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Abstract—This paper adopts Arimoto’s α-Mutual Information
as a tunable privacy measure, in a privacy-preserving data release
setting that aims to prevent disclosing private data to adversaries.
By fine-tuning the privacy metric, we demonstrate that our
approach yields superior models that effectively thwart attackers
across various performance dimensions. We formulate a general
distortion-based mechanism that manipulates the original data to
offer privacy protection. The distortion metrics are determined
according to the data structure of a specific experiment. We
confront the problem expressed in the formulation by employing
a general adversarial deep learning framework that consists of
a releaser and an adversary, trained with opposite goals. This
study conducts empirical experiments on images and time-series
data to verify the functionality of α-Mutual Information. We
evaluate the privacy-utility trade-off of customized models and
compare them to mutual information as the baseline measure.
Finally, we analyze the consequence of an attacker’s access to
side information about private data and witness that adapting
the privacy measure results in a more refined model than the
state-of-the-art in terms of resiliency against side information.

Index Terms—Tunable privacy measure, Arimoto’s α-mutual
information, adversarial learning, data sharing, privacy-utility
trade-off.

I. INTRODUCTION

Despite technological advancements and increased data gen-
eration, the need for data sharing has risen dramatically. How-
ever, data sharing always carries the risk of security breaches,
with unauthorized entities trying to extract private information
from shared data. Notably, the privacy problem in data sharing
differs from the data security issue. In data release privacy, any
authorized receiver of the data is considered an anticipated in-
vader. Therefore, data security methods are unprofitable in data
sharing [1]. As data sharing has progressed with advancements
in speed, feasibility, etc., addressing various privacy issues has
become more challenging than ever before. For instance, many
social media applications require individuals to share private
data online [2]. Hence, various privacy-protecting techniques
for data sharing have been studied for years. Differential
Privacy (DP) has received significant attention in this area,
especially due to its low computational overhead [3]. Although
DP prioritizes data privacy, it may not be ideal for applications
where preserving the utility of shared data is crucial, as it does
not specifically address other data properties [4].

A. Related work

Considering the mentioned shortcoming of DP, information-
theoretical approaches are widely applied in privacy protec-
tion, offering improved privacy-utility trade-offs (PUTs) [5]–
[7]. Mutual Information (MI) has been popular in information-

theoretical privacy measures. In [6], an MI-based method is
designed to prevent leakage of private features in representa-
tion learning methods on graphs. Besides, efforts are made to
extract the most from the patterns in data to determine conve-
nient metrics. One such example is demonstrated in [7], where
Directed Information (DI) is selected as the privacy measure.
Nonetheless, in order to achieve flexible PUTs, the necessity of
discovering a tunable privacy measure has been perceived. An
adjustable metric allows for tailoring the privacy definition to
specific use cases, enhancing performance, and demonstrating
the capacity of information-theoretical strategies.

Configurable measures of information leakage based on
Rényi entropy [8] and Arimoto α-mutual information (α-
MI) [9] are designed in the literature. Suggesting tunable
metrics in [10], authors introduce α-leakage as a measure of
information disclosure that quantifies how much an adversary
can infer a specific private attribute of the data. The definitions
have been extended in [11]. To the best of our knowledge,
the closest study to our work is presented in [12], which
employs α-loss (equivalent to using Arimoto α-MI as privacy
measure) within an adversarial learning framework for data
sharing. However, they formulated the problem as a minimax
game with constraints, which has been demonstrated to be
unstable with regard to loss in deep learning [13]. Moreover,
the influence of the α parameter in such a tunable measure
and its impact on improving PUT has not been investigated.

Furthermore, one may assess privacy-preserving data-
sharing systems regarding their effectiveness in a scenario
where a malicious attacker has access to sort of side infor-
mation (SI) correlated with private data. The authors in [14]
analyze this problem. However, we show that customizing
the privacy measure can lead to more reliable models than
in [14] in terms of PUT. Notably, the robustness of Maximal
α-leakage to arbitrary SI is studied in [15]; however, their
conclusion is drawn based on the availability of ground truth
private attributes. Although this notion is reasonable in the
training phase of a framework, it is unrealistic to imagine
that private features are known in the testing stage. Moreover,
the assumption of having all attributes of the original data as
private features might not be practical in many applications.

B. Contributions

In this paper, a tunable privacy measure has been adopted on
distortion-based privacy-preserving data release models. The
main contributions of this work are as follows:
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1) To the best of our knowledge, this is the first time
that the impacts of the α parameter are practically
investigated in α-MI as a measure of privacy in the
privacy-preserving data release.

2) The impact of the tunable privacy measure is illustrated
in the presence of SI that is correlated with the sensitive
information of shareable data.

3) We suggest a framework that uses a stable strategy to
address the optimization problem of privacy-preserving
data release as opposed to a minimax formulation [12].

4) Our framework is customized for several datasets with
different structures to examine the advantages of using
an adaptable privacy measure.

Notation and conventions
A sequence of random variables(X1,X2, . . . ,XT ) is shown

as XT . A sample batch from XT is written as {x(b)T }Bb=1.
The probability distribution of Xt is pXt

, and the conditional
distribution of Xt given Yt is shown as pXt|Yt

. The conditional
distribution XT given Y T would be pXT |Y T . A Markov chain
composed of X,Y, and Z is written as X−
−Y −
−Z. The
expectation of a function f with respect to pX is denoted as
E[f(X)]. The Kullback-Leibler (KL) divergence between two
distributions p1 and p2 is represented as KL(p1||p2).

II. PROBLEM FORMULATION AND TRAINING OBJECTIVE

Let variables Y T denote the users’ useful data. This data
may be metered power consumption of houses over T time
slots, or any non-sequence data (T = 1) such as patients’
health conditions. Private variables XT represent the sensitive
information that a particular user is unwilling to share in
public, e.g., people’s identities in the data collected by social
media. We also define observed variables WT as the variables
that would normally be released or shared. We assume that
WT is not independent of XT . The private information XT

may be present, together with the Y T , in WT , or XT is
correlated with Y T and WT is formed of Y T . Therefore, for
a particular task, sensitive information should be eliminated
from valuable data before sharing the data publicly. In this
scenario, a privacy-preserving system is of interest. This
system contains a releaser that creates a new representation
of Y T , denoted as ZT , generated by distorting Y T to follow
two objectives simultaneously: the releaser aims to hide private
data from any possible attacker interested in inferring them
from released data; at the same time, it tries to preserve useful
data, as much as possible, based on specific criteria. Therefore,
measures are needed to quantify the released data’s privacy
performance and utility achievement (i.e., preserving useful
attributes). Moreover, harmful attackers could have access to
some supplementary (side) information, S, that can assist them
in attaining higher inference performance. To quantify the
distortion between ZT and Y T , we define a distortion measure
as D(ZT , Y T ) ≜ E[d(ZT , Y T )], where d :RT×RT →R can
be any distortion metric on RT . Here, Arimoto’s α-Mutual
Information is proposed for the privacy measure in the releaser
as IAα (X;Z) = Hα(X)−HA

α (X|Z) [9], where Hα(X) is the
Rényi entropy of order α ∈ (0, 1) ∪ (1,∞) [8] written as:

Hα(X)=
α

1− α
log

(∑
x

pαX(x)

)1
α

=
α

1− α
log∥pX∥α, (1)

and HA
α (X|Z) is Arimoto’s conditional α-entropy defined as:

HA
α (X|Z) =

α

1− α
log
∑
z

pZ(z)

(∑
x

pαX|Z(x|z)

)1
α

=
α

1− α
logEZ

[
∥pX|Z∥α

]
.

(2)

Consequently, HA
α (X|Z) is generalized to HA

α (XT |ZT ) as:

HA
α (X

T|ZT)=
α

1−α
log
∑
zT

pZT(zT)

∑
xT

pαXT|ZT(x
T|zT)

1
α

=
α

1− α
logEZT

[
∥pXT |ZT ∥

α

]
,

(3)

where pXT |ZT =
∏T

t=1 pXt|Xt−1,ZT . Finally, the problem of
finding the optimal releaser is formulated as follows:

inf
pZT |WT

IAα (XT ;ZT |S) subject to D(ZT , Y T ) ≤ ϵ, (4)

where ϵ ≥ 0 is a parameter to force the releaser to control the
trade-off between privacy and utility. In addition, the SI term is
considered in IAα (XT;ZT|S) = HA

α (XT|S)−HA
α (XT|ZT,S)

by substituting all p.|ZT by p.|ZT,S . Given the fact that
HA

α (XT|S) cannot be changed by the releaser, i.e., it does
not depend on pZT |WT , we re-formulate (4) as follows:

inf
pZT |WT

− 1

T
HA

α (XT |ZT,S), s.t. D(ZT , Y T ) ≤ ϵ, (5)

where the term 1
T is included for normalization purposes.

Finding the solution for the optimization problem in (5)
is not generally tractable. In addition, tackling this problem
requires the availability of pXT |ZT,S . Hence, the privacy-
preserving framework approximates pXT |ZT,S by using an
estimator network, called adversary. The problem of estimating
pXT |ZT,S by pX̂T |ZT,S can be optimally tackled by minimizing
the KL divergence between the distributions written as [16]:

inf
pX̂T |ZT,S

KL
(
pXT|ZT,S ||pX̂T|ZT,S

)
= inf

pX̂T |ZT,S

E

[
log

pXT |ZT,S

pX̂T |ZT,S

]
, (6)

where the expectation is with respect to pXT,ZT,S . Note that
solving (6) is equivalent to minimizing the negative log-
likelihood E

[
− log pX̂T |ZT,S(X

T |ZT, S)
]
. Furthermore, we

try to simplify (6) by decomposing the probability distribution
pX̂T |ZT,S , leveraged from the natural characteristics of the
defined privacy-preserving problem. We denote the releaser
and the adversary as Rθ and Aϕ, which are controlled by
their parameters θ and ϕ, respectively. For t ∈ {1, 2, . . . , T},
the releaser Rθ takes observed variables, W t, as its input and
generates released variables represented as Zt. Using Zt, the
adversary Aϕ aims to estimate sensitive information xt by
approximating pXt|Zt,S at each time t as pX̂t|Zt,S and then
solving x̂∗

t = argmax
x̂t∈X

pX̂t|Zt,S(x̂t|zt, s). This means, while

the goal of Aϕ is to estimate XT as precisely as possible
based on ZT , Rθ aims to trade-off two different objectives.
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Fig. 1. General privacy-preserving framework based on adversarial learning.
Parts shown in red color are included as per the application and availability.

On the one hand, Rθ intends to minimize the amount of
information leaked about XT from ZT , which will mislead
the adversary. On the other hand, Rθ tries to keep ZT as
close as possible to Y T by limiting the distortion between ZT

and Y T below a designated value. Based on these assumptions
about releaser and adversary, we can conclude that the Markov
chains (Xt, Y t)−
−W t−
−Zt−
−X̂t and X̂t−1−
−Zt, S−
−X̂t hold
for t∈{1, 2, . . . , T}. Therefore, pX̂T |ZT,S is re-formulated as:

pX̂T |ZT,S(x̂
T |zT, s) =

T∏
t=1

pX̂t|X̂t−1,ZT,S(x̂t|x̂t−1, zT, s)

=

T∏
t=1

pX̂t|ZT,S(x̂t|zT, s)
(i)
=

T∏
t=1

pX̂t|Zt,S(x̂t|zt, s).

(7)

where (i) corresponds to the causality constraints that the
problem may have. Hence, The adversary’s objective in (6) can
be achieved by addressing the optimization problem written as:

inf
pX̂t|Zt,S

1

T

T∑
t=1

E
[
− log pX̂t|Zt,S(Xt|Zt, S)

]
, (8)

and the optimization problem of the releaser, defined in (5),
is converted to a practical formulation as:

inf
pZT |WT

− 1

T
HA

α (X̂T |ZT,S), s.t. D(ZT , Y T ) ≤ ϵ, (9)

where the distribution on (7) is used to compute
HA

α (X̂T|ZT,S). This optimization problem can be tackled
with the availability of pX̂T |ZT,S , the adversary’s output.

Based on (8), Aϕ tries to maximize the quantified informa-
tion between XT and ZT by minimizing KL distance between
pX̂t|Zt and pXt|Zt . On the other hand, Rθ aims to minimize
α-MI in (5). Arimoto’s α-MI is known to be a generalization
for MI to measure the information shared between random
variables [9], [17]. This suggests that the adversary’s goals and
the releaser’s are in opposite directions. Thus, addressing (5)
and (8) can be done by a stable adversarial training procedure
that uses the general modeling framework illustrated in Fig. 1.
Two loss functions LR(.) and LA(.) are determined for Rθ

and Aϕ, respectively. Using (8), LA(ϕ) is written as:

LA(ϕ) :=
1

T

T∑
t=1

E
[
− log pX̂t|Zt,S(Xt|Zt, S)

]
. (10)

As previously mentioned, (10) represents cross-entropy loss
which establishes a classifier that generates pX̂T |ZT ,S . The
releaser’s loss function is derived from (5) as:

LR(θ, ϕ, ω, α, λ) :=D(ZT , Y T )− λ

T
HA

α (X̂T |ZT, S). (11)

The presence of S in (10) and (11) depends on the availability
of SI. Adjusting λ≥0 in (11) is equivalent to changing ϵ in (5).

Fig. 2. Privacy-preserving framework for image datasets.

Considering the extreme cases, λ=0 leads the releaser to the
full utility regime, meaning that Rθ acts independently from
Aϕ, hence provides no privacy guarantees. For large λ values,
the term − λ

T H
A
α (X̂T |ZT, S) will be dominant in LR(.). Thus,

the releaser tends to achieve full privacy, i.e., random guessing
performance, by confusing the adversary totally. Moreover, ω
in (11) shows the parameters that the utility network could
have. Depending on the application, this network should have
a complex structure or should only evaluate the specified
distortion measure. Moreover, this network may generate Ĉ,
to which, in some applications, the distortion metric compares
specific features of the useful data.

III. FRAMEWORK AND IMPLEMENTATION

A. Privacy-preserving framework for image data

Convolutional neural networks (CNNs) excel in various ma-
chine learning tasks, particularly with image datasets. Hence,
in this application, we decided to build the networks shown
in Fig. 1 by using CNN modules and well-known structures
related to each network’s task. As illustrated in Fig. 2, Y T

is considered as the releaser’s input (i.e., WT = Y T ). An
encoder-decoder approach has been employed to design Rθ,
while the adversary and utility network are image classifiers.
In this work, we choose a dataset of hand-written digits where
the digits’ thickness is considered as private information. Thus,
Aϕ tries to determine whether an image shows a thick or a thin
digit. On the other hand, Rθ aims to generate an image with
the same dimensions as Y T while minimizing the distortion
between the generated and original image.

The distortion measure typically quantifies the difference
between the network’s input and output, either on an element-
wise basis or through a higher-level approach. For example,
while the thickness of digits is the sensitive information
that we try to hide, the ability to classify the digits is of
interest. Here, an element-wise measure cannot guarantee
digit classification. We consider that the distortion measure
consists of two parts: (i) a p-norm metric that quantifies
the distortion happened to the input variables, written as
dp(Z

T , Y T ) ≜ 1
T ∥Z

T − Y T ∥p for p ≥ 1; (ii) the loss function
of the utility network, which is a categorical cross-entropy loss
for an image classifier that recognizes digits. The first part of
the distortion measure ensures that the released image will
have element-wise similarity with the input, while the second
part promotes the similarity in terms of the results of image
classification. In this application, We consider p = 1 as the
first part of the distortion measure, and the second part comes
from the utility network, Cω , written as:

dC(Z
T , Y T ) ≜ LC(ω) = E

[
− log pĈ|ZT (C|ZT , S)

]
, (12)
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where C represents particular utility features (e.g., the labels
of hand-written digits images), and Ĉ is the utility network’s
output. Finally, the distortion measure is derived as:

dIMG(Z
T , Y T ) = dC(Z

T , Y T ) +
1

T
∥ZT − Y T ∥1 (13)

For the model shown in Fig. 2, Aϕ has a cross-entropy loss,
defined in (10), and the loss function of Rθ is formulated as:

LR(θ,ϕ,ω,α,λ):=E
{
dIMG(Z

T,Y T )
}
− λ

T
HA

α (X̂
T |ZT, S). (14)

The training process for the data releaser model of this work
has multiple stages. At every training iteration, Aϕ is trained
k times, while Rθ is only trained once per iteration. The
choice of k is crucial as it affects the adversary’s strength [13].
Algorithm 1 provides a detailed training procedure. After the
training phase, a distinct network, called attacker, is considered
for the test phase. This network is trained with the released
data and will test the privacy achieved by the model. This
network plays the role of a real-world attacker, which has
an approximately similar structure to Aϕ and tries to infer
sensitive information from released data.

Algorithm 1 Training of privacy-preserving framework.
Hyperparameters: Batch size B, Adversary training steps k.

1: for number of iterations do
2: for k steps do
3: Sample {y(b)T,x(b)T }Bb=1 to create {w(b)T }Bb=1.
4: Generate {z(b)T }Bb=1 by using {w(b)T }Bb=1 and Rθ.
5: Compute gradient of LA(ϕ), approximated with

{z(b)T }Bb=1, or {z(b)T,s(b)T }Bb=1 when SI is available.

6: Update ϕ based on the gradient of LA(ϕ).
7: If available, compute gradient of the utility network’s

loss and update ω based on the gradient.
8: end for
9: Sample {y(b)T,x(b)T }Bb=1 to create {w(b)T }Bb=1.

10: Compute gradient of LR(θ), approximated with
{w(b)T }Bb=1, and update θ based on the gradient.

11: end for

B. Privacy-preserving framework for time-series data

Our second example deals with time-series data. The most
important feature of time series is the correlation of data
points over time. In order to extract this feature, we use Long
Short-Term Memory (LSTM) modules to build releaser and
adversary networks of the general model shown in Fig. 1.
We form WT by concatenating Y T and XT . This study
focuses on time-series applications where utility is defined as
the similarity between released data and actual observations,
such as smart grid applications [5]. Hence, a p-norm distortion
is sufficient to compare the input and output of the releaser.
Therefore, we choose dTS(Z

T , Y T ) = 1
T ∥Z

T − Y T ∥p=2 as
the distortion measure in this application, and there is no need
to have a complex utility network. Finally, the loss function
for Aϕ is the same as (10), and, for releaser Rθ, it becomes:

LR(θ, ϕ, α, λ):=E
{
dTS(Z

T , Y T )
}
− λ

T
HA

α (X̂
T |ZT, S). (15)

The training procedure of this framework is available by
adjusting Algorithm 1 based on time-series properties. Similar
to section III-A, a distinct attacker evaluates the privacy
attained by the model.

IV. RESULTS AND DISCUSSION

A. Datasets description
1) Annotated MNIST (AMNIST) dataset: We use the well-

known MNIST dataset [18] and modify it by adding a label
of thickness level to images using the method provided in
[19]. In [19], authors have defined mathematical formulas with
different parameters for each digit. Therefore, the digit thick-
ness in a particular sample image can be classified into thick,
normal, or thin. We customized the provided code in [19] to
label all training and testing images, and we excluded those
images with a normal thickness for computational simplicity.
We ended up with 28,568 training and 4,681 testing samples.

2) ECO dataset: The Electricity Consumption and Occu-
pancy (ECO) dataset [20] contains power consumption data of
6 households and their ground truth occupancy information.
Since, in this work, the consumption data and occupancy labels
are re-sampled at every hour, ECO would be considered a
time-series dataset with T = 24. Here, the power consump-
tion represents the utility feature Yt, while the household
occupancy is the private information Xt. We partitioned data
into 8980 training and 2245 testing time-series sequences.
Moreover, week’s day and month are possible SI available in
ECO that can be concatenated to training and testing samples.
B. Metrics

We choose Normalized Error (NE), i.e., Normalized Mean
Squared Error (NMSE), to evaluate the distortion between Y T

and ZT . We employ balanced accuracy to compare models’
performance. This metric is used instead of accuracy to
mitigate the unbalanced data effects. Henceforward, we use
the word accuracy to refer to balanced accuracy, for brevity.

C. Tunable privacy measure for AMNIST dataset

The effects of the proposed tunable privacy measure are
evaluated by performing an experiment using the modified
AMNIST dataset and the proposed framework for image data.
We selected α=1 (equivalent to MI) and explored the intervals
(0,1) and (1,∞) to examine the model’s performance by vary-
ing α. The outcomes revealed that models with α<1 exhibit
analogous behavior, with only insignificant differences. The
same phenomenon holds for α>1. Thus, the following values
are considered for the experiments in this work: α=0.9, 1, 3.

The details of the layers used in the framework are demon-
strated in Fig. 2. The hyperparameters in Algorithm 1 are set
to B = 256 and k = 3. Here, full privacy is achieved when the
attacker cannot guess better than 50% since we consider that
the thickness has two possible values. The attacker’s structure
is similar to the adversary model described in Fig. 2.

In Fig. 3, the PUT for digits’ thickness inference is shown.
Note that by using the original images, Y T , a model can
classify the digits and predict their thicknesses with 97.25%
and 91.50% accuracy, respectively. As illustrated in Fig. 3,
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Fig. 3. Privacy-utility trade-off for digits’ thickness inference in models
with different privacy measures (tuned by changing α). The fitted curves are
exponential functions and are shown only for illustration purposes.

for all models, the classification accuracy is almost preserved
where the attacker’s accuracy is around 60%. Moreover, the
classification accuracy is significantly high around the first
point in the full privacy region (FPR). This result ensures
achieving the essential utility goal, which is the ability to
classify the released digits with high accuracy. The behavior
around edge cases is almost the same for all models, except
that the model with α = 0.9 reaches the FPR with lower
classification accuracy than others. The result shows the power
of α= 3 while transitioning from full utility region (FTR) to
the middle of the curve by reducing attacker’s accuracy the
most, with a slight change in digit classification. However,
in the (FTR), α = 1 suggest better classification accuracy.
Notably, the model with α = 0.9 is very sensitive to small
changes of λ in (11), which is necessary for generating points
of the PUT curve. Due to this sensitivity, finding a point in the
middle of the curve requires more effort than other α values.

Fig. 4 shows examples of the released images for selected
models. For each sub-figure, we select a point in the middle
of the PUT and the first point in the FPR. The results
corresponding to middle of the PUT illustrate that by losing
a small quantity of digit classification accuracy, the attacker’s
accuracy is dropped by about 30%. Interestingly, each model’s
distortion has occurred differently in the full privacy examples.
These results indicate no best value of α for all desired
operating points on the PUT. Therefore, α gives a degree of
freedom to find a model that works best in a desired region.

We design another attacker which has gained access to the
algorithm of [19]. We refer to it as the ”Thickness-Computing
Attacker (TCA).” Using the algorithm, TCA can label digits as
thick, normal, or thin. Since we excluded digits with normal
thickness from the experiment’s data, the attacker has three
options for labeling digits for which the algorithm predicts
normal thickness: to assign 1) random, 2) thin, or 3) thick
labels. We considered all cases for each model and reported
their maximum accuracy. Some results of TCA are compared
with the deep attacker (DA) in Table I. DA is stronger than
TCA around the middle of the PUT; however, TCA achieves

(a) α = 3

(b) α = 1

(c) α = 0.9

Fig. 4. Samples of the released images of the privacy-preserving framework
for the AMNIST dataset with α = 3, 1, and 0.9.

TABLE I
THICKNESS INFERENCE RESULTS OF DIFFERENT ATTACKERS

Model Parameters DA’s Accuracy TCA’s Accuracy Labeling
α=3, λ=0.1036 62.47% 55.82% Thin
α=3, λ=0.131 50.56% 57.10% Thin
α=1, λ=0.08 63.60% 62.15% Thin
α=1, λ=0.13 50.17% 56.65% Thin

α=0.9, λ=0.065544 61.10% 60.28% Thin
α=0.9, λ=0.065546 50.00% 50.60% Thick

better accuracy near the FPR. Interestingly, this large gap
happens for models with α = 3 and 1 when the attackers
decide to convert normal labels to thin. However, for α= 0.9,
converting to thick labels is the selected approach. Since the
gap is negligible in this case, we conclude that the model with
α= 0.9 is more robust against different attackers than others.

D. Tunable privacy measure for ECO dataset
Moving forward with ECO dataset, α= 3,1,0.9 are selected

based on the discussed reason in section IV-C. The general
framework illustrated in Fig. 1 is customized based on sec-
tion III-B. In addition, an independent uniformly distributed
(over [0, 1]) noise UT is integrated into WT beside Y T and
XT to randomize ZT . It is seen to be helpful in practical
applications where an adversarial framework’s input consists
of noise [21]. The releaser network consists of 4 LSTM layers,
each with 64 cells, and the adversary network is formed of 3
LSTM layers, each with 32 cells. The distinct attacker has the
same structure as the adversary. The hyperparameters indicated
in Algorithm 1 are set to B = 128, k = 4. As discussed in
section IV-A2, household occupancy is private information.
Thus, the corresponding attack accuracy of the FPR is 50%.
Notably, an attacker can predict household occupancy from
the actual power consumption with more than 90% accuracy.

The PUT for house occupancy inference is available in
Fig. 5a. In [5], a similar experiment is investigated where MI is
the privacy measure. Here, around FTR and FPR, all models
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Fig. 5. Privacy-utility trade-off for house occupancy inference in models with
different privacy measures. (a) without SI, (b) SI is available to the attacker.

Fig. 6. Samples of the released power consumption modified by privacy-
preserving framework for time-series datasets with α = 3, 1, and 0.9.

accomplish almost the same trade-off. However, the model
with α = 1 performs best in the middle of the PUT. Fig. 6
shows 7-day-long samples from modified power consumption
signals. In this figure, two operating points are selected for
each α. The models corresponding to the left side of Fig. 6
preserve most of the original data (NE is less than 0.26 in
the worst case), while the attacker’s accuracy is dropped by
more than 26%. In addition, different distortion patterns can
be realized on the right side of the figure for different α values.

Another experiment is designed with ECO for a situation
where the SI discussed in section IV-A2 is available to an
attacker. Fig. 5b shows the PUT for selected α values. Similar
work is conducted in [14], where MI is the privacy measure.
In [14], an attacker trained and tested with only SI achieves
an accuracy of 57.8%, concluding that the attacker is not
completely confused even by signals with large distortion. In
Fig. 5b, the model with α=1 attains the attacker’s accuracy of
57.8% on large NE, while surprisingly, the model with α=0.9
maintains the accuracy of 55.2%. In addition, The baseline for
the model with α= 3 is 56.8%. These results suggest better
performance than [14] in preserving sensitive information of
a highly distorted signal when SI is available to the attacker.

V. CONCLUSION

This research proposes a general privacy-preserving data-
sharing model that allows for tunable privacy measures, partic-
ularly leveraging α-Mutual Information. A key finding of the
research is the influential role of the α parameter, which can
be adjusted to balance privacy and utility in various scenarios.
Experimental tests, using an image dataset of handwritten
digits and a time-series sequence of power consumption mea-
surements, revealed that tuning α allows for tailored data-
sharing frameworks, with signals released per specific features
of interest. The research also considered scenarios where
attackers have access to correlated SI. The results indicated
that fine-tuning of the privacy measure should consider not just

the PUT, but also the model’s resilience against SI. Lastly, in
addition to the generic attacker of the framework, an arithmetic
attacker was considered in relation to the AMNIST dataset
used in this work. The results highlighted that certain models
(with different privacy metrics) may be more or less successful
at concealing sensitive information, depending on whether the
attacker knows private information’s pattern in the actual data.
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