings of previous step.
During aggregation, trainable functions (e.g. neural networks)
are applied to these embeddings, aggregated into a single
vector and used to update the node’s existing embedding.
The same procedure applies to the edge embedding updates.
Different types of GNNs differ in the functions and proce-
dures applied to the neighboring embeddings and the type of
aggregation used.
• Our MPNN model is a slight modification of that presented

in Gilmer et al. [59]. It is implemented using Deep Graph
Library [62], where atoms are featurized according to the
Weave atom featurizer [63]. Messages are learned by a MLP,
which are passed between neighboring atoms and used to
update both the node and edge embeddings using a Gated
Recurrent Unit.

• GraphSAGE [55], [56] is a stochastic generalization of
graph convolutions which features sampling and hierarchical
aggregation. The aggregated embedding is concatenated
with that of the central node before a fully-connected
layer. We used a max pooling approach as the aggregation
function.

• In the Gated-GCN network [55], [56], before aggregation
each neighboring node embedding is gated (softmax) by a
trainable linear combination of both nodes.

C. Transferable neural fingerprint

CFP and NFP have an important distinction in the nature
of their fingerprints (see Figs. 2a and 2b). The molecular
fingerprint in CFP is derived solely from the molecular struc-
ture, making it target agnostic and reusable. In contrast, the
fingerprint used in the single target NFP model (Fig. 2b)
is target specific, as they are trained as part of the neural
network with the knowledge of the docking scores of a given
target. As a result, the task-specific NFP approach requires
re-training for different docking targets. Therefore, standard
NFP methods lack the most prominent advantage of the CFP:
pre-computable and target-agnostic. This drawback severely
limits NFP’s practical utility, as for each new protein target it
has to be retrained on large amount of docking data and the
fingerprint database grows with the number of protein targets,
comparing to the case of CFP where the database is invariant
to new protein targets. On the physical ground, the docking
simulation searches for the lowest energy configuration of the
ligand under the given potential field (e.g., electrostatics, van
der Waals and hydrogen bond) created by the binding pocket.
Therefore, in principle a molecular fingerprint is transferable,
as far as it is featurized to encode essential chemical attributes
(e.g., atomic charge, van der Waal radius and interaction
strength, and the location of hydrogen-bond donor or acceptor)
of the ligand that determine the ligand-pocket interaction
energy under the target’s potential field.

To this end, we propose transferable neural fingerprints
(TNFPs) that combine the benefits of both CFPs and NFPs. On
one hand, TNFPs are re-computable and target-agnostic like
CFPs; on the other hand, they encode more complete molec-
ular structural information like NFPs. As shown in Fig. 2c,
we trained TNFPs via a multi-target model. The learned
TNFP can be stored in a database, and the GNN encoder
can extract a TNFP from newly added drug molecules. For
the newly identified docking target, we can train a dedicated
MLP regressor starting from TNFP, which is a much faster and
more data-efficient (i.e., requiring less training data) process.
To make a fair comparison, all the fingerprints in this study
have the same bit length of 2048, either 2048 bits as in CFP
or 128 float-16 in NFPs and TNFPs.

IV. ANALYSIS OF THE DRUG-LIKE LIGAND DOCKING
SCORE DATASET

Our raw dataset contains molecular docking results (atomic
coordinates for each ligand-target pair from its lowest-energy
docked conformation and the corresponding docking score) of
310,693 ligands on each of 23 targets. First we conducted a
data cleaning process to retain data relevant to drug screen-
ing. Out of the 23 targets, 5 of them (i.e., NSP10 pocket1,
NSP10 pocket3, NSP10 pocket26, NSP15 pocket2, and PL-
Pro chainA pocket4) show positive docking scores on nearly
all ligands (more than 99.8%). These target were removed



from the dataset, due to the overall low drug affinity. We also
removed about 1K non-drug ligands that are either too large
(e.g., protein and RNA) or too small (e.g., salt), as well as
nearly 5K non-bonded ligands that contain disconnected parts.
After the cleaning process the final dataset includes docking
scores of 300,457 ligands on each of 18 different druggable
targets.

Fig. 3. (a) Docking score distributions and (b) center-of-mass coordinate
distributions of molecules for three representative docking targets. The dock-
ing scores are in units of kcal/mol and the coordinates in angstrom.

Next we examined the data variance from two perspectives.
First, on each target the ligand molecules exhibit a broad
range of docking scores (Fig. 3a and the supporting infor-
mation Fig. S1). The docking score distribution is typically
Gaussian-like with a single peak, except for one target –
3CLPro pocket1, which shows a bimodal distribution. Second,
across different targets the peak position and width of the
distribution vary quite significantly. The latter can be also seen
from the variation of the average score (i.e., averaged over
either all molecules or top 100 molecules in the lower end of
the docking score) across the 18 targets (see the supporting in-
formation Fig. S2). Since a more negative docking score means
stronger ligand-target affinity, targets with more negative tails,
including ADRP-ADPR pocket5, ADRP-ADPR pocket1, and
PLPro pocket50, are likely promising druggable sites.

To understand the bimodal distribution in 3CLPro pocket1,
we further examined the docking configurations of the ligand-
target pairs. Given more than 300K molecules in the docking
simulations, we computed the center-of-mass (COM) distribu-
tion of molecules as a proxy of their docking configurations
(see Fig. 3b and the supporting information Fig. S3). 3CL-
Pro pocket1 is clearly an exception, because its ligand COM
distribution shows disconnected regions in space. We sampled
and examined structures from each region and found that the
pre-defined docking area in 3CLPro pocket1 is highly solvent-
exposed and consisted of multiple dockable regions. Such ob-
servations indicated that the docking area in 3CLPro pocket1
may be ill-defined. In contrast, the spatial distributions in
all other targets are continuous despite of irregular shape in
several targets.

Fig. 4. Hierarchical clustering of targets based on the correlation matrix that
measures the similarities between targets. The color indicates the value of the
Pearson’s correlation coefficient. Five clusters are labeled as C1-C5, indicated
by blocks separated by dashed lines. Targets within the same block belong to
the same cluster. Boxed target names indicate the targets chosen to test our
multi-target model.

To measure the similarities among targets, we first defined a
300457-dimension vector for each target that contains docking
scores of all the ligand molecules. Then we calculated the
Pearson’s correlation coefficients and performed a hierarchical
clustering analysis on the correlation matrix using the scikit-
learn package [64] (see Fig. 4). The targets are all positively
correlated, namely, a molecule binds strongly (weakly) to one
target is also more likely to bind to other targets strongly
(weakly). Based on the correlation matrix the targets were
grouped into five clusters (C1 to C5). The largest cluster in
the upper left of Fig. 4 contains 11 targets, while the rest of
the clusters have at most 2 targets. Within each cluster the
targets share significant similarities.

V. RESULTS AND DISCUSSIONS

We trained two types of target-specific GNN models to
predict docking scores of drug candidate molecules – one
based on CFP (Fig. 2a) and the other based on NFP of
molecules (Fig. 2b). The performance of the prediction on the
test set was reported in Table II. As a reference for comparison,
the mean squared error (MSE) of the baseline model was
also reported, which refers to the error with respect to the
average score in the training set. More information about the
architectures and configurations of our graph neural networks
is explained in the supporting information.

First, all GNN models show significant improvement over
the baseline by 2- to 10-fold, suggesting that GNN-based
surrogate models can indeed capture the non-trivial correlation
between the molecular structure of the ligand and its docking
score on a specific target. Second, NFP-based models outper-
form the CFP-based models systematically with smaller MSE



values by 0.01 ∼ 0.08. Third, the three NFP-based models
perform equally well with minor MSE differences (smaller
than 8%) between them, and the GatedGCN model is the best
in most cases. We included a scatter plot of the ground truth
versus prediction using the GatedGCN model in the supporting
information Fig. S4. We noticed that the prediction of docking
scores of molecules on 3CLPro pocket1 is the worst with the
MSE an order of magnitude higher than the rest. This large
error is likely caused by the fact that 3CLPro pocket1 does
not have a well-defined docking pocket as discussed in the
above section.

When models are used to perform drug screening, the top
ranked (e.g., top 10%) molecules are usually selected for
further testing. In this regard the rank correlation between
molecules can be more important than the error on an in-
dividual molecule when a model is evaluated. A commonly
used metric to measure the rank correlation is the concordance
index (CI) [65]. In our GatedGCN models, the CIs are between
0.76 and 0.91 (see Fig. S4).

Next we trained a multi-target model via a GNN encoder
with multi-head regressors, one for each docking site, as
shown in Fig. 2c. We used 14 targets for training and
tested the transferability of the learned TNFP on the re-
maining targets. We excluded 3CLPro pocket1 for this task
based on the docking score and configuration analysis in
the previous section. Based on the similarities among targets
(Fig. 4), we chose NSP15 pocket1, ORF7A pocket2, and PL-
Pro chainA pocket3 as the test targets such that they belong to
different target clusters. The first target was randomly picked,
and the latter two were intentionally chosen to minimize
the similarities to the 14 training targets. For the purpose
of comparison, we included the results of the single-target
GatedGCN and CFP models that were adopted from Table II.
On the three test targets, the TNFP model performance shows
a noticeable improvement over the CFP models, and is slightly
worse than that of GatedGCN (difference within 11.5%), as
shown in the supplementary information Fig. S5.

The transferable nature of the TNFP model gives it the
advantages in training efficiency and data efficiency. The
training efficiency is reflected in the runtime of each model.
On average the TNFP model costs 53 seconds/epoch on our
GPU node while the GatedGCN single-target model costs
almost twice (90 seconds/epoch) and the CFP models about
9 times (410 seconds/epoch) as much as the TNFP model.
The training effiency of TNFP arises from two factors. First,
its input dimension, i.e., the number of nodes in the input
layer, is much smaller than the CFP models. Second, its graph
encoding part is fixed (i.e., transferable) and does not require
re-training as opposed to the single-target NFP model.

The data efficiency can be extremely useful when the
training data is limited, which is often the case for newly
discovered protein targets. As we reduced the training size
from the original size (240,000 molecules), the MSE on the
test set (size remained 30,457) increases much faster in the
GatedGCN model and the two CFP models than the TNFP
model (see Fig. 5 for NSP15 pocket1 and Fig. S6 for the

Fig. 5. Training data efficiency of four different models on NSP15 pocket1.

other two test targets). As we see in Fig. 5, below the crossover
at 30%, the TNFP model outperforms the GatedGCN model.
With 10% of the training data (24,000 molecules), the MSE
of the TNFP model increases by only 15.1% as compared to
that of the full tranining set, while the MSE of the GatedGCN
model increases dramatically by 28.1%.

VI. CONCLUSIONS

In summary, we have built and analyzed a COVID-19
docking datasets consisting of ∼ 3× 105 drug candidates and
23 coronavirus protein targets using Autodock. We have con-
ducted a comprehensive study of various graph neural network
methods to construct surrogate models for docking score pre-
diction, including both conventional circular fingerprint meth-
ods (ECFP and Morgan) and graph neural fingerprint methods
(GatedGCN, GraphSAGE, and MPNN). We found that overall
graph neural fingerprint methods outperform the conventional
circular fingerprint methods with the same bit-length of 2048,
and GatedGCN performs slightly better than GraphSAGE and
MPNN. However, graph neural fingerprint methods are target
specific and require re-training for new docking targets, which
makes them more data intensive and computationally more
expensive to train than the conventional circular fingerprint
methods. By withholding five representative protein targets
as unknown emerging bio-threat , we demonstrated that the
neural fingerprints learned via multi-target training exhibits
desired target agnostic and reusable properties of circular
fingerprints. We found that the transferable graph neural
fingerprint model not only outperforms conventional circular
fingerprint models, but also shows outstanding training and
data efficiency.
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TABLE II
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Appendix A: GCN and GraphSAGE Model
architectures

The node and edge embedding procedures map from vec-
tors in the feature dimensions to vectors in the embed-
ding dimensions respectively for nodes and edges. The
node and edge feature and embedding dimensions are
shown in the following tables.

Node feature dimensions [11, 7, 9, 8, 6, 3]
Node embedding dimensions [15, 15, 15, 10, 10, 5]

Edge feature dimensions [5, 5]
Edge embedding dimensions [35, 35]

The output of the universal neural fingerprint layers is
the input of the fully connected, multilayer perceptron
(MLP). This MLP consists of two layers, and the number
of nodes in each layer and activation functions are listed
in the following tables. ReLU is Rectified Linear Unit.

Number of nodes from inputs
to outputs

[ 70, 35, 1]

Activation functions from the
first layer to last layer

[ ReLU, None ]

Appendix B: Details on training the machine
learning models

The docking dataset was randomly split into 240,000,
30,000, and 30,457 samples for training, validation, and
testing, respectively, using the numpy.random.shuffle
function [1]. The validation set was used to optimize
hyperparameters including the numbers of hidden layers
and neurons as well as perform early stopping (maximum
300 epochs) and model selection. The mean squared error
(MSE) was used as the loss function. The models were
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FIG. S1. Docking score distributions of molecules for 18
docking targets. The scores are in units of kcal/mol.

trained using the ADAM optimizer [2] with batch size 64.
The initial learning rate was 0.001 with a reducing factor
of 0.7 and a minimum learning rate of 10−5. This ML
experiments were conducted using one node of the BNL
institutional cluster. Our code used 20 Intel Xeon Gold
6248 processors and a NVIDIA V100 GPU on one node
of the cluster. Each experiment for a particular target
takes about 5-6 hours.
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FIG. S2. Average docking scores of molecules for 18 docking
targets.

FIG. S3. Center-of-mass distributions of molecules for 18
docking targets. The coordinates are in units of angstrom.

FIG. S4. Prediction performance on the test sets by the
GatedGCN model. MSE stands for mean squared error and
CI for concordance index.

FIG. S5. Performance comparison of the TNFP model with
the GatedGCN model (Fig. 2b) and two CFP models (Fig. 2a)
tested on three targets.



3

FIG. S6. Training data efficiency of four different models
shown for two test targets.
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