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Abstract

We review a multiple kernel learning (MKL) tech-
nique called /¢, regularised multiple kernel Fisher dis-
criminant analysis (MK-FDA), and investigate the ef-
fect of feature space denoising on MKL. Experiments
show that with both the original kernels or denoised ker-
nels, /, MK-FDA outperforms its fixed-norm counter-
parts. Experiments also show that feature space denois-
ing boosts the performance of both single kernel FDA
and /, MK-FDA, and that there is a positive correlation
between the learnt kernel weights and the amount of
variance kept by feature space denoising. Based on these
observations, we argue that in the case where the base
feature spaces are noisy, linear combination of kernels
cannot be optimal. An MKL objective function which
can take care of feature space denoising automatically,
and which can learn a truly optimal (non-linear) combi-
nation of the base kernels, is yet to be found.
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1 Introduction

Kernel methods [11, 13] have proven successful for
many machine learning problems since their introduction
in the mid-1990s. Representative methods such as support
vector machine (SVM) [16, 13], kernel Fisher discriminant
analysis (kernel FDA) [9, 2], kernel principal component
analysis (kernel PCA) [12] have been reported to produce
the state-of-the-art performance in numerous applications.
Kernel methods work by embedding data items in an input
space (vector, graph, string, etc.) into a vector space called a
feature space, and applying linear methods in such a feature
space. This embedding is defined implicitly by specifying
an inner product for the feature space via a positive semidef-
inite (PSD) kernel function: k(x;,x;) =< ¢(x;), d(x;) >,

where x; and x; are two data items in the input space, and
¢(+) is the (implicit) mapping function.

In kernel methods, the choice of kernel function is criti-
cally important, since it completely determines the embed-
ding of the data in the feature space. In many problems,
multiple kernels capturing different “views” of the problem
are available. In such a situation, one naturally wants to
combine these kernels in an “optimal” way. This multiple
kernel learning (MKL) problem was pioneered by Lancriet
et al. in [8], where the key idea is to learn a linear com-
bination of a given set of base kernels by maximising the
(soft) margin between two classes or by maximising kernel
alignment. Following this seminal work, MKL has become
one of the most active areas in the machine learning com-
munity in the past few years. Various extensions have been
made to [8]. For example, the efficiency of MKL is signif-
icantly improved in [1, 14, 10]; multiclass and multilabel
MKL are proposed in [20, 5]; in [6, 19, 17, 18], the ratio
of the inter- and intra- class scatters of FDA is maximised
instead of the margin and kernel alignment. All these MKL
methods learn a linear combination of base kernels, which
corresponds to concatenation of base feature spaces. We ar-
gue that in the case where the base feature spaces are noisy,
linear combination of kernels cannot be optimal, since the
noisy dimensions of a base feature space can not be elimi-
nated completely as long as the weight assigned to this ker-
nel is not zero. In such a situation, a better strategy would
be to denoise each base kernel before applying MKL.

In this paper, we present an approach that combines de-
noising of feature space and multiple kernel Fisher discrim-
inant analysis (MK-FDA). In Section 2 we review an £,
MK-FDA method that we recently proposed. We then intro-
duce in Section 3 feature space denoising by means of ker-
nel PCA. In Section 4, we show the effect of feature space
denoising on MKL, with experiments on a challenging ob-
ject recognition dataset, and provides some insights on the
connection between feature space denoising and MKL. Fi-
nally conclusions are given in Section 5.



2/, Norm Multiple Kernel Fisher Discrimi-
nant Analysis

For the sake of completeness, in this section we re-
view an £, regularised MK-FDA method we recently pro-
posed [18]. Most MKL techniques learn kernel weights by
maximising some measure of class separation. The ker-
nel weights must be regularised in order to make sure this
measure of separation remains meaningful and does not be-
come arbitrarily large. It is known that in an optimisation
problem, the regularisation norm controls the sparsity of
the solution. For example, an ¢; norm regularisation pro-
motes sparse solution, while /5 regularisation tends to pro-
duce non-sparse solution. In our ¢, MK-FDA, the kernel
weights can be regularised with a general ¢, norm for any
p > 1. This allows to learn the intrinsic sparsity of the given
set of base kernels by tuning the regularisation norm p on
an independent validation set. As a result, using the learnt
optimal norm p in the proposed ¢, MK-FDA offers better
performance than ¢1, {5, or /oo MK-FDAs. In the follow-
ing, we first formulate the associated optimisation problem,
then solve it with semi-infinite programming.

2.1 Problem formulation

We consider a binary classification problem. Suppose
we are given n m X m training kernel matrices K;,j =
1,---,n and m class labels y; € {1,—1},i = 1,--- ,m,
where m is the number of training samples. Our goal is
to learn optimal kernel weights 3 € R™ for the linear
combination of n kernels under the ¢, constraint: K =
> -1 BiK;, B; > 0,]|B]|5 < 1 forany p > 1, such that
the ratio criterion of FDA is maximised. The p > 1 require-
ment is to ensure that the triangle inequality is satisfied and

that || - ||, defines a norm.
Let m™ be the number of positive training samples, and
m~ = m — m™" the number of negative training samples.

For a given kernel K, we assume it has been centred in its
feature space [12]. Let 4+ and p~ be the centroids of the
positive and negative samples in the feature space, respec-
tively, and C and C'~ be the covariance matrices of the
two classes, respectively. The between class scatter Sp and
within class scatter S,, are defined as:

Sp =" (= ) (= )T (1)
Sw = m+Ct + mmC™ ©)

The objective of single kernel FDA is to find the projection
wlSpw

direction w in the feature space that maximises 22,
w WwWWwW

. WT ——Spw .
equivalently, %, where St = Sp + Sw is the

total scatter matrix. In practice a regularised version,

or

T m
W Spw

wT (St + AX)w

J(w) = 3)

is maximised to improve generalisation and numerical sta-
bility [9], where A is a small positive number.

Exploring the link between FDA and regularised least
squares (RLS) and using the duality theory of optimisation,
it is proved in [19] that the maximal value of (3) is given by
(up to an additive constant determined by the labels):

1 1
J* ~ min(iaT(I + XK)a —a'a) 4)
whereaw € R anda = (5, , 4, =L ... =L)T ¢

R™ contains the centred labels. Now consider the case
where the kernel K can be chosen from linear combinations
of a set of base kernels. The kernel weights must be regu-
larised somehow to make sure (4) remains meaningful. We
impose a general £, regularisation ||3[[5 < 1 forany p > 1,
and use second order Taylor expansion to approximate this
constraint [7]:

Bl ~ KD g S - 2)a s,
j=1 j=1
+p(pT_3+1 = v(B) )

where Bj is the current estimate of 3; in an iterative process,
which will be explained in more detail in the next section.
After some arrangements, we arrive at the binary ¢, MK-
FDA optimisation problem. Under the £, constraint, the
optimal K maximising (4) is found by solving:

maxminS(a,3) st B8>0, v(B) <1 (6)

2.2 Solving the optimisation problem with
SIP

A semi-infinite program (SIP) is an optimisation prob-
lem with finite number of variables x € RY on a feasible set
described by infinitely many constraints [4]. It is straight-
forward to show that (6) is equivalent to a SIP:

maxgp g 0 (8)

st. 8>0, v(B)<1, S(a,B)>6 VaecR™

We adapt the wrapper algorithm proposed in [14] to
solve (8). The basic idea is to divide a SIP into an inner
sub-problem and an outer sub-problem. The algorithm al-
ternates between solving the two sub-problems until conver-
gence. At step ¢, assuming the current optimal (Q(t),ﬂ(t))



Table 1. An iterative algorithm for solving the
SIP problem (8)

e Initialisation: S© = 1,9V = —oco, ﬁ](-l) =n"'? for
j=1,---,n

e for t=1,2,--- do
— Compute o™ = argmin, S(a, %) using (10)

— Compute S := S(a'¥, W)
s
o)
- Compute (0¢+D gU+D) = arg maxg,g 0 in (11),
where v(3) is defined as in (5) with 3 = 8.

- if |1 - | < € break

e end for

have been obtained in the outer sub-problem, the inner sub-
problem identifies the constraint that maximises the con-
straint violation for (9, 3®)):

a® .= arg min S(a, V) ©)

Observing that (9) is an unconstrained quadratic program,
o' is obtained by solving the following linear system [19]:

I+ Y VKW =a (10)

If o*) satisfies constraint S(a®, B1)) > () then solution
(0, 31D is optimal. Otherwise, the constraint is added to
the set of constraints and the algorithm proceeds to the outer
sub-problem of step ¢ + 1.

At step t, the outer sub-problem computes the optimal
(00D, 31+ in (8) for a restricted subset of constraints:

(00+D g+ — arg maxg g 0 (11)
s.t. 5207 V(IB)§17 S(a(r)”B)ZGV’I":l,,t

When p = 1, v(8) < 1reduces to a linear constraint. When
p > 1, (11) is a quadratically constrained linear program
(QCLP) with one quadratic constraint v(3) < 1 and ¢t + n
linear constraints. This can be solved by off-the-shelf op-
timisation tools such as Mosek '. Note that at time ¢ + 1,
v(3) is defined as in (5) with B = BY, ie., the current
estimate of 3.

Normalised maximal constraint violation is used as a
convergence criterion. The algorithm stops when |1 —

2::))| < ¢, where S® := S(a®, 3®) and € is a pre-
defined accuracy parameter. This iterative algorithm for
solving the £, binary MK-FDA SIP problem is summarised

in Table 1, and it is guaranteed to converge [4].

Uhttp://www.mosek.com

3 Feature Space Denoising with Kernel PCA

Principal Component Analysis (PCA) is an orthogonal
basis transformation that transforms a number of correlated
variables into uncorrelated ones called principal compo-
nents. When used as an unsupervised dimensionality reduc-
tion technique, PCA retains as much variance as possible
while reducing the dimensionality of the data.

Given a set of m vectors x; € R% 4 = 1,--- ,m, and
assuming the vectors are centred: » .- x; = 0, the or-
thogonal basis of PCA can be found by diagonalising the
covariance matrix of the data. More precisely, let X =
(x1,X2, "+ ,X;,) be the d x m data matrix. Consider the
eigen decomposition C' = VQVT, where C = X X7 is
the sample covariance matrix. The d X d diagonal matrix
Q) contains the d eigenvalues of C, and the orthogonal basis
sought is given by the eigenvectors of C, which are con-
tained in the columns of the d x d matrix V. The data now
can be decorrelated by projecting onto the orthogonal basis.
If we sort the eigenvalues in descending order, and project
only onto the eigenvectors that are associated with the lead-
ing eigenvalues, dimensionality reduction is achieved with
a minimum loss of variance.

Now consider the kernel case. If we knew the mapping
function ¢(-), we could then map the data into the feature
space explicitly, compute the sample covariance (after cen-
tring): C' = ¢(X)¢T (X), and diagonalise C' to obtain ex-
plicitly the orthogonal basis in the feature space:

c=vovT (12)
where the d x d diagonal matrix €2 contains the eigenvalues
of C and the d x d matrix V = (v, Vg, - -- , V) contains
the orthogonal basis in its columns, and d is the dimension-
ality of the feature space. However, the mapping function is
specified only implicitly through a kernel function, and the
kernel matrix is all we have to work with.

Kernel PCA applies orthogonal basis transformation im-
plicitly in the feature space. We first centre implicitly the
data in the feature space by K = PK'P, where P is the
m X m centring matrix defined as P = I — %1 .17, and
K’ is the uncentred kernel matrix [12]. Now we consider
the eigen decomposition of the centred kernel matrix:

K=UAUT (13)

where the m x m diagonal matrix A contains the eigenval-
ues of K and the m x m matrix U = (ug,uy, - ,Uy)
contains in its columns the eigenvectors of K. Using the
connection between C' and K (C = #(X)¢”(X) and
K = ¢T(X)#(X)), it is shown in [12] that the non-zero
eigenvalues of C are the same as those of K , and for the
i non-zeros eigenvalue, the corresponding eigenvectors v;
and u; are related by:

Vi = ¢(X)u; (14)



Note that (14) only shows that each of the orthogonal ba-
sis vectors in the feature space lies in the span of the train-
ing samples in the feature space, and the orthogonal basis
is not explicitly available. However, we are interested not
in the orthogonal basis itself, but instead in the projection
onto the basis. It directly follows from (14) that the pro-
jection onto the i basis vector v; is given by ¢T (X)v; =
6T (X)$(X ), = Ku,.

We have shown, given the kernel matrix, how kernel
PCA can be used to find the projection onto any basis vec-
tor in the feature space. Similarly as in PCA, if we sort the
eigenvalues of K (also the eigenvalues of C), and project
only onto the basis vectors that are associated with the
leading eigenvalues, dimensionality reduction in the feature
space is achieved with a minimum loss of variance. This can
be considered as a denoising process in the feature space,
where the level of denoising is controlled by the proportion
of retained variance. In the next section we show the ef-
fect of feature space denoising especially in the context of
multiple kernel learning.

4 Experiments

In this section we present experimental results showing
the effect of feature space denoising, and discuss its con-
nection to multiple kernel learning.

4.1 Setup

We carry out experiments on a challenging object recog-
nition dataset, namely, Pascal visual object classes (VOC)
2007 dataset. Pascal VOC challenge provides a yearly
benchmark for comparison of object recognition meth-
ods [3]. The VOC 2007 dataset consists of 9963 images
of 20 object classes such as aeroplane, cat, person, etc. The
set is divided into pre-defined training, validation, and test
sets, with 2501, 2510, and 4952 images, respectively.

The classification of the 20 object classes is treated as
20 independent binary problems. Average precision (AP) is
used to measure the performance of each binary classifier.
The mean of the APs over the 20 classes, MAP, is used as
a measure of the overall performance. Features provided
by various detectors and descriptors are used to compute 33
kernels, and the computed kernels serve as base kernels in
our experiments. A detailed description of the features and
the kernel construction process can be found online 2.

4.2 Results with original kernels
In the first set of experiments we apply the proposed

¢, MK-FDA to the 33 original kernels. We learn the reg-
ularisation norm p on the validation set from 12 values:

Zhttp://www.featurespace.org/
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Figure 1. Kernel weights learnt on the training
set with various p values. “dog” class. From
left to right, top to bottom: p = {1,1 +2761 +
275 14274, 14273, 14272, 14271, 2,3,4,8,105}.

Table 2. MK-FDAs with original kernels

|| ¢1 MK-FDA | ¢ MK-FDA | £, MK-FDA | ¢, MK-FDA
MAP || 5485 | 5479 | s464 | 5561

{1 +2%14+251+2%41+231+2721+
271,2,3,4,8,10°%}, and then apply the learnt optimal p to
test set. We compare this £, MK-FDA scheme with fixed-
norm MK-FDA, where the regularisation norm is fixed to
El, 52, and goo

Shown in Fig. 1 are the kernel weights learnt on the
training set with various regularisation norms for the “dog”
class. This figure confirms that the norm p controls the spar-
sity of the learnt weights: the smaller the value, the more
sparse the weights. When p = 10 (practically infinity), the
kernels weights become ones, i.e., £, MK-FDA is equiva-
lent to single kernel FDA with uniformly weighted sum of
the base kernels.

In Table 2, we show MAPs of the four MK-FDA meth-
ods. By tuning the regularisation norm p using the valida-
tion set, the intrinsic sparsity of the kernel set can be learnt.
As aresult, £, MK-FDA outperforms its fixed norm coun-
terparts.

4.3 Results with denoised kernels

In this section we show the effect of feature space de-
noising using kernel PCA. We again use the “dog” class as
an example. Fig. 2 plots the APs obtained with single kernel
FDA on the validation set and test set when keeping various
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Figure 2. Feature space denoising with ker-
nel PCA. “dog” class. Top left: kernel 21. Top
right: kernel 26. Bottom left: kernel 30. Bot-
tom right: sum of all 33 base kernels.

Table 3. MK-FDAs with denoised kernels

|| #1 MK-FDA | ¢ MK-FDA | £ MK-FDA | £, MK-FDA
MAP || 5426 | 5606 | ss82 | 5617

amount of variance in kernel PCA. The first three subplots
are with three base kernels, and the bottom left one is with
the sum of all 33 base kernels.

Fig. 2 top and bottom left show that the performance
curve on the validation set is a good indicator of the amount
of noise in the feature space. In other words, one can de-
termine how much variance to retain, or equivalently how
much noise to remove, based on this curve. The optimal
amount of variance to keep is kernel dependent (~ 20% for
kernel 26 and kernel 30, ~ 80% for kernel 21), but feature
space denoising consistently boosts the performance on the
test set compared to using the whole feature space without
denoising.

Another interesting observation is that when applying
feature space denoising to the sum of all 33 base kernels,
we do not obtain any improvement (Fig. 2, bottom right).
In this case, The best performance on both validation and
test sets are achieved when all dimensions of the feature
space are used. The MAP of this “summing + denoising”
strategy is 54.37: compared to the “summing only” strat-
egy (/oo MK-FDA in Table 2), the performance even drops
slightly.

Considering these observations, a more reasonable strat-
egy would be to first denoise each base kernel, and then
apply ¢, MK-FDA. The results of such a strategy are shown
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Figure 3. Spearman’s coefficient between the
learnt kernel weights and percentage of vari-
ance to keep.

in Table 3. Note that the ¢, MK-FDA in the table is sim-
ply a “denoising + summing” scheme. Its advantage over
the “summing + denoising” scheme is evident (55.82 vs.
54.37).

With the denoised kernels, the ¢, MK-FDA again out-
performs the fixed-norm versions. However, the margin be-
tween it and its competitors is smaller this time. For exam-
ple, it outperforms the /o version only by 0.11. This seems
to suggest that much of the benefit of MKL comes from its
tendency to assign small weights to noisy kernels and vice
versa. In order to test this hypothesis, we rank the 33 base
kernels according to the kernel weights learnt with the opti-
mal p value. We then rank the base kernels again according
to the amount of variance kept by the feature space denois-
ing process. If our hypothesis is correct, the two rankings
should show some consistency.

We use Spearman’s rank correlation coefficient [15] to
measure the similarity between the two rankings. A coeffi-
cient of +1 indicates identical rankings, while a coefficient
of -1 means the two rankings are reversed of each other.
The Spearman’s coefficients for the 20 object classes are
shown in Fig. 3. Out of 20, positive coefficients are ob-
served on 16 object classes, and negative coefficients are
observed only on 3 classes. On the “sheep” class the opti-
mal kernel weights learnt are uniform, for which case the
Spearman’s coefficient is not defined. The mean of the 19
Spearman’s coefficients is 0.1917, which indicates there is
indeed some correlation between the kernel weights learnt
in MKL and the noise level in the base kernels.

In the experiments, the stopping threshold € in £, MK-
FDA is set to 10~%, and \ is also set to 10~%. The kernels
used in the paper and a Matlab implementation of ¢, MK-



FDA are available online 3.

5 Conclusions

In this paper, we have reviewed an MKL technique,
namely, ¢, regularised MK-FDA, and have investigated the
effect of feature space denoising by means of kernel PCA.
Experiments show that with both the original base kernels
or denoised base kernels, by learning their intrinsic spar-
sity using a validation set, the ¢, MK-FDA we recently
proposed outperforms its fixed-norm counterparts. Exper-
iments also show that feature space denoising boosts the
performance of both single kernel FDA and the ¢, MK-
FDA. This observation, together with the one that there is
in general a positive correlation between the learnt kernel
weights in £, MK-FDA and the amount of variance kept by
feature space denoising, seems to suggest that MKL should
be performed on a per dimension basis instead of per kernel
basis. However, this is not possible with MKL techniques
that learn linear combinations of base kernels. An MKL
objective function which can take care of the feature space
denoising automatically, and which can learn a truly opti-
mal (non-linear) combination of the base kernels, is yet to
be found.
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