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Abstract—Highly specific datasets of scientific literature are
important for both research and education. However, it is difficult
to build such datasets at scale. A common approach is to build
these datasets reductively by applying topic modeling on an
established corpus and selecting specific topics. A more robust but
time-consuming approach is to build the dataset constructively in
which a subject matter expert (SME) handpicks documents. This
method does not scale and is prone to error as the dataset grows.
Here we showcase a new tool, based on machine learning, for
constructively generating targeted datasets of scientific literature.
Given a small initial ”core” corpus of papers, we build a citation
network of documents. At each step of the citation network,
we generate text embeddings using the transformer generated
science-specific large language model SciNCL [Ostendorff, Malte,
et al. ”Neighborhood contrastive learning for scientific docu-
ment representations with citation embeddings.” arXiv preprint
arXiv:2202.06671 (2022).] and visualize the embeddings through
dimensionality reduction. Papers are kept in the dataset if
they are ”similar” to the core or are otherwise novelly pruned
through human-in-the-loop selection. Additional insight into the
papers is gained through sub-topic modeling using SeNMFk. We
demonstrate our new tool for literature review by applying it to
two different fields in machine learning.

Index Terms—transformers, nlp, non-negative matrix factor-
ization, data visualization

I. INTRODUCTION

One of the integral tasks of scientific research is the liter-
ature review of highly specific topics of interest. Literature
review often involves identifying papers of interest based
on keyword searches and following the relevant citations.
This manual process, however, is prone to miss potentially
significant papers and information. In addition, organizing
highly specific scientific literature datasets and applying data
analysis techniques, such as topic modeling, may allow a
deeper understanding of a given field and the discovery of new
research directions. However, curating such highly-specific
datasets of scientific literature requires the time-consuming
help of a subject matter expert (SME). Here, we introduce a
new assistant tool based on machine learning (ML) that allows
for building highly-specific scientific literature datasets. Bib-
liographic Utility Network Information Expansion (BUNIE)

streamlines the literature review task with a user-friendly and
intuitive system while enhancing the specificity of the papers
of interest using ML techniques and integrated human-in-the-
loop procedures.

In this work, we contribute a novel approach to the scientic
dataset expansion problem by jointly integrating Transformer-
based document text embeddings with human-in-the-loop
pruning to generate targeted scientific datasets. We then
use non-negative matrix factorization (NMF) with automatic
model determination (NMFk) for modeling the topics in these
papers to further refine our datasets [1]. Our approach is
unique in its inclusion of a human-in-the-loop for enhancing
and distilling the extracted topics, such that the corpus of
papers is narrowed down via an interactive process. To the best
of our knowledge, this iterative method is the first of its kind to
offer users the ability to analyze the topic modeling results and
apply their feedback to enhance the literature review procedure
by steering the ML output. The feedback loop enables the
users to grow and refine the results until a targeted dataset of
a specific size is reached, providing a unique and interactive
solution to large-scale literature review.

The process begins with a small number of core papers
selected from a topic of interest by an SME. At this initial
stage, the topic may not fully align with the user’s specific
objectives and is likely incomplete. The core papers are used
as a reference to obtain an additional set of relevant documents
that increase the size and enhance the specificity of the existing
dataset. The additional documents are selected using a citation
network formed from the existing papers in the dataset. The
expansion results are then pruned using multiple methods,
including an interactive selection by the user, document em-
bedding similarity metrics, and topic modeling. In contrast
to the traditional static approach of computing the topics,
our approach is iterative and dynamic. It allows repetition of
this refinement cycle, growing the dataset with each iteration.
This enables the creation of large but specific datasets, ideal
for training large language models. Through this interactive,
user-driven approach, we empower users to steer the topic
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extraction process directly, ensuring the results are tailored to
their specific requirements. This paper demonstrates our novel
tool by exploring the scientific literature on applying tensor
decomposition for numerical solutions of partial differential
equations.

Our contributions include:
• Introducing a novel paper selection and visualization tool

for scientific dataset curation and literature review.
• Utilizing text embeddings together with dimensionality

reduction techniques to model the documents.
• Integrating our machine learning approach to scientific

literature with human-in-the-loop procedures for refining
and guiding text modeling.

• Demonstrating the capabilities of our tool by applying it
to the scientific literature in two different scientific fields.

II. RELATED WORK

This section summarizes techniques and prior works applied
to forging a highly-specific dataset of research papers.

1) Topic Modeling & Tensor Decomposition: A common
approach to topic modeling is through Non-Negative Matrix
Factorization (NMF) [2], [3]. NMF can be applied to a words
by documents matrix to identify latent patterns within the
corpus. An extension to NMF, Semantic NMF with automatic
model determination (SeNMFk), is leveraged in [4]–[6] to
perform topic modeling while incorporating the text’s semantic
structure. The aformentioned documents by word matrix used
in NMF and SeNMFk is usually the term frequency–inverse
document frequency (TF–IDF) matrix together with the co-
occurrence/word-context matrix, the values of which represent
the number of times two words co-occur in a predetermined
window of the text. This is a common method of vectorization,
however, more advanced methods to process the documents
exist.

2) Document Embeddings & Transformers: Vector repre-
sentations of a text were previously used for dimensional
mapping, cross-comparisons, and similarity analysis [7]. Com-
mon models for learning word embeddings have been Global
Vectors for Word Representation (GloVe) [8] and Word2Vec
[9]. Recently, transformers have been used for large language
models (LLM) as internal states, as well as for topic modeling
[10]–[13]. A popular tranformer-based LLM is the Bidirec-
tional Encoder Representations from Transformers (BERT)
[14]. An example of BERTs topic modeling and sentiment
analysis is discussed in Ref. [15], where emotions related to
the use of ChatGPT [16] are studied through social media
posts by medical field researchers. While transformers, as used
in BERT are useful, they have limitations, as demonstrated
in Ref. [17], which addresses BERT’s few hundred-word
input capacity by adding transformer layers to segment text,
paired with two activation layers for final classification. In
our work, we apply the SciNCL transformer to generate text
embeddings [18]. Citation data is used as an additional training
signal in SciNCL’s document embedding closeness, aiding the
document distance determinations.

3) Data Visualization and Tools: A range of tools is avail-
able to explore and analyze research papers. For instance,
citation network and topic modeling tools such as Topic
Modeling Tool [19], and Stanford Topic Modeling Toolbox
[20] are publicly available. While these tools excel in gathering
topical data from their inputs, they lack visual representation.
Another tool with visualizations, ’Connected Papers,’ serves as
a resource for discovering scientific literature [21]. From single
document inputs, Connected Papers produces a graph where
each paper is a node, positioned according to a coupling of the
co-citations and bibliography rather than direct citations [21].
While ’Connected Papers’ is useful for exploring scientific
literature based on the bibliography information, our tool
advances the utility of bibliography information by creating a
specialized dataset of documents leveraging a citation network
coupled with human-in-the-loop and machine learning pro-
cedures. Another research paper visualization tool, designed
specifically for the influx of Covid-19 papers at the height of
the pandemic, is explained in Ref. [22]. Within this tool, the
process begins with text cleaning (tokenization, removal of
stop-words, & punctuation & capitalization), transformation
into a TF-IDF matrix, then t-distributed stochastic neighbor
embedding (t-SNE) [23] reduced dimensions for graphing.
Here, we use Uniform Manifold Approximation and Projection
(UMAP) [24] to reduce the 768-dimensional embeddings
output by SciNCL [18] to a two-dimensional projection.

4) Human in the Loop: Incorporating user feedback into
the systems has seen recent adoption into several schemes,
including OpenAI’s ChatGPT [16] and Google’s BARD [25].
In the study Ref. [26], a knowledge graph is built by the
framework textually prompting a user, collecting feedback in
every response to provide an acceptable retail-item recom-
mendation. Significant differences between BUNIE and Ref.
[26] exist. For instance, the study’s structure provides one
recommendation, whereas BUNIE offers an entire dataset.
Interactive modes also differ. Our system uses click-and-drag
selection to delete papers rather than a textual conversation.
Furthermore, BUNIE only removes papers at the HITL phase
until further citation hops are requested for more documents.
Contrastly, the tool described in Ref. [26] requests positive
and negative feedback about recommendations. A HITL work
more similar to BUNIE is described in Ref. [27], which aims
to build labeled image datasets for Computer Vision (CV)
applications. A user labels a few images, which extrapolate
to all in the image’s cluster, then the images are evaluated
by a model for reassignment. Like BUNIE, the process is
iterated to convergence but differs in direct user influence of
datum retention. Moreover, HITL has been examined from
the perspective of assisting artificial intelligence (AI) in Ref.
[28], specifically for natural language processing (NLP), CV,
an NLP and CV pairing, and real-world robotic applications.
Still, HITL from the perspective of non-robotic real-world
applications supported by NLP is not considered. In our tool,
a user inputs one or more documents, iteratively grows the
data, and deletes documents at every iteration, hand-in-hand
with both AI and tensor pruning.
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Fig. 1: Illustration of BUNIE’s distillation pipeline. Panel A inputs to BUNIE the SME-selected, highly-specific papers (core),
where a subset is represented as a bag-of-words wordcloud. Panel B dataset is expanded through the core’s citation network.
A subset of papers is selected to showcase how much the content differs from the core Panel C features human-in-the-loop
pruning. Reduction in the subset cluster is visible and the wordcloud begins to resemble the core. Panel D documents are
pruned through a document embedding heuristic, removing papers too far from the core in the embedding space. The dataset
becomes more compact and the subset begins to approach wordcloud parity with the original papers. Panel E topic modeling
through SeNMFk further prunes the dataset. H-clustering the factorization removes clusters that lack core papers, producing to
a neatly trimmed tree. This final stage has a dense set yet numerous documents indicating a successful distillation, evidenced
in a wordcloud closely resembling the original. Additional cycles can be made for refinement or the data extracted in repose
for downstream analysis, the option as the ellipse.

III. METHOD

The utility of BUNIE comes from the combination of
being able to quickly expand a dataset of publications by
traversing the citation network in combination with being able
to curate the dataset at scale by effectively using document text
embeddings. As depicted in Figure 1, the workflow is cyclical
as it involves iterative steps of acquiring new papers through
the citation network and then refining this expanded dataset
using various pruning techniques. The ultimate goal is to create
an extensive collection of scientific literature centered around
a specific topic, using a small, hand-picked set of relevant
papers as the starting point.

1) Selecting the Core: First, the user provides BUNIE
with a set of ”core” papers, comprised of a unifying theme
or topic, as the foundation of the dataset. A subject matter

expert (SME) should select and/or review the core for the
best results to ensure quality and relevance. It is important
to remember that BUNIE expands the dataset by traversing
the citation network of the core papers. A single, well-cited
document may produce an extensive dataset after a few iter-
ations/hops following the citation network, while a collection
of less frequently cited documents might yield a more limited
network. In our experiments, BUNIE has been successfully
applied to cores ranging from as few as 6 documents and
as many as 63 documents. The core papers are inputted into
BUNIE using unique paper identifiers such as DOI. Using the
SemanticScholar API [29], BUNIE extracts basic information
about these documents, including the title, abstract, year of
publication, authors, citations, and references.



Fig. 2: Screenshot of the GUI built for BUNIE. The user is able to upload core papers, perform hops, and do the HITL pruning.
This screenshot shows a user pruning a 3-hop dataset. The papers on the right-hand side of the plot (highlighted in yellow)
have been manually selected, and the bag-of-words wordcloud for the selection is shown to the left. The Hop legend represents
the number of hops (hop 0 is the core set of documents), and the SME selected/highlighted documents.

2) Expanding the Dataset: With the core established, the
user can grow the dataset by making a ”hop” within the
citation network. The citation network represents a directed
graph formed by publications and their respective citations. If
we denote a document, a, as belonging to a set of documents
X and a document, b, belonging to the set of their citation Xc,
we can say that a → b if and only if b cites a. In this context, a
hop can be defined as X := X ∪Xc. In this fashion, a second
hop would also incorporate the citations from the documents
in Xc, which was acquired from the first hop. The number
of hops performed is left to the user’s discretion, thereby
controlling the scale of dataset expansion. The process can
continue until the dataset reaches a desired size or until the
entire citation network has been traversed. BUNIE also offers
the capability to form the citation network with the edges
reversed, using references as the basis instead of citations.
This feature can be particularly useful when the core consists
of relatively new or infrequently cited publications.

3) Pruning the Dataset: Given the interconnected nature of
the citation network, not every paper found through the hop
process will be relevant to the core. For example, a highly
influential publication may be cited as an acknowledgment in
subsequent studies focusing on entirely new issues. Thus, it
is crucial to perform pruning at each hop along the citation
network to prevent irrelevant topics from propagating within
the growing dataset. In BUNIE, pruning is accomplished
through a combination of the following three techniques.

A. Human in the Loop (HITL) Pruning:

Textual similarity comparison presents a substantial chal-
lenge for humans and computational algorithms. To simplify
this task, we employ SciNCL [18] to transform the aggregated
titles and abstracts of the dataset into 768-dimensional embed-
dings. These high-dimensional embeddings are reduced to a
two-dimensional projection using UMAP [24]. Semantically
similar papers tend to cluster together in this two-dimensional
space when plotted on a scatter plot, providing an intuitive
visual representation of the dataset’s structure. Although not
perfect, this process simplifies manual content comparison.

To aid in the manual analysis and document pruning, we
have designed a graphical user interface (GUI) to quickly
select and examine many papers using the UMAP visualized
projection of the embeddings, as shown in Figure 2. The SME
can highlight papers by drawing a custom lasso or rectangle
over the projected papers. The tool then generates a bag-of-
words wordcloud to show the most frequent vocabulary in the
chosen paper set. For a finer-grain analysis, the GUI provides
a data table displaying all known data fields for the selected
papers that an SME can analyze.

B. Automatic Pruning of Document Embeddings

As with any dimensionality reduction algorithm, UMAP
necessitates tradeoffs in the data’s representation in the two-
dimensional space. While useful for document visualization
and enabling HITL pruning, a significant portion of the



embedding structure is lost. To counteract this loss, we in-
troduce a method for pruning the document embeddings in
their original high-dimensional space. Each core paper in the
dataset is considered specialized within its field. Therefore,
the embeddings of the new papers added through the citation
network are evaluated for their proximity to each of the core
paper embeddings. The intuition is that the embeddings of
relevant papers should reside ”close” to one or more of the
embeddings of the core papers. Each core embedding is treated
as the center of a hypersphere with radius ρ.

In mathematical notation, given a set of core papers C =
{c1, c2, ..., cn} and their corresponding embeddings E =
{e1, e2, ..., en}, the radius r for each hypersphere is calculated
as : First, compute the pairwise Euclidean distances for all em-
beddings in E, forming a set D = d(ei, ej) : ei, ej ∈ E, i ̸= j
where d(ei, ej) denotes the Euclidean distance between em-
beddings ei and ej . Second, the median Euclidean distance
between all core embeddings, denoted as ρ, where ρ =
median(D), can then be used as a threshold for including
newly cited documents. The embedding for each core paper
becomes a center of a hypersphere with radius ρ. A document
embedding within one or more hyperspheres is at least as
close to one or more core document embeddings as the
median separation of the core document embeddings. Figure 3
illustrates the process simplified to a 2-dimensional space.

Core Paper
Legend

Selection
Hypersphere

Citation/
Reference

ρ

ρ

Hypersphere
Union

ρ Radius Metric
ρ

Fig. 3: Hypersphere pruning calculation. Radii are compared
from core paper distances, and once ρ is selected, papers
beyond the perimeter are pruned.

C. Pruning through Topic Modeling

To further ensure topic cohesion, we perform topic modeling
on the pruned dataset formed in the previous two steps.
We utilize Semantic non-negative matrix factorization with
automatic model selection (SeNMFk) [30] for topic modeling.
Given the documents dataset, we form a term frequency-
inverse document frequency (TF-IDF) matrix X ∈ IRm×n

+ and
an SPPMI matrix S ∈ IRm×m

+ which encodes the semantic
structure of the data (where m is the number of tokens in the
vocabulary and n is the number of documents). We then jointly
factorize X and S to produce two non-negative factor matrices

W ∈ IRm×k
+ and H ∈ IRk×n

+ , such that Xij ≈
∑k

s WisHsj .
Here, W represents the distribution of words across different
topics, and H describes how these topics are distributed
across the documents. After applying NMF, the information
in H is used to associate each document with the topic it
contributes most, forming clusters of documents. Only the
documents corresponding to the topic, which comprises the
core documents, are preserved.

It is important to conduct robust pre-processing of the doc-
uments to limit the noise introduced by expanding the dataset
to produce a meaningful vocabulary. Our pre-processing pro-
cedure removes common stop-words, symbols, newline char-
acters, HTML tags, non-ASCII characters, e-mail addresses,
and copyright statements. Documents in languages other than
English are identified and removed using heuristics such as
the ratio of non-ASCII to total characters and the occurrence
of common English stop-words in the text. There are instances
where specific tokens or phrases denote unique terms in the
chosen domain. While these terms might appear in different
forms (such as spelling, acronym, or hyphenation), all forms
signify the same concept. Standard preprocessing may split
a multi-token term into separate tokens, which can destroy
potentially crucial meaning. However, given that an SME
initially chooses the core papers, the SME can also pinpoint
important terms and their assorted forms. Once these terms are
identified, we consolidate all forms of each term into a singular
entity. In the case of multi-token terms, we retain either the
acronym or a hyphenated version to ensure that the term’s
meaning is preserved in the TF-IDF and SPPMI matrices. In
our tensors literature example, we substitute tensor-train with
{TT, tensor train} and partial-differential-equation with PDE
and all other various forms. Another strategy we employ at this
pruning step to reduce noise involves reusing the same vocab-
ulary for every hop. The vocabulary, derived from the core
papers is consistently applied at each pruning decomposition.
Consequently, less relevant papers (those using a significantly
different vocabulary than the core) are represented as sparse
entries in the TF-IDF matrix, reducing their influence on
the decomposition. This step also enhances computational
efficiency as the vocabulary dimension remains constant and
does not grow with the number of documents.

Through these methods, BUNIE effectively enhances the
thematic coherence of the dataset while maintaining topical
alignment with the original core. This results in a significantly
larger, interconnected dataset that retains the integrity of the
original subject matter, ready for more in-depth exploration
or application. Furthermore, to quantify the efficacy of our
approach, we employed a compactness score, which is a metric
that evaluates how closely the documents in the dataset are re-
lated to each other in terms of the topics they cover. The com-
pactness score of a dataset is calculated using cosine similarity
between the document embeddings. In mathematical terms,
given a set of document embeddings E = {e1, e2, ..., en}, the
compactness score C is given by:



C =
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

ei · ej
|ei|2|ej |2

(1)

where n is the total number of documents, ei and ej
are the embeddings of the ith and jth document, · denotes
the dot product, and | · |2 denotes the Euclidean norm. In
measuring topic coherence using document embeddings, the
cosine similarity between two embeddings, which ranges be-
tween -1 and 1, provides a measure of semantic alignment. A
negative cosine similarity score, implying that the documents
are semantically opposed, is an unlikely scenario within a
specific topic. Therefore, we constrain the compactness score
to fall between 0 and 1 to facilitate a meaningful quantification
of topic coherence or alignment, accomplished by taking
the absolute value of the cosine similarity. Higher values
suggest a greater topic similarity between documents. The
final compactness score, a value also ranging between 0 and
1, is computed as the average cosine similarity across all
pairs of documents in the dataset. By this measure, a higher
compactness score indicates a more coherent or well-aligned
set of documents regarding their topical content.

IV. RESULTS

This section presents two experimental uses of BUNIE.

A. Expanding Targeted Dataset

We first applied BUNIE to 10 papers hand-picked by an
SME on a specific topic. These publications were influential
papers in solving integral equations using tensor-train decom-
position. With the ”core” established, we sought to expand
the dataset along the citation network. After the first hop,
632 citing papers were found. Using the visualization tool,
we could quickly locate and prune papers that did not match
the topic. While these papers tangentially addressed tensor
decomposition, they failed to engage with the specific issues
highlighted in the core papers. We then applied the automatic
pruning through embeddings and SeNMFk pruning. After
pruning the first hop, we were left with 411 papers, including
the original 10 core papers.

For such a minimal subset of papers, it was feasible to use
the two-dimensional projection of the document embeddings
in conjunction with bag-of-words word clouds to promptly
identify the outlying papers. However, upon the second citation
network expansion, the dataset grew rapidly to more than
8,000 papers. At this stage, the automatic pruning of the
citation network became paramount. After pruning the second
hops papers, a third hop was performed. After pruning, the
final result came to 3,915 papers. This data flow demonstrates
how BUNIE effectively combines human intuition with algo-
rithmic utility to create a focused, relevant scientific dataset.

As demonstrated in Table I, BUNIE’s iterative process
of topic expansion and alignment increases the compactness
score of the dataset. While the first expansion to the citation
network added many new documents to the dataset, it also in-
troduced many unrelated documents, causing the compactness

score to drop from 0.894 to 0.823. The subsequent automatic
pruning based on hypersphere proximity to the core document
embeddings was effective in increasing the compactness score
to 0.860, by eliminating less relevant documents, reducing
the total document count to 4625. Following the hypersphere
pruning, we carried out topic alignment by applying SeN-
MFk decomposition and selecting relevant subtopics, further
refining the dataset. This increased the compactness score
and resulted in a more manageable dataset containing 3915
documents. The increase in compactness score at each stage of
the BUNIE process demonstrates the method’s effectiveness in
maintaining topic cohesion while expanding the dataset from
a small set of core papers.

TABLE I: Compactness Score - Tensors

Dataset Compactness Num. Documents

Core Papers 0.894 10
3-Hops, No Pruning 0.823 10338
3-Hops, After Hypersphere Pruning 0.860 4625
3-Hops, After SeNMFk Pruning 0.861 3915

TABLE II: Compactness Score - Audio processing

Dataset Compactness Num. Documents

Core Papers 0.913 64
4-Hops, No Pruning 0.798 15294
4-Hops, After Hypersphere Pruning 0.861 1987
4-Hops, After SeNMFk Pruning 0.861 1081

B. Exploratory Data Expansion

In recent years, the paper “Transformer-XL: Attentive Lan-
guage Models Beyond a Fixed-Length Context” [31] has
drawn significant attention and influence across multiple re-
search domains. Given this impact, it becomes interesting
to explore the different domains influenced by the paper
either individually or in relation to each other. BUNIE allows
us to perform this exploration through topic modeling and
visualizing text embedding projections.

As demonstrated in 4b, we identified five prominent clusters
associated with the following topics: audio processing, com-
puter vision, speech processing, natural language processing,
and proteins. From the visualized clusters, cluster I, containing
music terms from 68 papers, was expanded through four
hops along the citation and reference network, resulting in
a significantly larger dataset comprising 15,294 papers. Fol-
lowing the expansion, the dataset was pruned through hyper-
sphere calculation, retaining only papers within at least one
of the 64 first-hop paper hyperspheres. At this point, the
dataset contained 1,987 papers. Next, SeNMFk decomposed
the papers into their core topic clusters, preserving 1,081
papers through 19 clusters, where only eight contained core
papers and were preserved as the final dataset. The top words
from the retained clusters in order were: music, attention,
generative, lyric, video, score, learn, and emotion. As Table
II shows, the compactness of the dataset increased with each



(a) (b)

Fig. 4: Exploration of reference and citation paper topics out of an influential transformer paper
(a) “Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context” in red, citations/references in grey
(b) Manually selected paper clusters & wordclouds from 4a colored: Music, Video, Transformer Performance, Speech, Proteins

pruning step. The compactness of the core papers was 0.913,
which decreased to 0.798 after the four-hop expansion due
to the introduction of less-relevant papers. After hypersphere
pruning, the compactness increased to 0.861, indicating the
successful removal of off-topic papers. Remarkably, the com-
pactness remained stable after SeNMFk pruning, suggesting
that the most relevant papers were retained.

Notably, retained paper distributions per hypersphere pruned
embedding mappings and SeNMFk decompositions will not
always align with a human curator’s intuitive UMAP-reduced
selections. The discrepancy highlights the unique value of
human judgment with algorithmic tools in dataset curations.

V. CONCLUSION

This work contributes a novel system to build scientific
datasets. With minimal input, we are able to iteratively build
a dataset of scientic literature anchored on the core subject
provided by an SME. At each step, the dataset is enlarged
through the citation network and subsequently pruned using
three separate methods, including one with human-in-the-loop.
The result is an expanded dataset of work relevant to the core.

Promising future work is to seed an initial topic specifica-
tion. The system would then iterate autonomously, filtering out
documents and recalculating topic estimates to achieve topic
distillation based on reinforcement learning. Auto-distillation
could dynamically adapt the topic extraction and refinement
based on continuous feedback on the topic’s state. The sys-
tem’s efficiency and accuracy could improve over time, leading
to more precise and reliable topic distillation.

Additional considerations for future work include methods
of forming the embeddings and creating a ’synthetic’ core

paper to serve as a foundation for automated topic alignment.
The utilization of graph neural networks for understanding
the relationship between the citations can also be explored,
offering further insights into the structure and interconnections
of the scientific literature. These enhancements and additions
would augment the effectiveness and flexibility of BUNIE,
further assisting researchers in their quest for knowledge.
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