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ABSTRACT

Churn, defined as the phenomenon of customers discontinuing their relationship with a business,
poses significant economic implications for a variety of Business-to-Customer settings. Success of
most system to user actions like promotional discounts, retention campaigns, communications &
recommendations often depends on accurately predicting potential churners as the first goal. This
is even more important for fast-moving and transaction heavy domains like fantasy sports, where
even regular spending patterns are driven by factors completely out of control ( e.g. high value
international sports events affecting smaller parallel events via unexpected secondary and tertiary
interactions, user’s win/loss in a given contest etc ). Therefore, features that represent transaction
history and interaction of a given user with product are good indicators to predict churn, but require
deep domain understanding and extensive feature engineering. Feature creation for churn prediction
systems also cause large time and resource constraints in production environment where inference
pipelines take > 70% of total time for feature engineering at the scale of ~ 108 users. This paper
presents a comprehensive study focused on predicting customer churn using historical data. Through
these analyses, our objective is to develop a model that predicts the likelihood of customer churn, thus
enabling businesses to better understand attrition patterns and subsequently devise effective customer
retention strategies. We formulate churn prediction as multivariate time series classification and
show that predicting churn with user behavior is a powerful method for noisy Business-to-Customer
settings. We show that the approach reduces need for extensive feature engineering and outperforms
other classical methods prevalent for similar tasks. We present results from our experiments and show
that our Transformer based models using limited features, improve upon traditional churn prediction
methods.

Keywords churn, neural networks, transformers, time series, fantasy sports, machine-learning systems

1 Introduction

The digital revolution has dramatically changed the landscape of sports, and in particular, the growth of fantasy sports
has been significant. As of 2023, millions of people participate in online fantasy sports games worldwide, highlighting
its transformation from a niche hobby into a mainstream form of entertainment. However, amidst this growing market,
retaining customers remains a challenging task, rendering the need to understand and predict customer churn paramount.
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Customer churn, defined as the scenario when a customer stops doing business or ends the relationship with a company,
represents a considerable risk and cost to any business, especially in non-subscription-based industries like fantasy
sports. In any direct Business-to-Customer setting, acquiring new users is typically much more expensive than retaining
existing users. High churn rates not only result in lost revenue but also increase the acquisition cost for new customers.
In the fiercely competitive fantasy sports industry, where customer loyalty is frequently transient, the ability to predict
and proactively address churn is crucial. Retaining existing users requires the ability to know in advance which users
are likely to stay and which users are likely to churn out of the platform. With increasing data volumes across multiple
touch points and progress of machine learning algorithms in recent years to learn from large datasets, user churn
prediction is one of the most direct application areas.

Churn prediction has emerged as a critical branch of data analysis in many industries, employing statistical modeling,
machine learning, and Al techniques to identify the likelihood of customer attrition. This study aims to extend the
application of these methods to the fantasy sports industry. By leveraging historical customer data, we seek to create a
model that can predict customer churn. This predictive model could offer valuable insights to companies seeking to
enhance their customer retention strategies and foster long-term loyalty.

At Dream11, classical ML models for churn prediction are already used at the scale of 108 users for short future
horizon scenarios. The focus now is to not only improve their performance further, but also increase prediction time
horizon and reduce complexity of computation required for data pipelines. Some of the classical ML techniques lose
out on rich information present in the data by ignoring sequential or contextual information. Modern state-of-the-art
techniques in the domain of Natural Language Processing or Computer Vision have shown strong performance in their
respective domains since they are backed by automated feature extraction stems which learn how to extract complex
features from underlying data given a particular target outcome.

This paper will detail the development and testing of a churn prediction model for the fantasy sports industry. Here, we
show that the current state of the art deep-learning techniques, with some architectural modifications, can be directly
applied for churn prediction. The goal is to provide a valuable tool for industry stakeholders to mitigate churn, optimize
their customer retention strategies, and ultimately, sustain the growth and profitability of their businesses in the highly
competitive landscape of fantasy sports.

2 Related Work

The problem of predicting customer churn is a well-studied area in data-science with many different approaches
proposed in the literature. These approaches span various industries, from telecommunications and financial services to
e-commerce and online gaming.

Traditional (or classical) machine learning techniques like the Support Vector Machines (SVM) Kim et al.| [2005],
Zhao et al.| [2005]], [Vafeiadis et al.|[2015], |Shaaban et al.| [2012]], Logistic Regression ( LR ) De Caigny et al.|[2018]],
Jain et al.| [2020]], Decision Trees ( DT ) |De Caigny et al.| [2018]], Hur and Lim| [2005]] or shallow Artificial Neural
Networks (ANN)s have been successful in formulating churn prediction as classification |Ahn et al.|[2020]]. In Kumar
and Chandrakalal[2017]], the authors used a combination of the support vector machine (SVM) and adaptive boosting
(AdaBoost) to classify users with high churn probability. Logistic Regression and Decision Trees are two widely used
algorithms for churn prediction, due to their highly interpretability and ease of training. In[De Caigny et al.| [2018]], the
authors used Logistic Regression and Decision Trees to create a hybrid stacked model and the stacked model shows
improved performance compared to individual building block models (LR and DT).

Ensemble algorithms improve upon the performance of constituent learning algorithms. Ensemble techniques combine
the prediction outputs of various individual algorithms to provide improved and robust predictions Dong et al.|[2020].
Ensemble algorithms like Bagging|Hu|[2005] and Boosting Jinbo et al.|[2007] have widely been used in churn prediction
tasks. Bagging techniques, like the Random Forest classifier Kumar et al.| [2008]], [Pamina et al.|[2019], [Ullah et al.
[2019] or its improved variants |Xie et al.| [2009]] have been successful in churn classification problems. Amongst
boosting based algorithms, the XGBoost |Pamina et al.| [2019], Tang et al.| [2020], |Celik and Osmanoglu|[2019] is very
successful in this domain.

The literature on the application of deep learning methods for customer churn prediction has traditionally been relatively
scarce. However, there has been a recent surge in this research area, indicating a growing recognition of the potential
of deep learning in understanding churn behavior. Deep learning models work as powerful feature extractors, that
automatically extract highly non-linear features from datasets. This minimizes the need for manual feature engineering.
Domingos et al. Domingos et al.[[2021] applied a Multilayer Perceptron (MLP) and a Deep Neural Network (DNN) on
public customer churn data set of a fictitious bank. Cenggoro et al. (Cenggoro et al.|[2021]] used deep-learning methods
for creating embedding vectors which were highly discriminative between potential churning and loyal users. For this
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task the authors used a publicly available telecommunications dataset of 3333 customers. Their best model achieved
a F1 score of 81.16%. Panjasuchat and Limpiyakorn (2020) Panjasuchat and Limpiyakorn|[2020] for the first time
introduced reinforcement learning for predicting churn. The authors used a Deep-Q Network (DQN) to train on a public
telecommunication dataset of 100K rows and 99 attributes. To train the DQN agent, the authors used the features
vectors as the states and the class labels (churn / no-churn) as the actions. The authors compared their model with other
classical-ML models (XGBoost, Random Forest, kKNN) and showed that the DQN model was more robust compared
with other machine learning models wrt data pattern changes. Cao et al. [Cao et al.|[2019] used a Stacked Autoencoder
Network (SAE) to extract salient churn-related features from user interaction data. Subsequently, they employed a
logistic regression-based classification head for churn classification on the extracted features. In their subscription
based service, the authors defined churn as the successive three months of non-subscription window.

In Wangperawong et al.|[2016] , authors represented user interaction data as images and applied Convolutional Neural
Networks (CNNSs) to predict churn labels based on historical user behavior. The authors evaluated two distinct CNN
architectures—DL1 and DL2—which achieved holdout AUC scores of 0.706 and 0.743, respectively. This approach
shows a fusion of computer-vision techniques with churn analysis. Furthermore, |[Fujo et al.|[2022]] Fujo et al. undertook
an extensive examination of churn prediction within the telecommunication sector. Leveraging a Deep Learning (DL)
model on the IBM-Watson public datasets (IBM Telco & Cell2Cell), they conducted a comprehensive comparative
analysis against classical Machine Learning (ML) models. For the IMB Telco dataset, their DL. model achieved a
10-fold cross-validation AUC of 86.57% and a holdout set AUC of 88.11%. Whereas for the Cell2Cell dataset, the
numbers were 73.90% and 79.38%. These results were a significant improvement over the classical-ML models applied
on the same dataset. This underscores the efficacy of Deep-Learning techniques in enhancing churn prediction accuracy,
highlighting its potential in churn prediction studies. In the paper by Umayaparvath et al. Umayaparvathi and Iyakutti
[2017], the authors developed three deep neural network architectures to predict churn on two public datasets, Cell2Cell
& CrowdAnalytix. Performance of their deep-learning based models was as good as traditional classification models.

3 Formal Problem Formulation

In our study, we aim to predict user churn in a non-subscription based fantasy sports platform. Leveraging the past
thirty days of user data, we attempt to predict the churn probabilities for four subsequent weeks. Given a sequence of

user activities over the past 30 days, represented as X; = [ ﬁ_go, ﬁ_gg, e ﬁ_l} , our objective is to predict churn

probabilities y1, Y2, y3, Y4 for the next four weeks, where y; = 1 represents churn and y; = 0 represents no churn in the
th
1" week.

The aim is to train a model y = ¢g(0; =) on a training set of user activity sequences and their corresponding churn labels
so that the model minimizes the difference between the predicted churn probabilities and the actual churn labels. This
can be represented as:

N 4
min Zl Zl(yz‘j — g;(0; X4))?
=1 j=

Where, N is the number of users in the training set, y;; is the actual churn label for the it" user in the j*" week and

g5 (6; X;) is the predicted churn probability for the ith user in the ;" week.

3.1 Defining Churn

Defining the target variable — or churn — is a critical step, and the definition can vary depending on the user’s category
or behavior pattern. Here, we are dealing with a situation where churn does not have a uniform definition across all
users. Churn in non-contractual systems is defined using consecutive periods of user inactivity. Selection of the exact
period depends on the business needs and how user transaction data is distributed. In the absence of explicit indications
like subscription cancellations, setting clear and measurable criteria for defining churn is crucial in a non-subscription
model. In the context of our study, we have specifically defined churn within the non-subscription based fantasy sports
industry as a week of inactivity on our platform. This time frame was chosen as it represents a significant period
of inactivity that could indicate a user’s decreased engagement or intention to discontinue their involvement in the
platform.

This definition of churn — a full week of inactivity — serves as the target variable that our predictive model, built on
Transformers and Convolutional Neural Networks, will aim to predict. It’s crucial to note that this definition might not
capture all forms of churn, such as users who significantly reduce, but do not entirely cease their activity. However, it
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provides a practical and measurable churn definition that can be universally applied across the user base for consistent
model training and evaluation.

3.2 Reformulation as a Classification Problem :

In churn prediction, the problem can be framed as a classification task. We aim to predict the churn labels for the next
four weeks based on the past 30 days of user vector features. Here, each input and output pair (X, Y") is represented by

([f_t‘*BOa f:7297 LRI} ﬁfl]a [yweekla Yweek2 » Yweek3 s yweek4])

Here, the input features consist of the past 30 days’ worth of user vector features f and the output vectors represents
the output churn labels y for the four future weeks.

Traditionally, churn prediction tasks require extensive feature engineering to extract meaningful representations from
raw data. However, deep neural networks have a potential advantage of learning relevant features directly from input
data representation, alleviating the need for human knowledge driven feature engineering. This is particularly beneficial
in scenarios where complex relationships exist within user activity tracking dataset and output labels.

By leveraging deep learning models, such as convolutional neural networks (CNNs) or transformer models, we can
capture intricate dependencies and temporal dynamics within the input sequences. These models can effectively learn
and extract high-level representations from the raw data, leading to competitive precision and recall without the need
for explicit feature engineering.

Overall, by utilizing deep learning models for churn prediction, we can overcome the limitations of manual feature
engineering and achieve competitive accuracy, precision, and recall in the classification task, as the models are adept at
learning and extracting meaningful representations from the input data.

3.3 Modeling Techniques

Our methodology comprised two distinct approaches, each of which leveraged a different form of user activity data to
predict user churn.

Approach 1 - Classical Machine Learning:

In our first approach, we employed Classical Machine Learning models, utilizing aggregated feature vectors to predict
the probability of user churn. This approach requires extensive feature engineering since all input features are domain
expertise driven and can not be learnt by the learning algorithm.

Let G; represent the feature vector for user ¢ that we’ve constructed from aggregated data. Our Classical Machine
Learning models then predict future churn probabilities P(C;|G;) for user i over the next four weeks. This can be
written as follows:

P(Ci|G;) = Model(G;) (1)

where M odel refers to our Classical Machine Learning models (Logistic Regression, Random Forest, or Gradient
Boosting Trees), G; is the feature vector for user 7, and C; is the churn label vector for user ¢ for the next four weeks.

Approach 2 - Deep Learning Models:

The second approach involved Deep Learning models, specifically Convolutional Neural Networks (CNNs) and attention
based models which were trained on the users’ past 30 days of time-series feature data to predict churn. This can be
mathematically represented as:

Let F; == [ ﬁ, 30, f;,gg, R ﬁ,l} represent the sequence of 30-day feature vectors for user ¢ that we’ve constructed

from daily transaction data. Our Deep Learning models then predict the churn probabilities P(C;|F;) for user ¢ over
the next four weeks. This can be written as follows:

Here, Model refers to our Deep Learning models: Vanilla CNN, VGG-like Krizhevsky et al. [2012], CNN(filter-
width=nfeqtures), CNN(filter-height=7), Inception-Resnet [Szegedy et al.| [2015} [2016, [2017]], ConvNeXt [Li et al.
[2022]], Transformer|Vaswani et al.|[2017]], Liu et al.|[2021]]

The comparative analysis of these two approaches facilitates the evaluation of the impact of feature representation and
model complexity on the prediction of user churn.
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Our quest to improve predictive performance in the task of customer churn prediction led us to explore a wide array
of deep learning models. These models, each with their own unique capabilities for processing and learning from
time-series data, ranged from simpler architectures like Convolutional Neural Networks (CNNs) to more intricate
designs such as custom Inception-ResNet hybrids and Transformer Encoders.

We commenced our journey with the traditional CNN |Krizhevsky et al.| [2012]], |Simonyan and Zisserman| [2014],
Szegedy et al.|[2015]], He et al.|[2016]], a popular choice for time-series analysis due to its capacity to discern patterns
over fixed-sized windows. Convolution neural networks have been extensively used in problems involving time-series
forecasting or classification tasks|Cui et al.| [2016], |Chen|[2015]], Ismail Fawaz et al.|[2019]. Time-series classification
or forecasting has wide range of applications ranging from stock market prediction Hoseinzade and Haratizadeh| [2019],
weather forecasting [Weyn et al.| [2020], disease detection [Dobko et al.| [2020]], to customer churn prediction. We
benchmark with vanilla CNN ( VGG-like ) for our classification task involving the multivariate user time-series data. As
we sought to enhance our model’s performance, we extended the vanilla CNN in two distinct ways: First, we modified
the kernel width to align with the dimension of the feature vectors, enabling our model to detect interactions among all
features within a given day. Second, we adjusted the kernel height to span the entirety of the 30-day time window, thus
allowing our model to capture long-term temporal patterns within the user activity data.

To obtain even higher predictive performance, We developed a custom hybrid of Inception [Szegedy et al.[[2017]
and ResNet He et al.|[2016]] models, designed to extract multi-scale feature patterns while addressing the vanishing
gradient problem common in deep networks |Szegedy et al.|[2017], [He et al|[2016]. Variations of the Inception-ResNet
architecture has also been used for time-series classification tasks. We explore the InceptionTime Ismail Fawaz et al.
[2020] architecture for our use case. However, we observe a deterioration in performance.

Following this, we implemented a ConvNeXt architecture [Liu et al.|[2022]]. ConvNeXt is renowned for its ability to
capture intricate feature interactions and reduce computational overhead through its unique grouped convolution design,
making it an attractive choice for our task. In the present work, we used a scaled-down version of the ConvNeXt model
for the classification task on our reshaped two-dimensional multivariate time-series data.

Finally, we utilized a variant of the Transformer architecture|Vaswani et al.| [2017], specifically a scaled-down version
of the Vision Transformer (ViT) model proposed by Dosovitskiy et al Dosovitskiy et al.| [2020]. This version retained
the self-attention mechanism of the original model, allowing it to focus on different parts of the input sequence and
recognize intricate temporal patterns across the 30-day user activity window. By only using the encoder mechanism, we
could efficiently handle time-series data, while reducing the complexity introduced by the decoder mechanism in the
full transformer model.

This broad spectrum of deep learning models provided us with an array of tools to understand and predict user churn.
Each model, with its unique strengths and features, lent different insights into the user activity data. In the following
sections, we will delve into a more detailed comparison of these models, and discuss the implications of our findings.

4 Data Preparation

The process of preparing the dataset for our predictive models was a meticulous one, encompassing several crucial
stages. Our primary objective was to construct a detailed yet comprehensible representation of each user’s interaction
history that could be effectively processed by both classical Machine Learning and Deep Learning models. Given the
scale required for preparing this dataset, we split data preparation into 2 stages : (1) Level-01 Features from transaction
level data (2) Level-02 Features from Level-01 features. The raw data form is shown in Table[T]and we use these
transactions data to create Level-01 features.

Representing user transactional data in a table, we might have a structure similar to the following:

In Table[I] each row is representative of a unique transaction, identified distinctly by a Transaction ID. The User ID
field pertains to the specific user who was involved in the transaction, while the Timestamp field indicates the precise
time at which the transaction occurred. The array of features tied to each transaction is denoted in the Feature Vector
column. These transactional data sets form the cornerstone for generating the Level-1 features that will further be used
in the modeling process.

This raw transaction data is then aggregated on a day level to form the Level-01 features that feed into the model (Table
[2). The Level-01 features will be vectors of aggregated feature values (such as count, sum, mean, etc.) for each user for
each day.

Here’s how the Level-01 features can be represented for each user:
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Transaction ID | User ID | Timestamp | Feature Vector
1 1 t171 f},l
2 1 ta1 fa,1
ni 1 tnl,l fT;Ll,l
N M ti,m f:1,M
N+1 M to nm fo,m
N + nM M tnM,M JF’;LA{,M

Table 1: Example of raw transactional data

User ID Date Feature Vector | No. of Transactions

1 diq fia ni1
d1,2 f1,2 ny.2

d1,p, fi,0, n1,D,

2 da1 faa n2.1
d2,2 f2,2 2.2

d2,D, f2.D, n2,D,

M dar fan A1
dpr,2 fare N2

deDIW f]\/f,DM MM, Dy

Table 2: Level-1 User Feature Table. Each row under a user ID represents a day’s aggregated features of that user.

Using the Level-01 aggregates, we create the training data. For each user, we consider the past 30 days of data as the
time series input and generate the corresponding churn label for the next four weeks. The churn label for each week
indicates whether the user has churned (inactive) or not.

To clarify this in the context of the table, we can define the training data as follows:

- Input (X): For each user, we extract the feature vectors from the past 30 days, denoted as f:,30, ﬁ,gg, ey ft,l,
where ¢ represents the timestamp of the last transaction in the training data.

- Output (Y): The churn label for each week is represented as a binary value, indicating whether the user has churned (1)
or not churned (0) in that specific week. Let’s denote these labels as Yweek1 s Yweek2 , Yweek3 s Yweekd -

Hence, the training data can be represented as a pair of input-output sequences:

(|:ft7307 ft729; R ft71i| ) [yweeklv Yweek2 ; Yweek3 yweek4])

This training data can then be used to train models for churn prediction using various techniques, such as classical
machine learning models or deep learning models.

In the next stage, we leveraged the Level 01 features to create Level-02 data by conducting various aggregations such as
mean (u), standard deviation (o), and other statistical measures over the 30-day window. This higher-level aggregation
aimed to capture different aspects of the user’s behavior, including their consistency and variability in their activity over
time. Formally, for a user ¢ and a feature j, the Level-02 features were defined as:
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L J
Hij =35 Zfi,k,j

k=0

d

1
Oij = 30 Z(fi,k,j — i j)?

k=0

The resulting Level-02 data offered a more condensed and generalized view of the user’s historical activity, which
was particularly suited for our classical Machine Learning models. The Level-02 feature vector G; for user ¢ was then
formed as:

Gi = {pi1, 001, i N, OiN }

Since our model is designed to predict future user churn, we construct a binary target vector Y; for each user;, where
each element y; ., of the vector corresponds to whether the i*" user churns in week w (1 to 4) after the end of the 30-day
activity window:

Y = {¥i1,Yi,2:Yi,3, Via}

Formally, for each week wy; after the 30-day window, y; ,, is defined as:

1 if useri has no activity in week w
Yiow = .
0 otherwise

It is important to note that by designing the target as a vector, we enable our model to provide a more granular prediction,
indicating not just if a user will churn, but also when they are likely to churn within a four-week horizon. This additional
information can be of significant value to various business operations, such as customer engagement and retention
strategies.

For our current work, we selected eleven features from a pool of a large number of available features. These eleven
features were shortlisted through rigorous exploratory data analysis (EDA) and domain knowledge.

4.1 Data Sampling

We run our experiments on sampled data from Dream11’s fantasy sports user base. We use user transaction history
records between 2018-01-01 and 2020-12-31. The setting here is non-contractual churn. We first create a random
sample of Dream11 users and process their transactions for creating modeling dataset for our experiments. This
modeling dataset has ~ 10° distinct users and ~ 108 raw transactions with various different types of transactions. This
large dataset provides a comprehensive historical perspective of user interactions with our fantasy sports platform.
Using this dataset, we created the train, validation and test datasets. The Train, Validation and Test ratio was chosen to
be 0.75, 0.05 and 0.20 respectively.

Here, We are not mentioning individual sporting events because we are not doing analysis for individual sporting
events. We are considering users’ past history irrespective of individual sporting events across all models. Any such
system-level features can be included in the same formulation by adding additional covariates.

5 Training Setup

Leveraging this vast dataset, our deep learning models were trained using the PyTorch framework, a popular open-source
machine learning library for Python. We follow the same training protocols for all models. All models were initialized
with random weights and trained for 100 epochs. In brief, we used the Adam optimizer Kingma and Ba|[2014] to train
our models.

In terms of computational setup, our training process was conducted in a distributed manner across multiple GPUs,
ensuring efficient handling of our large-scale data and complex models. We utilized Horovod, a distributed deep
learning training framework, to coordinate the training process across these GPUs. Horovod facilitates synchronous
distributed training, enabling each participating GPU to independently compute the gradients for the subset of data it
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was allocated and then collectively averaging these gradients to update the model weights. This method ensures model
consistency and accelerates the training process by allowing concurrent computations.

The process of loading data into our training environment was facilitated by Petastorm, an open-source data access
library. It enabled efficient and high-speed loading of our large-scale data directly from Amazon S3 into our PyTorch
models. Petastorm creates a streamlined interface between the data stored in S3 and the PyTorch Datal.oader, simplifying
the data ingestion process and enhancing the performance of our training operations.

Given the complex nature of our models and the size of our data, the training process was set to run for 100 epochs.
This balance was struck to allow sufficient learning time for our models to capture intricate patterns in the data while
avoiding excessive training that could lead to overfitting. Over the course of these epochs, the model performance was
continuously monitored, and adjustments were made as necessary to optimize the prediction accuracy.

We conducted grid search over all the tunable hyper-parameters on the held-out validation set for each of the models.
The global batch size was chosen 16K training samples. During training, each GPU was allocated ~ 4K training
samples. This batch size was carefully chosen to achieve best training performance at the shortest possible training
time. The learning-rate parameter (Ir) for all the models was kept fixed at 10—, The number of trainable parameters
for different models varied significantly and hence total training time also differed for each. Our custom transformer
architecture has approximately 1.8 million trainable parameters, featuring a composition of eight self-attention blocks.
The custom Inception-Resnet comprises nine inception blocks, each encompassing convolution operations with three
different kernel sizes: 3 x 3, 5 x 5 and 7 x 7. The architecture contained a total of approximately 2.4 million trainable
parameters. Our adapted ConvNeXt architecture featured three convolution layers with approximately 0.8 million
trainable parameters. For our Long Short-Term Memory (LSTM) model, we designed a five-layer architecture, followed
by a classification head comprised of two dense layers. The total count of trainable parameters here was approximately
one million. Both the Convolutional Neural Network architectures have approximately one million trainable parameters.
Here also a two layer dense neural network has been used as the classification head for predicting the churn label.

For all models, we used a Batch-Normalization [offe and Szegedy|[2015]] layer to improve stability and ensure faster
training convergence. To reduce model over-fitting, Dropout layers Srivastava et al.| [2014]] were used. The Dropout
probability (p) was chosen carefully for the individual models and it varied from 0.1 to 0.4. Training time for CNN was
least ( 6 hours) while training a transformer model took the longest ( 13 hours). We experimented with N-epochs = [10,
20, 50, 75, 100] and observed that model metrics improvement slowed down after 20 epochs and did not benefit from
any additional epochs after 50.

4 Nvidia-A10 GPUs were used for training Deep learning models while Spark was used for creating features at different
aggregation levels over the complete dataset and instrumenting distributed training using Horovod |Sergeev and Balso
[2018]] and Petastorm .

6 Results

A receiver operating characteristic curve, or ROC curve, is used to measure model performance of a binary classifier
as the discrimination threshold on top of predicted scores is varied. We calculate True Positive Rate (7P R) and False
Positive Rate (F'PR) for each threshold € [0, 1] as shown below.

TP

TPR= ———
R= 7T FN )
FP
FPR= — 4
R=5prTN “)

A high level summary of results from all of our experiments is presented in Table[3] Our best performing model was the
transformer architecture which shows ~ 6% improvement on an average across all time periods compared to best
performing GBT model. Complete ROC' Curves for each model are also presented (Fig. [T) which are used to calculate
the AUC benchmark.

We also present Precision — Recall Curves for all of our models , showing substantial difference between each
model variant. In our use case, there is always a trade-off involved between high false +ve rate vs retention budgets.
The goal is to get as many as users as we can without wasting treatment budgets. This trade-off has different thresholds
for each application, e.g. for giving promotional discounts using predicted scores, we have to be more stringent while
for communication related actions, we have substantial leeway.
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1.00

Classifier AUCw,, AUCw,, AUCw,, AUCw,,
LR 0.644 0.749 0.672 0.662
RF 0.640 0.775 0.699 0.687
GBT 0.646 0.773 0.703 0.694
CNN 0.797 0.705 0.686 0.675
ConvNext 0.835 0.751 0.729 0.717
Inception-Resnet 0.819 0.729 0.704 0.696
CNNy—, 0.807 0.742 0.725 0.716
CNNw=n 0.822 0.747 0.728 0.729
LSTM 0.800 0.742 0.727 0.721
Transformer 0.858 0.756 0.732 0.716
Table 3: Model Performance
1.0 ROC Curve : wl 1.0 ROC Curve : w2 1.0 ROC Curve : w3 . 1.0 ROC Curve : w4’ -
o.8 o.8 o.8 o.8
0.6 0.6 0.6 0.6
o o == o
a a a a
— LR = LR = LR L LR
0.4 RF 0.4 RE 0.4 RE. 0.4 RE.
GBT GBT GBT GBT
Transformer Transformer Transformer Transformer
LsT™ ; LsT™ LSTM LST™
02 T 02|/ T 02| L 0.2 T
NN cnn NN NN
/ Inception b Inception Inception / Inception
i/ Convnext Convnext Convnext 1l Convnext
O&.DO 0.25 0.50 0.75 1.00 O&DO 0.25 0.50 0.75 1.00 0!9 ole] 0.25 0.50 0.75 1.00 O&.DO 0.25 0.50 0.75
FPR FPR FPR FPR
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Figure 1: Model Performance

6.1 Results from Classical Models :

As shown in Table [3] results from Logistic Regression are worse across all time periods (i.e. Week - 01 /02 /03 /
04 churn ) but it is a sensible benchmark against which other modeling approaches can be tested. Ensemble models
perform better compared to the LR model. The PR Curve for GBT vs LR clearly shows performance improvement
as we move from LR — GBT. Overall, these methods under-perform substantially compared to Transformer based
model as shown in Table 3l

6.2 Results from Deep Networks :

Our Transformer model has consistently higher performance compared to others with an additional training time of
15% for the current version. Based on ROC and PR curves in Model Performance, there are certain instances where
ROC curve for classical algorithms is better compared to Deep learning based models. Taking a deeper look through the
PR curves though, shows substantially poor performance. This is primarily caused by data imbalance in churn problem
statements, where label distribution is heavily skewed towards one label. In our case, different weeks have different
skews ranging from 2x to 10x which shows up in poor performance of models with lower learning capacity.
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7 Conclusions and Summary

In the current paper, we presented our work on User Churn Prediction. We first formulated this problem as a classification
problem statement and proposed two distinct approaches to solve it for real world datasets. In the first approach, we
aggregated a user’s activity time series into a row vector and build a classifier on top of this representation. To improve
performance of this approach, extensive domain knowledge is required to create new features from a user’s time series.
With this approach, results from GBTs perform better compared to other classical ML methods.

Second approach creates a 2D array of chronologically arranged observations (X}, ) as input for the DL models. Here,
we used DL models which take advantage of the sequential nature as well as interaction between the features. The
highest performing model was the Transformer architecture which outperforms prediction by the classical models by
~ 6% on an average. With this improved approach, there’s a substantial scope for exploring seq-2-seq applications in
other time series applications ( e.g. CLTV prediction, Forecasting, sequential product recommendations being some of
the top use-cases ).

A major limitation of this approach is requirement of large training data volume and long training duration. The first
limitation is usually less relevant for forecasting user metrics - given high user counts in most Business to Customer
settings, but could prove to be a problem for other entities used in forecasting.
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