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Abstract

How do humans learn language, and can the first language be learned at all? These fundamental
questions are still hotly debated. In contemporary linguistics, there are two major schools of thought
that give completely opposite answers. According to Chomsky's theory of universal grammar, language
cannot be learned because children are not exposed to sufficient data in their linguistic environment. In
contrast, usage-based models of language assume a profound relationship between language structure
and language use. In particular, contextual mental processing and mental representations are assumed
to have the cognitive capacity to capture the complexity of actual language use at all levels. The prime
example is syntax, i.e., the rules by which words are assembled into larger units such as sentences.
Typically, syntactic rules are expressed as sequences of word classes. However, it remains unclear
whether word classes are innate, as implied by universal grammar, or whether they emerge during
language acquisition, as suggested by usage-based approaches. Here, we address this issue from a
machine learning and natural language processing perspective. In particular, we trained an artificial
deep neural network on predicting the next word, provided sequences of consecutive words as input.
Subsequently, we analyzed the emerging activation patterns in the hidden layers of the neural network.
Strikingly, we find that the internal representations of nine-word input sequences cluster according
to the word class of the tenth word to be predicted as output, even though the neural network
did not receive any explicit information about syntactic rules or word classes during training. This
surprising result suggests, that also in the human brain, abstract representational categories such
as word classes may naturally emerge as a consequence of predictive coding and processing during
language acquisition.
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Introduction

The question of how humans come to language is one of the oldest scientific problems [1]. According
to the Greek historian Herodotus, already 2500 years ago the Egyptian pharaoh Psamtik sought to
discover the origin of language. Therefore, he conducted an experiment with two children which he
gave as newborn babies to a shepherd who should feed and care for them, but had the instruction not
to speak to them. Psametik hypothesized that the infants’ first word would be uttered in the root
language of all people. Consequently, as one of the children cried ’bekos’ which was the sound of the
Phrygian word for "bread”, Psamtik concluded that Phrygian was the root language of all humans
because that [2]. Obviously, the assumption behind this cruel language deprivation experiment was
that humans are born with innate words and their meanings, and that this root language is somehow
‘over-ruled’ during individual development and first language learning.

Nowadays, it is of course clear that words and meanings are not innate but rather learned during
language acquisition |3, and that there is no causal relation between the signifier (sound pattern)
and the signified (meaning) [4]. However, it is still highly debated to what extent language capacities
are innate or must be learned.

According to Chomsky’s theory of universal grammar, humans have an innate, genetically de-
termined language faculty that e.g. distinguishes between different word classes such as nouns and
verbs making it easier and faster for children to learn to speak [5H7]. In contrast, in cognitive linguis-
tics and usage-based approaches, a profound relationship between language structure and language
use is assumed [8-11]. In particular, contextual mental processing and mental representations are
assumed to have the cognitive capacity to capture the complexity of actual language use at all lev-
els [12417]. According to Diessel, grammar is a "dynamic system of emergent structures” and it
needs to be explained "how linguistic structures evolve” during language acquisition [18].

Predictive coding and processing are thought to be canonical computations of the human brain
[19-22], in particular during speech and language processing which involves the prediction of which
words come next [23]. In previous studies, we already demonstrated that efficient successor rep-
resentations to form cognitive maps of space and language can be learned by artificial neural net-
works [24}25]. In particular, we demonstrated how a neural network model can infer the underlying
word classes of a simplified artificial language just by observing sequences of words, i.e. sentences,
and without any prior knowledge about actual word classes or grammar. The emerging repre-
sentations share important properties with network-like cognitive maps, enabling e.g. navigation in
arbitrary abstract and conceptual spaces, and thereby broadly supporting domain-general cognition,
as proposed by Bellmund et al. |26].

In this follow-up study, we further address the question if abstract linguistic categories and struc-
tures can be learned from experienced language alone in a more complex and naturalistic linguistic
task, i.e. word prediction in a natural language scenario. In particular, we trained an artificial deep
neural network to predict the next word (successor) in a novel given the nine consecutive predecessor
words as input. Subsequently, we analyzed the emerging activation patterns in the hidden layers of
the neural network. Strikingly, we find that the internal representations of nine-word input sequences
cluster according to the word class of the tenth word to be predicted as output, even though the
neural network did not receive any explicit information about syntactic rules or word classes during
training. This surprising result suggests, that also in the human brain, abstract representational
categories such as word classes may naturally emerge as a consequence of predictive coding and pro-
cessing of language input. Based on these findings we hypothesize that during language acquisition
— which at least partly corresponds to learn to predict which word or utterance comes next —, word
classes spontaneously emerge as clusters of successor representations of perceived utterances. We
conclude that word classes need not to be innate to enable efficient language acquisition as suggested
by universal grammar.



Methods

Data pre processing

The German novel Gut gegen Nordwind by Daniel Glattauer ((©) Deuticke im Paul Zsolnay Verlag,
Wien 2006, published by Deuticke Verlag served as natural language text data for training and
testing our model. The complete text data consists of a total number of 40460 tokens and 6117
types. Prior to further analysis, punctuation and special characters have been removed from the
text corpus. Furthermore, repetitive words and extra white spaces have been removed, and all
numbers have been replaced by a single word (cf. table . All words are converted to lower case to
maintain uniformity, so that the same word occurring in a different case is considered as two tokens
of the same type, instead of two different types. All words have been encoded as 384-dimensional
word vectors using the word2vec embedding function from the python library spaCy [27]. Sequences
of nine consecutive word vectors served as input, while one (the tenth) or two (tenth and eleventh)
word vectors served as corresponding output. Finally, the all word vector sequences were split into
a training (chapters 1 to 7 of the novel) and a test data set (chapters 8 and 9 of the novel).

Character/Word Operation

Repititive words:RE:,AW:,Eine,Zwei,..,Stunden,Sekunden,

Stunden...,spater,Am néachsten,Kein Betreff,Betreff Remove completely

Punctuation and other characters: .,’+?.%.&,’,,! Remove completely

Numbers: 18,1,500,... Replace with 'nummer’

Extra whitespaces Replace with single
space

E-mail Replace with ’email’

Table 1: Data cleaning. Words, characters and their replacements during data cleaning.

Neural network architecture and training procedure

For the task at hand, i.e. to predict the tenth word (or the tenth and the eleventh word), given
a prior sequence of nine words occurring in the corpus, recurrent neural networks (RNNs) are
perfectly suited. Here, we implemented a neural network consisting of four bi-directional LSTM
(long short-term memories) layers (with 128, 128, 64, and 64 neurons) followed by a flatten layer,
and a dense output layer (384 neurons). The input consisted of sequences of nine 384-dimensional
word embedding vectors generated as described above. The expected output is a single (or a sequence
of two) 384-dimensional word embedding vectors. Weights were initialized using the Glorot uniform
initialization, which is Keras’s default initializer. As optimizer, we used Adam with a learning rate
of 0.001 and as loss function we used mean-squared error. Training was performed for 100 epochs.

Word classes

Word classes were analysed by applying part-of-speech (POS) tagging [?,7,7] as implemented in
the python library spaCy [27]. The used POS tags comprised the following 13 default word classes:
'NUM’, "VERB’, ADJ’, ’X’, "PART’, 'NOUN’, 'SCONJ’’ADP’, 'DET’, 'PRON’, ‘CONJ’, 'AUX’
and ’ADV’. Their exact definitions can be found in [28]. Note that, during training the neural
networks, we did not provide any information about word classes as input.

Multi-dimensional scaling

A frequently used method to generate low-dimensional embeddings of high-dimensional data is
t-distributed stochastic neighbor embedding (t-SNE) [29]. However, in t-SNE the resulting low-



dimensional projections can be highly dependent on the detailed parameter settings [30], sensitive
to noise, and may not preserve, but rather often scramble the global structure in data [31,32]. In
contrast to that, multi-Dimensional-Scaling (MDS) [33H36] is an efficient embedding technique to
visualize high-dimensional point clouds by projecting them onto a 2-dimensional plane. Furthermore,
MDS has the decisive advantage that it is parameter-free and all mutual distances of the points are
preserved, thereby conserving both the global and local structure of the underlying data.

When interpreting patterns as points in high-dimensional space and dissimilarities between
patterns as distances between corresponding points, MDS is an elegant method to visualize high-
dimensional data. By color-coding each projected data point of a data set according to its label,
the representation of the data can be visualized as a set of point clusters. For instance, MDS has
already been applied to visualize for instance word class distributions of different linguistic cor-
pora [37], hidden layer representations (embeddings) of artificial neural networks [38.39], structure
and dynamics of highly recurrent neural networks [40-43], or brain activity patterns assessed during
e.g. pure tone or speech perception [37,/44], or even during sleep [45-48]. In all these cases the
apparent compactness and mutual overlap of the point clusters permits a qualitative assessment of
how well the different classes separate.

Generalized Discrimination Value (GDV)

We used the GDV to calculate cluster separability as published and explained in detail in [38§].
Briefly, we consider N points xp=1.N = (Zn,1," " y Ty, D), distributed within D-dimensional space.
A label [,, assigns each point to one of L distinct classes Cj—1. 1. In order to become invariant against
scaling and translation, each dimension is separately z-scored and, for later convenience, multiplied
with %:
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Here, N}, is the number of points in class k, and si is the i'" point of class k. The quantity d(a,b)
is the euclidean distance between a and b. Finally, the Generalized Discrimination Value (GDV) is
calculated from the mean intra-class and inter-class distances as fOHOWS'

GDV = —— Z - L 5 Z Z d(Cy, C, (4)
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whereas the factor % is introduced for dimensionality invariance of the GDV with D as the number
of dimensions.

Note that the GDV is invariant with respect to a global scaling or shifting of the data (due to the z-
scoring), and also invariant with respect to a permutation of the components in the N-dimensional
data vectors (because the euclidean distance measure has this symmetry). The GDV is zero for
completely overlapping, non-separated clusters, and it becomes more negative as the separation
increases. A GDV of -1 signifies already a very strong separation.



Code Implementation

The models were coded in Python. The neural networks were designed using the Keras [49] and
Keras-RL [50] libraries. Mathematical operations were performed with numpy [51] and scikit-learn
[52] libraries. Visualizations were realised with matplotlib [53] and networkX [54]. For natural
language processing we used SpaCy [27].

Results

Next word prediction

We trained a neural network on next word prediction using sequences of nine consecutive word
vectors as input. The trained network was tested with sequences of nine words not used for training.
The resulting neural activation of each layer was read out and the corresponding activation vectors
were projected onto a 2-dimensional plane using MDS. All projected points were then color coded
according to the word class of the subsequent word of the corresponding input sequence. Word classes
were assessed after training using POS tagging and did not serve as input during training. While
layer 1 shows a random distribution of the data points [77], we find a remarkably strong clustering
according to world classes in the last layer of the neural network [77} This is also confirmed by the
corresponding GDV curve across the layers [77] This means that the neural network organizes its
internal representations of input word sequences according to the word class of the next word to be
predicted.
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Figure 1: Layer 1 results of neural network testing and projection onto a 2-dimensional plane using MDS,
with color coding according to subsequent word class. The points are randomly distributed.
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Figure 2: Last layer results of neural network testing and projection onto a 2-dimensional plane using
MDS, with color coding according to subsequent word class. The final layer shows strong clustering by
word class, indicating that the neural network organizes internal representations based on the predicted

subsequent word's class.
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Figure 3: GDV curve across layers of the neural network. The decline of the GDV indicates that the
neural network has learned to cluster internal representations according to the subsequent word's class
with increasingly strong clustering from input to output layer.

Discussion

The results of our study provide evidence that abstract linguistic categories, such as word classes,
can emerge spontaneously in neural representations of linguistic input. This finding challenges the



notion that the ability to recognize and categorize words by their grammatical function is innate and
hardwired in the human brain, as proposed by Chomsky’s theory of universal grammar. Our results
suggest that language acquisition involves, at least in part, the learning of predictive structures
and categories based on statistical regularities in the input, rather than relying solely on innate
linguistic knowledge. This is consistent with the view that language is a complex adaptive system
shaped by both biological and environmental factors. It is interesting to note that the clustering
of input sequences by word class is evident only in the last layer of the neural network, suggesting
that the network may gradually learn and refine more abstract and complex features of language
as information flows through its layers. This finding is consistent with the hierarchical nature
of language processing, in which higher-level representations build on lower-level representations.
One potential application of our findings is in natural language processing, where understanding
the organization of neural representations of language input can help improve language modeling,
machine translation, and other related tasks. In addition, our study provides a starting point for
further investigations into the neural mechanisms underlying language acquisition and processing. In
conclusion, our study provides compelling evidence that neural networks can spontaneously learn to
organize their internal representations of language input according to abstract linguistic categories
such as word classes. Our results support the view that language acquisition is a complex and
dynamic process that relies on both innate mechanisms and statistical learning from environmental
input.
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