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Abstract—Protein folding is the intricate process by which a
linear sequence of amino acids self-assembles into a unique three-
dimensional structure. Protein folding kinetics is the study of
pathways and time-dependent mechanisms a protein undergoes
when it folds. Understanding protein kinetics is essential as a
protein needs to fold correctly for it to perform its biological
functions optimally, and a misfolded protein can sometimes be
contorted into shapes that are not ideal for a cellular environment
giving rise to many degenerative, neuro-degenerative disorders
and amyloid diseases. Monitoring at-risk individuals and de-
tecting protein discrepancies in a protein’s folding kinetics at
the early stages could majorly result in public health benefits,
as preventive measures can be taken. This research proposes
an efficient pipeline for predicting protein folding kinetics with
high accuracy and low memory footprint. The deployed machine
learning (ML) model outperformed the state-of-the-art ML
models by 4.8% in terms of accuracy while consuming 327x
lesser memory and being 7.3% faster.

Index Terms—Logarithmic folding rate, Machine learning
algorithms, IoT, Bio-computing.

I. INTRODUCTION

Even though many debilitating diseases such as Alzheimer’s
disease (AD) and Parkinson’s disease (PD) have catastrophic
consequences for our human bodies, there is still no sig-
nificant cure or development in early detection methods for
these diseases. This significantly underscores the urgency of
understanding the underlying principles behind these diseases.
The people who suffer from AD not only have physical
symptoms but are also affected emotionally. The inability
to think, communicate and perform various tasks daily is
often experienced by people suffering from AD [1]. On the
other hand, PD impacts one’s movements and causes anxiety
and depression [2]. Prior research [3] has nailed down that
several disruptions in the protein folding process can lead
to misfolded proteins, which form insoluble long linear or
fibrillar aggregates in several body parts. This process is
identified to be the primary cause of AD and PD [4].

Protein folding kinetics (PFK) becomes vital for studying
protein dynamics and behavior. The PFK’s magnitude reflects
a protein’s propensity to undergo these transitions between
folded and unfolded states or the association and dissociation
of protein complexes [5]. Various factors influence PFK, such
as PH, temperature, electric and magnetic fields, etc. PFK can

be determined using spectroscopy, Nuclear Magnetic Reso-
nance (NMR), and fluorescence. However, these techniques of-
ten require specialized equipment and expertise. NMR experi-
ments, for example, demand access to high-field spectrometers
and advanced pulse sequences, which are not easily affordable.
Furthermore, spectroscopic methods, including UV-Vis and
infrared spectroscopy, have limitations when capturing fast
kinetic events due to slower data acquisition rates. Overcom-
ing these limitations requires precise optimization of various
parameters, development of specialized protocols, and inte-
gration of complementary techniques. Several advancements
in instrumentation, data acquisition, and analysis methods are
also intended to address these limitations and improve the
sensitivity and precision of protein kinetic studies utilizing
spectroscopy, NMR, and fluorescence techniques.

PFK predictions have been done prior to this research
with machine learning and deep learning models. However,
these approaches have encountered various difficulties due to
the protein structure’s intricate and irregular nature. These
techniques have shown great potential in predicting, but their
effectiveness is often inhibited by their inability to capture the
fundamental nature of the protein structure between various
parameters, thus being inaccurate [6].

II. RELATED WORK

In the field of computational biology, numerous methods
have been developed to predict protein folding kinetics (PFK).
M. Michael Gromiha et al. [7] developed a machine learning
model to predict the folding rates of proteins from their amino
acid sequence. Their proposed method achieved an overall
correlation of 98% with an inference time of 8.44 seconds
per protein for 77 two and three-state proteins from the
Protein Data Bank (PDB). Chen-Chen Li et al. [8] proposed
a fold-specific feature extraction method combined with a
convolutional neural network. Their implementation produced
an accuracy of 77% overall. Balachandran Manavalan et al. [9]
constructed an ensemble of regression and classifier models
to predict folding kinetics and fold type. Their constructed
framework produced an accuracy of 84.3%. David De Sancho
et al. [10] proposed an algorithmic approach called PREFUR
to predict PFK from the size and structural class of the protein.
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Although their method is unique, the experimental results
only produced an accuracy of 70%. Jianxiu Guo et al. [11]
developed an artificial neural network trained on 90 proteins.
The presented implementation showed a correlation of 80%
and a standard error rate of 2.65. Although considerable
research exists in PFK prediction, the previously proposed and
implemented approaches are out-modded, highly inaccurate,
and slow.
Saraswathy Nithiyanandham et al. [12] proposed a framework
built on standard shallow machine learning models trained on
PFDB to predict PFK. They explore several machine learning
algorithms throughout their work and focus heavily on estab-
lishing relationships between the folding kinetics and other
structural parameters. While their approach is commendable,
they fail to implement an accurate predictive regressor by only
achieving an RMSE of 3.030.

This research proposes a flexible, optimized inference
pipeline for protein folding kinetics prediction. The pipeline
uses a lightweight ML regressor (bonsai) as the backbone
trained on the most optimal feature subset derived from the
base dataset, which consumes less than 0.7KB and has an
incredibly low inference time (ms). In addition to optimizing
the model for achieving the least inference time for embedded
devices, feedback optimization techniques were incorporated
to improve the performance iteratively while accommodating
device limitations. The pipeline archives profound accuracy
compared to other state-of-the-art (SoA) systems.

III. ARCHITECTURE

The proposed pipeline is an end-to-end framework that takes
in protein-specific parameters such as type of fold, amino acid
sequence, torsion angles, etc, as its input and produces PFK
predictions. The data is first fed into the pre-processing module
to scale, clean, and normalize the data. The processed data
is then pipelined to a tree-based optimized regression model.
The need for a tree-based algorithm was ascertained due to its
ability to form complex relationships among the parameters.
The architecture of the end-to-end workflow is depicted in
Fig 1. An in-depth description of the iterative stages of the
pipeline is outlined in the upcoming sections.

A. Data & Preprocessing

Protein folding database (PFDB) [13] was considered for
protein folding kinetics (PFK) prediction. PFDB consists of
experimental observations for 2S (two adjacent strands of
a beta-sheet) and N2S (N adjacent strands of a beta-sheet)
proteins. Structural parameters such as amino acid sequence,
type of chaining, torsion angles, Ramachandran outliers, etc.,
were manually derived from RCSB PDB [14] for each protein.
These structural parameters were considered because they
significantly influence the type and nature of folding [15].
Other individually reported observations of proteins were also
collected and used for testing the regressor to test its real-time
capabilities.

The data is first passed to the data pre-processing mod-
ule, which consists of an Outlier Remover (α), Temperature

Standardization (β), Feature Extractor (γ), and Encoder (δ).
As the data consists of various features, α ensures the re-
moval of outliers using the percentile-based outlier detection
method, specifically the interquartile range (IQR) approach.
This method establishes lower and upper thresholds based on
the first quartile (Q1) and third quartile (Q3) values, respec-
tively. The lower threshold is calculated using the formula
Q1− 1.5× IQR, while the upper threshold is determined as
Q3 + 1.5× IQR. Data points falling above the upper thresh-
old or below the lower threshold are classified as outliers,
representing values that significantly deviate from the central
distribution of the data.

The Temperature Standardization (β) step is applied for the
temperature feature. β standardizes the temperature value to
an optimal scale. Temperature standardization is critical when
dealing with protein folding data collected at various temper-
atures. β collects the rate constants of folding and unfolding
(ln(kf ) and ln(ku), respectively) at a reference temperature of
25°C using the Eyring-Kramers equation [16] which facilitates
precise assessments of folding kinetics and enabling more
robust conclusions in protein folding research. This correction
adjusts the dataset to a standardized temperature, facilitating
more accurate and reliable comparisons.

For the numerical features (Lpbd, L, pH, and temperature),
β applies Z-score normalization as the feature extraction tech-
nique. This process subtracts the mean and divides it by the
standard deviation across each feature. Z-score normalization
ensures that all numerical features are brought to a stan-
dardized distribution by eliminating differences in magnitude
between them. Additionally, this enables more efficient and
unbiased analysis.

TABLE I: Feature Set

Feature Description

Psn Short name of the protein

Class Class of the protein (α/β)

Fold Type of fold classified by SCOP

Lpdb Number of continuous folded residues

L Total number of residues in the protein

pH pH level the protein was recorded

Temp Tempterature the protein is recorded

Ftype Fold type (N2s / 2S)

ln(ku) Unfolding rate of the protein

β T Tanford β value

For the categorical features, γ ensures that all categorical data
points are encoded numerically. As mentioned earlier, the M-
estimate encoder [17] is used for this purpose. The encoder
calculates the probabilities of each column based on their
frequency in the dataset. With a m = 20 value, the encoder
effectively down-weights outliers and reduces their impact on



Fig. 1: Pipeline Architecture

the estimation process.

∆ = [α, β, γ, δ] (1)

B. Optimized Regression Model

The machine learning algorithm utilized in this study is
Bonsai [18], which employs a shallow tree-based approach to
process data continuously and incrementally, tailored explic-
itly for constrained paucity systems. Data optimization and
memory utilization is performed by learning the input data at
a lower dimension. Bonsai’s streaming implementation allows
it to support devices with limited RAM, even those incapable
of storing a single vector.

These trees incorporate enhanced nodes, enabling internal
and leaf nodes to make non-linear predictions. Bonsai achieves
a remarkable ability to capture intricate non-linear decision
boundaries by combining the predictions made by individual
nodes along the path followed by a data point. In addition to
enabling parameter sharing along paths, path-based prediction
reduces the size of the overall model, thus increasing its
efficiency. It optimizes memory allocation and maximizes
prediction accuracy by learning all nodes jointly rather than
node by node in a greedy manner. Bonsai offers an effective
solution for machine learning tasks through its combination
of sparse projection, streaming learning, enhanced nodes, and
joint learning. This algorithm was specifically chosen for its
low memory footprint, which would further help this pipeline
to be integrated onto other fold-specific frameworks.

C. Post Processing & Aggregate Feedback

Feedback-driven Optimization Engine (H) ensured iterative
improvement of the pipeline over time. The Performance
Analyzer η1 assessed the quality of predictions, which consists
of various evaluation metrics as discussed in Section III-F.
Sensitivity Analyzer η2 facilitated a thorough observation
of the impact of variations in input parameters and model
architectures on the predictions, leveraging the results obtained
from η1, which compared the predictions against known
ground truth values. Additionally, the testing data was split
into different batches, and the accuracy was measured for each
batch, aiding in the identification of trends and patterns in

D. Feature Importance

Fig. 2: PFDB Feature Importance

performance. With the help of η2, various hyper-parameters
were optimized to maximize the model’s performance. H is
essentially needed for bonsai to boost its performance as
the model primarily prioritizes minimizing the computational
resources. Moreover, the iterative optimization process driven
by H enabled continuous refinement and adaptation of the
pipeline, leading to enhanced accuracy and reliability.

H = [η1, η2] (2)

As the number of features directly influences the effi-
ciency of the model, finding the optimal number of features
is essential to maximize the performance of the regressor
while downsizing the number of feature samples and memory
footprint. This would also reduce the computational cost for
∆ and the overall pipeline.
Pearson’s correlation coefficient [19] was used to determine
the base relationship between the target variable (ln(kf)) and
other feature sets. The correlation value (R) ranges from -
1 to +1, where -1 (negative correlation) and +1 (positive
correlation) signify strong correlation, while values closer to
0 signify weak or no correlation. R was computed, as shown
in Equation 5, where Xi, Yi are individual datapoints and
Xm, Ym is the mean of the X and Y dataset respectively, the
absolute was taken to reside in the range of 0 to 1 for more
uncomplicated depiction and understanding of the magnitude
of correlation vectors as shown in Fig 4.

R =

∣∣∣∣∣
∑

[(Xi −Xm)(Yi − Ym)]√
[
∑

(Xi −Xm)2 ∗
∑

(Yi − Ym)2]

∣∣∣∣∣ (3)

E. Training

PFDB served as the primary dataset for training the regres-
sor model (bonsai). PFDB contains a diverse collection of PFK
information on both 2S and N2S proteins. A comprehensive
train test strategy was implemented to assess the adaptability
and generalizability of the trained model. The dataset was
split into train and test as this approach ensured that the
models were evaluated on unseen data, allowing for a robust
assessment of their predictive capabilities. To optimize the



model, MAE was iteratively reduced by tuning the hyperpa-
rameters. The process of testing the mini-batches and updating
the parameters occurs concurrently by multi-threading. This
approach reduced the time to compute results and significantly
decreased MAE.

The regressor was trained on different mini-batches, each
comprising a unique feature subset. The training was con-
ducted on Fn = {n = 2, 4, 5, 6, 7, 8, 9}, where n represents
the feature subset derived from Pearson’s correlation coef-
ficient analysis. Specifically, the batches DAA, DBB, DAB,
and DBA were trained on the prominent features FA

best, F
B
best,

FA
best ∪ FB

best, and FA
best ∩ FB

best, respectively. The features are
chosen from Fn as formulated in Equation 4 and 5.

FA
n = FA ∪ {f : fi | fi /∈ FA} (4)

FB
n = FB ∪ {f : fi | fi /∈ FB} (5)

TABLE II: Train Test stratergy

Testing PFDB(A) PFDB(B)

PFDB(A)

DAA

Training PFDB(A)

Testing PFBD(A)

DBA

Training PFDB(B)

Testing PFBD(A)

PFDB(B)

DAB

Training PFDB(A)

Testing PFBD(B)

DBB

Training PFDB(B)

Testing PFBD(A)

F. Metrics
The metrics actively used to evaluate the bonsai throughout

this work are formulated below:

MAE =
1

n

n∑
i=1

|yi − ŷi| (6)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (7)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(8)

yi = Actual kinetic value of the protein
ŷi = Predicted kinetic value of the protein
ȳ = Mean of the actual kinetic values, for i = 1, 2, . . . , n.
Other evaluation metrics actively used in this work are in-
ference time and model size. These metrics enable informed
decisions regarding feature subset selection and model opti-
mization.

IV. RESULTS AND ANALYSIS

A. Bonsai results and analysis
As discussed above, an optimal feature subset heavily

influences the performance of the bonsai model. The basis
behind choosing an optimal feature subset is based on the
performance, memory footprint, and inference time while
availing the feature subsets. The detailed reasons for this are
discussed in the upcoming sections.

Fig. 3: Actual vs predicted results for N2S protein kinetics

Fig. 4: Actual vs predicted results for 2S protein kinetics

1) Best performance model
The best scores for DAA were ascertained based on MSE,

MAE, and R2. The scores were 0.9738, 0.4518, and 0.927
when FA

4 was employed. Likewise, for DBB , the best scores
were attained by employing FB

9 , resulting in 0.8792, 0.3179,
and 0.934. For DAB , FA

4 ∪ FB
9 achieved best scores, 1.1958,

0.8198, and 0.901. Similarly, for DBA, FA
4 ∩ FB

9 resulted in
best scores, 1.1692, 0.8196, and 0.916. The better performance
in FA

4 ∩ FB
9 compared to FA

4 ∪ FB
9 is due to the fact that

FA
4 ∩ FB

9 uses fewer features than FA
4 ∪ FB

9 . In a nutshell,
if performance is of utmost importance, FA

4 ∪ FB
9 = FB

9

represents the most favorable feature subset.
2) Best balance between model size and performance
The usual trend of better performance was linear with

the number of features until it reached a point. This goes
the same for model size and inference time (IFT) as well.
FA
2 feature subset is the most compact and computes in

less time comparatively, but, when taking performance into
account, other feature subsets deliver better performance. If
a feature subset that strikes a balance between model size
and performance had to be selected, FA

6 or FB
6 would be

the best pick. The resulting increase in model size when
compared to FA

2 is due to the increase in the number of
features in FB

6 . Furthermore, bonsai was 4.8% more accurate,
327× more compact in terms of model size, and 7.3× faster
when compared to prior SoA implementation [12].



TABLE III: Results of models trained on all feature combinations

Data Feature Subsets MSE MAE R2 Model Size (KB) Bonsai IFT (ms) Pipeline IFT (ms)

DAA FA
2 1.4874 0.9573 0.889 0.486 5.2 22.3

FA
4 0.9738 0.4518 0.927 0.608 5.2 24.2

FA
5 1.0874 0.7283 0.912 0.528 5.2 22.9

FA
6 1.0247 0.6598 0.919 0.531 5.2 23.4

FA
8 1.1359 0.7653 0.903 0.496 5.2 22.5

FA
9 1.0475 0.6904 0.914 0.549 5.2 23.7

DBB FB
2 1.1076 0.7239 0.908 0.521 5.2 22.6

FB
4 1.0421 0.7034 0.917 0.563 5.2 24.1

FB
5 1.4579 0.9357 0.896 0.506 5.2 22.1

FB
6 1.1185 0.7159 0.904 0.542 5.2 22.9

FB
8 1.0896 0.7693 0.911 0.562 5.2 23.9

FB
9 0.8792 0.3179 0.934 0.627 5.2 24.7

DAB FA
4 ∩ FB

9 1.4298 0.9972 0.888 0.598 5.2 24.3

FA
4 ∪ FB

9 1.1958 0.8198 0.901 0.633 5.2 24.5

DBA FA
4 ∩ FB

9 1.1692 0.8196 0.916 0.615 5.2 24.4

FA
4 ∪ FB

9 1.2847 0.9271 0.895 0.592 5.2 24.2

B. Standard ML models

Several regressor models, such as Decision Tree (DT), Ran-
dom Forest (RF), XGBoost (XGB), and LightGBM (LGBM),
were trained in the same environment as the bonsai model
to compare and contrast the difference in performance among
them. Since bonsai employs tree-based regression, five tree-
based regressors were chosen for comparison. These models
were trained on the most prominent feature set FB

9 , as bonsai
is designed to minimize computational resources, taking the
best balance model into account would not be an appropriate
comparison. Bonsai’s ability to achieve such high-performance
gains while maintaining its compactness and accuracy sets
it apart. The best regressor model (LGBM), in terms of
performance, was evidently outperformed by the bonsai model,
which consumed only 9% of the memory consumed by LGBM
while being 6% more accurate when evaluated using R2 score.
Bonsai was also 156x faster than DT, the model with the
lowest inference time (8.736 sec).

C. Pipeline Analysis

Even though the bonsai model’s performance and memory
footprint is carefully analyzed and reported, analysis of the
pipeline is also fairly significant. As depicted in Fig 5, ∆
consumes the most time (71%), out of which normalization
and standardization (β) take up to 37% and feature extractor
consumes 34% individually. The regressor consumes 21% of
the pipeline inference time, while H takes up 4%-9% of infer-
ence time, which is comparatively insignificant. This pipeline
was constructed primarily to consume minimal computational

37%

34%

21%

8%

Normalization and
Standardization
Feature Extraction
Regressor
Post-processor

Fig. 5: Usage of computational resources

resources while being highly accurate and fast (24.7 ms). This
makes the pipeline highly compatible for future integration
onto fold-specific prediction frameworks and systems.

The above chart was plotted for the best performing model
which was trained on FB

9 . Between the models trained on FB
9

and FA
8 , FB

9 was chosen so as to understand and illustrate
the computational needs of the best regressor. FA

8 was not
considered as it does not exhibit the best performance but
only the best balance between the considered factors, model
size, performance, and inference time.



V. CONCLUSION

This research presented a novel optimized pipeline for accu-
rate protein folding kinetics prediction using protein-specific
parameters as its input. The proposed pipeline significantly
outperformed the standard ML models in terms of accuracy,
memory footprint, and inference time. The optimized pipeline
also showcases great adaptability and predictive capabilities
when compared with SoA frameworks. The implemented
model achieved an MSE of 0.8792, MAE of 0.3179, and a R2

score of 0.934 in an inference time of 5.2ms while consuming
396x lesser memory than other SoA systems. The implemented
pipeline can be integrated into future protein folding prediction
systems for accurate and fast PFK prediction, as it facilitates
PFK prediction while reducing computational resources and
latency.
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